

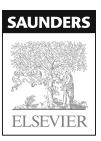
An Evidence-Based Approach

2nd Edition

Netter's Orthopaedic Clinical Examination

An Evidence-Based Approach
2nd Edition

Joshua A. Cleland, PT, PhD


Associate Professor, Physical Therapy Program
Franklin Pierce University, Concord, New Hampshire
Rehabilitation Services of Concord Hospital, Concord, New Hampshire

Shane Koppenhaver, PT, PhD

Major, Army Medical Specialist Corps Assistant Professor, U.S. Army–Baylor University Doctoral Physical Therapy Program Fort Sam Houston, Texas

Illustrations by Frank H. Netter, MD

Contributing Illustrators Carlos A. G. Machado, MD John A. Craig, MD

Suite 1800 Philadelphia, Pennsylvania 19103

NETTER'S ORTHOPAEDIC CLINICAL EXAMINATION: AN EVIDENCE-BASED APPROACH, SECOND EDITION

Copyright © 2011, 2005 by Saunders, an imprint of Elsevier Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publisher. Permissions for Netter Art figures may be sought directly from Elsevier's Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or email H.Licensing@elsevier.com.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

With respect to any drug or pharmaceutical products identified, readers are advised to check the most current information provided (i) on procedures featured or (ii) by the manufacturer of each product to be administered, to verify the recommended dose or formula, the method and duration of administration, and contraindications. It is the responsibility of practitioners, relying on their own experience and knowledge of their patients, to make diagnoses, to determine dosages and the best treatment for each individual patient, and to take all appropriate safety precautions.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Cleland, Joshua.

Netter's orthopaedic clinical examination: an evidence-based approach. — 2nd ed. / Joshua A. Cleland, Shane Koppenhaver; illustrations by Frank H. Netter; contributing illustrators, Carlos A. G. Machado, John A. Craig.

p.; cm.

Rev. ed. of: Orthopaedic clinical examination : an evidence-based approach for physical therapists / Joshua Cleland ; illustrations by Frank H. Netter. c2005.

Includes bibliographical references and index.

ISBN 978-1-4377-1384-8

- 1. Physical orthopedic tests—Handbooks, manuals, etc. 2. Physical diagnosis—Handbooks, manuals, etc.
- I. Koppenhaver, Shane. II. Netter, Frank H. (Frank Henry), 1906-1991. III. Orthopaedic clinical examination. IV. Title. V. Title: Orthopaedic clinical examination.
- [DNLM: 1. Musculoskeletal Diseases—diagnosis—Handbooks. 2. Physical Examination—methods—Handbooks.
- 3. Evidence-Based Medicine—Handbooks. 4. Physical Therapy Modalities—Handbooks. WE 39 C624n 2011] RD 734.5P58C59 2011

616.7'075—dc22 2009039235

Acquisitions Editor: Elyse O'Grady
Developmental Editor: Marybeth Thiel
Publishing Services Manager: Frank Polizzano
Project Manager: Lee Ann Draud
Design Direction: Lou Forgione
Illustrations Manager: Karen Giacomucci

Printed in United States of America

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID International

Sabre Foundation

ISBN: 978-1-4377-1384-8

To our incredible mentors and colleagues who have fostered our passion for evidence-based practice and orthopaedics.

To our photography models (Jessica Palmer and Nicole Koppenhaver) and photographers (Sara Randall, Lindsey Browne, and Jeff Hebert) for spending more hours and retakes than we'd like to admit.

To Dr. Frank Netter and the Elsevier editorial staff who turned our ideas into a fantastic literary guide.

And, most important, to our wonderful families, whose sacrifices and support made this considerable endeavor possible.

About the Artists

Frank H. Netter, MD

Frank H. Netter was born in 1906, in New York City. He studied art at the Art Student's League and the National Academy of Design before entering medical school at New York University, where he received his MD degree in 1931. During his student years, Dr. Netter's notebook sketches attracted the attention of the medical faculty and other physicians, allowing him to augment his income by illustrating articles and textbooks. He continued illustrating as a sideline after establishing a surgical practice in 1933, but he ultimately opted to give up his practice in favor of a full-time commitment to art. After service in the United States Army during World War II, Dr. Netter began his long collaboration with the CIBA Pharmaceutical Company (now Novartis Pharmaceuticals). This 45-year partnership resulted in the production of the extraordinary collection of medical art so familiar to physicians and other medical professionals worldwide.

In 2005, Elsevier, Inc., purchased the Netter Collection and all publications from Icon Learning Systems. There are now more than 50 publications featuring the art of Dr. Netter available through Elsevier, Inc. (in the U.S.: www.us.elsevierhealth.com/Netter and outside the U.S.: www.elsevierhealth.com).

Dr. Netter's works are among the finest examples of the use of illustration in the teaching of medical concepts. The 13-book *Netter Collection of Medical Illustrations*, which includes the greater part of the more than 20,000 paintings created by Dr. Netter, became and remains one of the most famous medical works ever published. *The Netter Atlas of Human Anatomy*, first published in 1989, presents the anatomical paintings from the Netter Collection. Now translated into 16 languages, it is the anatomy atlas of choice among medical and health professions students the world over.

The Netter illustrations are appreciated not only for their aesthetic qualities, but, more important, for their intellectual content. As Dr. Netter wrote in 1949, ". . . clarification of a subject is the aim and goal of illustration. No matter how beautifully painted, how delicately and subtly rendered a subject may be, it is of little value as a *medical illustration* if it does not serve to make clear some medical point." Dr. Netter's planning, conception, point of view, and approach are what inform his paintings and what makes them so intellectually valuable.

Frank H. Netter, MD, physician and artist, died in 1991.

Learn more about the physician-artist whose work has inspired the Netter Reference collection: http://www.netterimages.com/artist/netter.htm.

Carlos Machado, MD

Carlos Machado was chosen by Novartis to be Dr. Netter's successor. He continues to be the main artist who contributes to the Netter collection of medical illustrations.

Self-taught in medical illustration, cardiologist Carlos Machado has contributed meticulous updates to some of Dr. Netter's original plates and has created many paintings of his own in the style of Netter as an extension of the Netter collection. Dr. Machado's photorealistic expertise and his keen insight into the physician-patient relationship inform his vivid and unforgettable visual style. His dedication to researching each topic and subject he paints places him among the premier medical illustrators at work today.

Learn more about his background and see more of his art at http://www.netterimages.com/artist/machado.htm.

About the Authors

Joshua Cleland, PT, DPT, PhD, OCS, FAAOMPT

Dr. Cleland earned a Master of Physical Therapy degree from Notre Dame College in 2000 and the Doctor of Physical Therapy degree from Creighton University in 2001. In 2006, he received a PhD from Nova Southeastern University. He received board certification from the American Physical Therapy Association as an Orthopaedic Clinical Specialist in 2002 and completed a fellowship in manual therapy through Regis University in Denver, Colorado, in 2005. Josh is presently a Professor in the Physical Therapy Program at Franklin Pierce University. He practices clinically in outpatient orthopaedics at Rehabilitation Services of Concord Hospital, Concord, New Hampshire. He is actively involved in numerous clinical research studies investigating the effectiveness of manual physical therapy and exercise in the management of spine and extremities disorders. He has published more than 85 manuscripts in peer-reviewed journals. He is on the Editorial Board for *Physical Therapy* and is an Editorial Review Board Member for the *Journal of Orthopaedic and Sports Physical Therapy*. He is the recipient of the 2009 Eugene Michels New Investigator Award. He received the 2008 Jack Walker Award from the American Physical Therapy Association. In addition, Dr. Cleland was awarded the Excellence in Research Award from the American Academy of Orthopaedic Manual Physical Therapists on two separate occasions (2004 and 2006).

Shane Koppenhaver, PT, PhD, OCS, FAAOMPT

Dr. Koppenhaver received his Masters of Physical Therapy degree from the U.S. Army/Baylor University Graduate Program in 1998, and a PhD in Exercise Physiology from the University of Utah in 2009. He became board certified in Orthopedic Physical Therapy in 2001 and completed a fellowship in manual therapy through Regis University in 2009. Dr. Koppenhaver is a Major in the U.S. Army and an Assistant Professor in the U.S. Army/Baylor University Doctoral Program in Physical Therapy. He has published numerous studies on low back pain, spinal manipulation, and the use of ultrasound imaging in the measurement of trunk muscle function. His primary research interests concern mechanistic and clinical outcomes associated with manual therapy, especially as they apply to clinical reasoning and management of patients with neuromusculoskeletal conditions.

Foreword

Diagnosis is not the end, but the beginning of practice. —Martin H. Fischer

Physical examination and the ability to differentially diagnose accurately are critical components of orthopaedic medicine. However, the decisions that providers use to select their "preferred" evaluative tools are often based on tradition or what was learned during initial professional training rather than on science. Although some questions and examination procedures may be very helpful in establishing an accurate orthopaedic diagnosis, others may be utterly useless and serve only to distract both patients and providers. With the rapidly expanding amount of recent research investigating the diagnostic utility of tests and measures, it is essential for clinicians to use selective components of the history and physical examination that are supported by current best evidence.

This textbook is unique and easy to decipher for the audience for whom it is written. The authors should be commended for compiling the evidence currently available in the literature and applying it to the regional musculoskeletal examination. First, the authors outline in detail the relevant literature and clearly describe the psychometric properties of each historical and physical examination procedure. Second, the text provides a thorough evaluation of each subarea and highlights a variety of evaluative tests for the various regions of the body. This approach helps to present the material to medical professionals in a more focused and streamlined fashion. Third, if pictures represent a thousand words, the text should be considered a million pages. The combination of hand-drawn and photographic examples of anatomy, pathoanatomy, and special tests are invaluable to the reader as they help integrate the evidence into dynamic clinical practice. Finally, the authors must be commended for organizing and presenting all the material in such a logical format that makes it highly useful in both academic environments and in those of busy orthopaedic health care professionals.

As director of an accredited clinical health care program, I appreciate that this text provides a useful resource within the library regarding our professional domains: (1) Prevention, (2) Clinical Evaluation and Diagnosis, (3) Immediate Care, (4) Treatment/Rehabilitation and Reconditioning, (5) Organization and Administration, and (6) Professional Responsibility. This text is an example of the practical information we need along with the voluminous and technical literature available to us all. I believe the authors have succeeded in their objective, and our program will be using this resource now and into the future.

Well done, and thank you.

BRADLEY HAYES, PHD, ATC/L

Director, Athletic Training Education University of Utah College of Health

Preface

Over the past several years, evidence-based practice has become the standard in the medical and health care professions. As described by Sackett and colleagues (*Evidence-Based Medicine: How to Practice and Teach EBM*, 2nd ed, London, 2000, Harcourt Publishers Limited), evidence-based practice is a combination of three elements: the best available evidence, clinical experience, and patient values. Sackett has further reported that "when these three elements are integrated, clinicians and patients form a diagnostic and therapeutic alliance which optimizes clinical outcomes and quality of life." Each element contributes significantly to the clinical reasoning process by helping to identify a diagnosis or prognosis or establish an effective and efficient plan of care. Unfortunately, the evidence-based approach confronts a number of barriers that may limit the clinician's ability to utilize the best available evidence to guide decisions about patient care, most significantly a lack of time and resources. Given the increasing prevalence of new clinical tests in the orthopaedic setting and the frequent omission from textbooks of information about their diagnostic utility, the need was clear for a quick reference guide for students and busy clinicians that would enhance their ability to incorporate evidence into clinical decision making.

The purpose of *Netter's Orthopaedic Clinical Examination: An Evidence Based Approach* is two-fold: to serve as a textbook for musculoskeletal evaluation courses in an academic setting and to provide a quick, user-friendly guide and reference for clinicians who want to locate the evidence related to the diagnostic utility of commonly utilized tests and measures.

The first chapter is intended to introduce the reader to the essential concepts underlying evidence-based practice, including the statistical methods it employs and the critical analysis of research articles. The remainder of the book consists of chapters devoted to individual body regions. Each chapter begins with a review of the relevant osteology, arthrology, myology, and neurology and is liberally illustrated with images by the well-known medical artist Frank H.

Netter, MD. The second portion of each chapter provides information related to patient complaints and physical examination findings. Reliability and diagnostic utility estimates (sensitivity, specificity, and likelihood ratios) are presented for each patient complaint and physical examination finding and are accompanied by quick access interpretation guides. Test descriptions and definitions of positive test findings are included as reported by the original study authors, both to minimize any alteration of information and to provide readers insight into difference values reported by different studies. At the end of each chapter are tables listing information on commonly used outcome measures and quality ratings for all the studies investigating tests' diagnostic utility.

We hope that clinicians will find *Netter's Orthopaedic Clinical Examination* a user-friendly clinical resource for determining the relevance of findings from the orthopaedic examination. We also hope that students and educators will find this a valuable guide to incorporate into courses related to musculoskeletal evaluation and treatment.

JOSHUA A. CLELAND, PT, PHD SHANE KOPPENHAVER, PT, PHD

The Reliability and Diagnostic Utility of the Orthopaedic Clinical Examination

RELIABILITY	2
DIAGNOSTIC ACCURACY	3
2×2 Contingency Table	3
Overall Accuracy	4
Positive and Negative Predictive Values	4
Sensitivity	5
Specificity	6
Likelihood Ratios	6
CONFIDENCE INTERVALS	8
PRETEST AND POST-TEST PROBABILITY	9
CALCULATING POST-TEST PROBABILITY	9
ASSESSMENT OF STUDY QUALITY	10
SUMMARY	11
REFERENCES	12

The health sciences and medical professions are undergoing a paradigm shift toward evidence-based practice, defined as the integration of the best available research evidence and clinical expertise with the patient's values. ^{1,2} Evidence should be incorporated into all aspects of physical therapy patient and client management including examination, evaluation, diagnosis, prognosis, and intervention. Perhaps the most crucial component is a careful, succinct clinical examination that can lead to an accurate diagnosis, the selection of appropriate interventions, and determination of a prognosis. Thus, incorporating evidence on the ability of clinical tests and measures to distinguish between patients who do and do not present with specific musculoskeletal disorders is of utmost importance. ^{1,2}

The diagnostic process entails obtaining a patient history, developing a working hypothesis, and selecting specific tests and measures to confirm or refute the formulated hypothesis. The clinician must determine the pretest (before the evaluation) probability that the patient has a particular disorder. Based on this information the clinician selects appropriate tests and measures that will help determine the post-test (after the evaluation) probability of the patient having the disorder, until a degree of certainty has been reached such that patient management can begin (the *treatment threshold*). The purpose of clinical tests is not to obtain diagnostic certainty but rather to reduce the level of uncertainty until the treatment threshold is reached.² The concepts of pretest and post-test probability and treatment threshold are elaborated later in this chapter.

As the number of reported clinical tests and measures continues to grow, it is essential to thoroughly evaluate a test's diagnostic properties before incorporating it into clinical practice.³ Integrating the best evidence available for the diagnostic utility of each clinical test is essential in determining an accurate diagnosis and implementing effective, efficient treatment. It seems only sensible that clinicians and students should be aware of the diagnostic properties of tests and measures and know which have clinical utility. This text assists clinicians and students in selecting tests and measures to ensure the appropriate classification of patients and to allow for quick implementation of effective management strategies.

The assessment of diagnostic tests involves examining a number of properties, including reliability and diagnostic accuracy. A test is considered *reliable* if it produces precise and reproducible information. A test is considered to have *diagnostic accuracy* if it has the ability to discriminate between patients with and without a specific disorder. Scientific evaluation of the clinical utility of physical therapy tests and measures involves comparing the examination results to reference standards such as radiographic studies (which represent the closest measure of the truth). Using statistical methods from the field of epidemiology, the diagnostic accuracy of the test—its ability to determine which patients have the disorder and which do not—is then calculated. This chapter focuses on the characteristics that define the reliability and diagnostic accuracy of specific tests and measures. The chapter concludes with a discussion of quality assessment of studies investigating diagnostic utility.

RELIABILITY

For a clinical test to provide information that can be used to guide clinical decision making, it must be reliable. Reliability is the degree of consistency to which an instrument or rater measures a particular attribute.⁵ When we investigate the reliability of a measurement, we are determining the proportion of that measurement that is a true representation and the proportion that is the result of measurement error.⁶

When discussing the clinical examination process, it is important to consider two forms of reliability: intra-examiner and inter-examiner reliability. Intra-examiner reliability is the ability of a single rater to obtain the identical measurement during separate performances of the same test.

Inter-examiner reliability is a measure of the ability of two or more raters to obtain identical results with the same test.

The kappa coefficient (κ) is a measure of the proportion of potential agreement after chance is removed^{1,5,7}; it is the reliability coefficient most often used for categorical data (positive or negative).⁵ The correlation coefficient commonly used to determine the reliability of data that is continuous in nature (e.g., range of motion) is the intraclass correlation coefficient (ICC). Although interpretations of reliability vary, coefficients are often evaluated by the criteria described by Shrout⁸ with values less than 0.10 indicating no reliability, values between 0.11 and 0.40 indicating slight reliability, values between 0.61 and 0.80 indicating moderate reliability, and values greater than 0.81 indicating substantial reliability. "Acceptable reliability" must be decided by the clinician using the specific test or measure⁹ and should be based on the variable being tested, why a particular test is important, and on whom the test will be used.⁶ For example, 5% measurement error may be very acceptable when measuring joint range of motion, but is not nearly as acceptable when measuring pediatric core body temperature.

DIAGNOSTIC ACCURACY

Clinical tests and measures can never absolutely confirm or exclude the presence of a specific disease. 10 However, clinical tests can be used to alter the clinician's estimate of the probability that a patient has a specific musculoskeletal disorder. The accuracy of a test is determined by the measure of agreement between the clinical test and a reference standard. 11,12 A reference standard is the criterion considered the closest representation of the truth of a disorder being present. 1 The results obtained with the reference standard are compared with the results obtained with the test under investigation to determine the percentage of people correctly diagnosed, or diagnostic accuracy.¹³ Because the diagnostic utility statistics are completely dependent on both the reference standard used and the population studied, we have specifically listed these within this text to provide information to consider when selecting the tests and measures reported. Diagnostic accuracy is often expressed in terms of positive and negative predictive values (PPVs and NPVs), sensitivity and specificity, and likelihood ratios (LRs).^{1,14}

2×2 Contingency Table

To determine the clinical utility of a test or measure, the results of the reference standard are compared with the results of the test under investigation in a 2×2 contingency table, which provides direct comparison between the reference standard and the test under investigation. 15 It allows for the calculation of the values associated with diagnostic accuracy to assist with determining the utility of the clinical test under investigation (Table 1-1).

The 2×2 contingency table is divided into four cells (a, b, c, d) for the determination of the test's ability to correctly identify true positives (cell a) and rule out true negatives (cell d). Cell b represents the false-positive findings wherein the diagnostic test was found to be positive yet the reference standard obtained a negative result. Cell c represents the false-negative findings wherein the diagnostic test was found to be negative yet the reference standard obtained a positive result.

Once a study investigating the diagnostic utility of a clinical test has been completed and the comparison to the reference standard has been performed in the 2×2 contingency table, determination of the clinical utility in terms of overall accuracy, PPVs and NPVs, sensitivity and specificity, and LRs can be calculated. These statistics are useful in determining whether a diagnostic test is useful for either ruling in or ruling out a disorder.

Table 1-1 2×2 Contingency Table Used to Compare the Results of the Reference Standard to Those of the Test Under Investigation

	Reference Standard Positive	Reference Standard Negative
Clinical Test Positive	True-positive results a	False-positive results b
Clinical Test Negative	False-negative results c	True-negative results d

Overall Accuracy

The overall accuracy of a diagnostic test is determined by dividing the correct responses (true positives and true negatives) by the total number of patients. ¹⁶ Using the 2×2 contingency table, the overall accuracy is determined by the following equation:

Overall accuracy =
$$100\% \times (a + d)/(a + b + c + d)$$

A perfect test would exhibit an overall accuracy of 100%. This is most likely unobtainable in that no clinical test is perfect, and each will always exhibit at least a small degree of uncertainty. The accuracy of a diagnostic test should not be used to determine the clinical utility of the test because the overall accuracy can be a bit misleading. The accuracy of a test can be significantly influenced by the prevalence, or total instances of a disease in the population at a given time.^{5,6}

Positive and Negative Predictive Values

Positive predictive values estimate the likelihood that a patient with a positive test actually has the disease. 5,6,17 PPVs are calculated horizontally in the 2×2 contingency table (Table 1-2) and indicate the percentage of patients accurately identified as having the disorder (true positive) divided by all the positive results of the test under investigation. A high PPV indicates that a positive result is a strong predictor that the patient has the disorder. 5,6 The formula for the PPV is:

$$PPV = 100\% \times a/(a + b)$$

NPVs estimate the likelihood that a patient with a negative test does not have the disorder.^{5,6} NPVs are also calculated horizontally in the 2×2 contingency table (see Table 1-2) and indicate the percentage of patients accurately identified as not having the disorder (true negative) divided by all the negative results of the test under investigation.¹¹ The formula for the NPV is as follows:

$$NPV = 100\% \times d/(c + d)$$

Table 1-2 2×2 Contingency Showing the Calculation of Positive and Negative Predictive Values Horizontally and Sensitivity and Specificity Vertically

	Reference Standard Positive	Reference Standard Negative	
Clinical Test Positive	True positives	False positives b	PPV = a/(a + b)
Clinical Test Negative	c False negatives	d True negatives	NPV = d/(c + d)
	Sensitivity = $a/(a + c)$	Specificity = $d/(b + d)$	

The predictive values are significantly influenced by the prevalence of the condition.¹¹ Hence, we have not specifically reported these in this text.

Sensitivity

The sensitivity of a diagnostic test indicates the test's ability to detect those patients who actually have the disorder as indicated by the reference standard. This is also referred to as the truepositive rate. Tests with high sensitivity are good for ruling out a particular disorder. The acronym SnNout can be used to remember that a test with high Sensitivity and a Negative result is good for ruling *out* the disorder.¹

Consider, for example, a clinical test that, compared with the reference standard, exhibits a high sensitivity for detecting lumbar spinal stenosis. Considering the rule above, if the test is negative it reliably rules out lumbar spinal stenosis. If the test is positive, it is likely to accurately identify a high percentage of patients presenting with stenosis. However, it also may identify as positive many of those without the disorder (false positives). Thus, although a negative result can be relied on, a positive test result does not allow us to draw any conclusions (Figs. 1-1 and 1-2).

The sensitivity of a test also can be calculated from the 2×2 contingency tables. However, it is calculated vertically (see Table 1-2). The formula for calculating a test's sensitivity is as follows:

Sensitivity =
$$100\% \times a/(a + c)$$

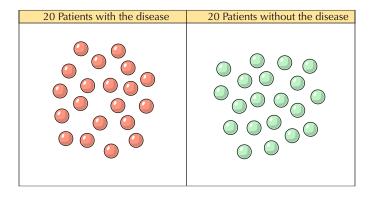


Figure 1-1 Sensitivity and specificity example. Twenty patients with and 20 patients without the disorder.

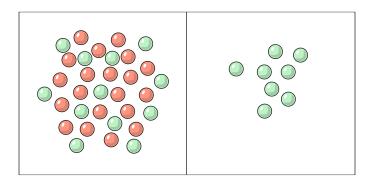


Figure 1-2 100% Sensitivity. One hundred percent sensitivity, inferring that if the test is positive, all those with the disease will be captured. However, although this test captured all those with the disease, it also captured many without. Yet if the test result is negative, we are confident that the disorder can be ruled out (SnNout).

The specificity of a diagnostic test simply indicates the test's ability to detect those patients who actually do not have the disorder as indicated by the reference standard. This is also referred to as the true-negative rate. Tests with high specificity are good for ruling in a disorder. The acronym SpPin can be used to remember that a test with high Specificity and a Positive result is good for ruling in the disorder. 16,18,19

Consider a test with high specificity. It would demonstrate a strong ability to accurately identify all patients who do not have the disorder. If a highly specific clinical test is negative, it is likely to identify a high percentage of those patients who do not have the disorder. However, it is also possible that the highly specific test with a negative result will identify a number of patients who actually have the disease as being negative (false negative). Therefore, we can be fairly confident that a highly specific test with a positive finding indicates that the disorder is present (Fig. 1-3).

The formula for calculating test specificity is as follows:

Specificity =
$$100\% \times d/(b + d)$$

Sensitivity and specificity have been used for decades to determine a test's diagnostic utility; however, they possess a few clinical limitations. 11 Although sensitivity and specificity can be useful to assist clinicians in selecting tests that are good for ruling in or out a particular disorder, few clinical tests demonstrate both high sensitivity and high specificity. 11 Also the sensitivity and specificity do not provide information regarding a change in the probability of a patient having a disorder if the test results are positive or negative. 18,20 Instead, LRs have been advocated as the optimal statistics for determining a shift in pretest probability that a patient has a specific disorder.

Likelihood Ratios

A test's result is valuable only if it alters the pretest probability of a patient having a disorder.²¹ LRs combine a test's sensitivity and specificity to develop an indication in the shift of probability given the specific test result and are valuable in guiding clinical decision making.²⁰ LRs are a powerful measure that can significantly increase or reduce the probability of a patient having a disease.22

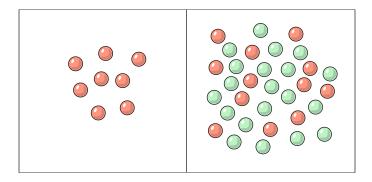


Figure 1-3 100% Specificity. One hundred percent specificity, inferring that if the test is negative all those without the disease will be captured. However, although this test captured all those without the disease, it also captured many with. Yet if the test is positive, we are confident that the patient has the disorder (SpPin).

LRs can be either positive or negative. A positive LR indicates a shift in probability favoring the existence of a disorder, whereas a negative LR indicates a shift in probability favoring the absence of a disorder. Although LRs are often not reported in studies investigating the diagnostic utility of the clinical examination, they can be calculated easily if a test's sensitivity and specificity are available. Throughout this text, for studies that did not report LRs but did document a test's sensitivity and specificity, the LRs were calculated by the authors.

The formula used to determine a positive LR is as follows:

$$LR = Sensitivity/(1 - Specificity)$$

The formula used to determine a negative LR is as follows:

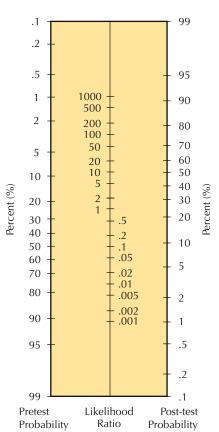
$$LR = (1 - Sensitivity)/Specificity$$

A guide to interpreting test results can be found in Table 1-3. Positive LRs > 1 increase the odds of the disorder given a positive test, and negative LRs < 1 decrease the odds of the disorder given a negative test.²² However, it is the magnitude of the shifts in probability that determines the usefulness of a clinical test. Positive LRs > 10 and negative LRs close to zero often represent large and conclusive shifts in probability. An LR of 1 (either positive or negative) does not alter the probability that the patient does or does not have the particular disorder and is of little clinical value.²² Once the LRs have been calculated, they can be applied to the nomogram (Fig. 1-4),²³ or a mathematical equation²⁴ can be used to determine more precisely the shifts in probability given a specific test result. Both methods are described in further detail later in the chapter.

If a diagnostic test exhibits a specificity of 1, the positive LR cannot be calculated because the equation will result in a zero for the denominator. In these circumstances it has been suggested to modify the 2×2 contingency table by adding 0.5 to each cell in the table to allow for the calculation of LRs.25

Consider, for example, the diagnostic utility of the Crank test^{5,26} in detecting labral tears compared with arthroscopic examination, the reference standard. This is revealed in a 2×2 contingency table (Table 1-4). The inability to calculate a positive LR becomes obvious in the following:

Positive LR = Sensitivity/
$$(1 - \text{Specificity}) = 1/(1 - 1) = 1/0$$
.


Because zero cannot be the denominator in a fraction, the 2×2 contingency table is modified by adding 0.5 to each cell.

Although the addition of 0.5 to each cell is the only reported method of modifying the contingency table to prevent zero in the denominator of an LR calculation, considering the changes that occur with the diagnostic properties of sensitivity, specificity, and predictive values, this technique has not been used in this text. In circumstances in which the specificity is zero and the positive LR cannot be calculated, it is documented as "undefined" (UD). In these cases, although we are not calculating the positive LR, the test is indicative of a large shift in probability.

Table 1-3 Interpretation of Likelihood Ratios

caring for my patients? JAMA. 1994;271:703-707.

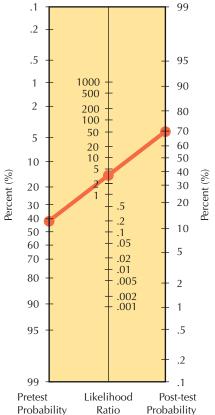
Positive Likelihood Ratio	Negative Likelihood Ratio	Interpretation
>10	<0.1	Generate large and often conclusive shifts in probability
5 to 10	0.1 to 0.2	Generate moderate shifts in probability
2 to 5	0.2 to 0.5	Generate small but sometimes important shifts in probability
1 to 2	0.5 to 1.0	Alter probability to a small and rarely important degree
Adapted from Jasschka P. Guyatt (CH Sackett DI III How to use an article	about a diagnostic test. B. What are the results and will they help me in

Figure 1-4 Fagan's nomogram. (Adapted with permission from Fagan TJ. Nomogram for Baye's theorem. N Engl J Med. 1975;293:257. Copyright 2005, Massachusetts Medical Society. All rights reserved.)

Table 1-4 Results of the Crank Test in Detecting Labral Tears When Compared with the Reference Standard of Arthroscopic Examination

	Arthroscopic Examination Positive (n = 12)	Arthroscopic Examination Negative (n = 3)	
Crank Test Positive	10 a	0 b	$PPV = 100 \times 10/10 = 100\%$
Crank Test Negative	c 2	d 3	$NPV = 100 \times 3/5 = 60\%$
	Sensitivity = $100\% \times 10/12 = 83\%$	Specificity = $100\% \times 3/3 = 100\%$	

CONFIDENCE INTERVALS


Calculations of sensitivity, specificity, and LRs are known as *point estimates*. That is, they are the single best estimates of the population values.⁵ However, because point estimates are based on small subsets of people (samples), it is unlikely that they are a perfect representation of the larger population. It is more accurate, therefore, to include a range of values (interval estimate) in which the population value is likely to fall. A confidence interval (CI) is a range of scores around the point estimate that likely contains the population value.²⁷ Commonly, the 95% CI is calculated for studies investigating the diagnostic utility of the clinical examination. A 95% CI indicates the spread of scores that we can be 95% confident in to contain the population value.⁵ In this text, 95% CI is reported for all studies that provided this information.

PRETEST AND POST-TEST PROBABILITY

Pretest probability is the likelihood that a patient exhibits a specific disorder before the clinical examination. Often prevalence rates are used as an indication of pretest probability, but when prevalence rates are unknown, the pretest probability is based on a combination of the patient's medical history, results of previous tests, and the clinician's experience. Determining the pretest probability is the first step in the decision-making process for clinicians. Pretest probability is an estimate by the clinician and can be expressed as a percentage (e.g., 75%, 80%) or as a qualitative measure (e.g., somewhat likely, very likely). 11,16 Once the pretest probability of a patient having a particular disorder is identified, tests and measures that have the potential to alter the probability should be selected for the physical examination. Post-test probability is the likelihood that a patient has a specific disorder after the clinical examination procedures have been performed.

CALCULATING POST-TEST PROBABILITY

As previously mentioned, LRs can assist with determining the shifts in probability that would occur following a given test result and depend on the respective LR ratios of that given test. The quickest method of determining the shifts in probability once an LR is known for a specific test can be determined using the nomogram (Fig. 1-5).²³ The nomogram is a diagram that illustrates the pretest probability on the right and the post-test probability on the left, and the LRs are in the middle. To determine the shift in probability, a mark is placed on the nomogram representing the pretest probability. Then a mark is made on the nomogram at the level of the LR (either negative

Figure 1-5 Nomogram representing the change in pretest probability from 42% if the test was positive (positive likelihood ratio = 4.2) to a post-test probability of 71%. (Adapted with permission from Fagan TJ. Nomogram for Baye's theorem. N Engl J Med. 1975;293:257. Copyright 2005, Massachusetts Medical Society. All rights reserved.)

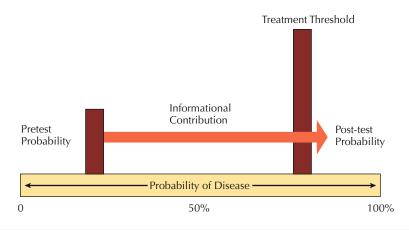


Figure 1-6 Treatment threshold. Clinicians must use the pretest probability and likelihood ratios to determine the treatment threshold as indicated in this illustration.

or positive). The two lines are connected with a straight line and the line is carried through the left of the diagram. The point at which the line crosses the post-test probability scale indicates the shift in probability.

A more precise determination of the shift in probability can be calculated algebraically with the following formula¹⁶:

> Step 1. Pretest odds = Pretest probability/1 - Pretest probability Step 2. Pretest odds \times LR = Post-test odds

> Step 3. Post-test odds/Post-test odds + 1 = Post-test probability

The clinician must make a determination of when the post-test probability is either low enough to rule out the presence of a certain disease or when the post-test probability is high enough that the clinician feels confident in having established the presence of a disorder. The level at which evaluation ceases and treatment begins is known as the treatment threshold (Fig. 1-6). 16

ASSESSMENT OF STUDY QUALITY

Once relevant articles are retrieved, the next step is critical analysis of their content for adequate methodological rigor. It has been reported that the methodologic quality of studies investigating the diagnostic utility of the clinical examination is generally inferior to that of studies investigating the effectiveness of therapies.^{28,29} Unfortunately, studies with significant methodologic flaws reporting the usefulness of specific tests and measures can lead to premature incorporation of ineffective tests. This can result in inaccurate diagnoses and poor patient management. Alternatively, identification and use of rigorously appraised clinical tests can improve patient care and outcomes.²⁹

The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) was developed to assess the quality of diagnostic accuracy studies.³⁰ A four-round Delphi panel identified 14 criteria that are used to assess a study's methodologic quality (see tables at the end of Chapters 2 through 11). Each item is scored as "yes," "no," or "unclear." The QUADAS is not intended to quantify a score for each study but rather provides a qualitative assessment of the study with the identification of weaknesses.³⁰ The QUADAS has demonstrated adequate agreement for the individual items in the checklist.³¹ We have used the QUADAS to evaluate each study referenced in this text and have included details of the quality assessments in the appendix of each chapter. Studies deemed to be of poor methodologic quality (represented by a red symbol) have not been included in the diagnostic utility tables throughout the chapters. Green symbols indicate a high level of methodologic quality and imply that readers can be confident in study results. Yellow symbols indicate fair methodologic quality and imply that readers should interpret such study results with caution.

SUMMARY

It is important to consider the reliability and diagnostic utility of tests and measures before including them as components of the clinical examination. Tests and measures should demonstrate adequate reliability before they are used to guide clinical decision making. Throughout this text, the reliability of many tests and measures are reported. It is essential that clinicians consider these reported levels of reliability in the context of their own practice.

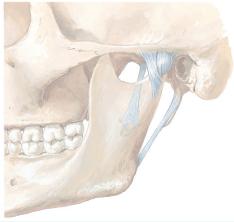
Before implementing tests and measures into the orthopaedic examination, it is first essential to consider each test's diagnostic utility. Table 1-5 summarizes the statistics related to diagnostic accuracy as well as the mathematical equations and operational definitions for each. The useful-

Table 1-5 2×2 Contingency Table and Statistics Used to Determine the Diagnostic Utility of a Test or Measure

	Reference Standard Positive	Reference Standard Negative
Diagnostic Test Positive	True-positive results	False-positive results b
Diagnostic Test Negative	c False-negative results	d True-negative results
	†	

Statistic	Formula	Description
Overall accuracy	(a + d)/(a + b + c + d)	The percentage of individuals who are correctly diagnosed
Sensitivity	a /(a + c)	The proportion of patients with the condition who have a positive test result
Specificity	d/(b+d)	The proportion of patients without the condition who have a negative test result
Positive predictive value	a/(a + b)	The proportion of individuals with a positive test result who have the condition
Negative predictive value	d/(c + d)	The proportion of individuals with a negative test result who do not have the condition
Positive likelihood ratio	Sensitivity/(1 — Specificity)	If the test is positive, the increase in odds favoring the condition
Negative likelihood ratio	(1 — Sensitivity)/Specificity	If the test is positive, the decrease in odds favoring the condition

ness of a test or measure is most commonly considered in terms of the respective test's diagnostic properties. These can be described in terms of sensitivity, specificity, PPVs, and NPVs. However, perhaps the most useful diagnostic property is the LR, which can assist in altering the probability that a patient has a specific disorder.


No clinical test or measure provides absolute certainty as to the presence or absence of disease. However, clinicians can determine when enough data have been collected to alter the probability beyond the treatment threshold where the evaluation can cease and therapeutic management can begin. Furthermore, careful methodologic assessment provides greater insight into the scientific rigor of each study and its performance, applicability, reliability, and reproducibility within a given clinical practice.

REFERENCES

- Sackett DL, Straws SE, Richardson WS, et al. Evidence-Based Medicine: How to Practice and Teach EBM. 2nd ed. London: Harcourt Publishers Limited; 2000.
- Kassirer JP. Our stubborn quest for diagnostic certainty a cause of excessive testing. N Engl J Med. 1989;320:1489-1491.
- Lijmer JG, Mol BW, Heisterkamp S, et al. Empirical evidence of design-related bias in studies of diagnostic tests. *JAMA*. 1999;282:1061-1066.
- Schwartz JS. Evaluating diagnostic tests: What is done-what needs to be done. *J G Intern Med*. 1986;1:266-267.
- Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. 2nd ed. Upper Saddle River, NJ: Prentice Hall Health; 2000.
- Rothstein JM, Echternach JL. Primer on Measurement: An Introductory Guide to Measurement Issues. Alexandria, VA: American Physical Therapy Association; 1999.
- Domholdt E. Physical Therapy Research. 2nd ed. Philadelphia: WB Saunders; 2000.
- 8. Shrout PE. Measurement reliability and agreement in psychiatry. *Stat Methods Med Res.* 1998;7:301-317.
- Van Genderen F, De Bie R, Helders P, Van Meeteren N. Reliability research: towards a more clinically relevant approach. *Physical Therapy Reviews*. 2003;8:169-176.
- Bossuyt PMM, Reitsma JB, Bruns DE, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. *Clin Chem*. 2003;49:1-6.
- 11. Fritz JM, Wainner RS. Examining diagnostic tests: an evidence-based perspective. *Phys Ther*. 2001;81:1546-1564
- 12. Jaeschke R, Guyatt GH, Sackett DL III. How to use an article about a diagnostic test A. Are the results of the study valid? *JAMA*. 1994;271:389-391.
- Bossuyt PMM, Reitsma JB, Bruns DE, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. *Clin Chem*. 2003;49:7-18.
- 14. McGinn T, Guyatt G, Wyer P, et al. Users' guides to the medical literature XXII: how to use articles about clinical decision rules. *JAMA*. 2000;284:79-84.

- 15. Greenhalgh T. Papers that report diagnostic or screening tests. *BMJ*. 1997;315:540-543.
- Bernstein J. Decision analysis (current concepts review). J Bone Joint Surg. 1997;79:1404-1414.
- Potter NA, Rothstein JM. Intertester reliability for selected clinical tests of the sacroiliac joint. *Phys Ther*. 1985;65:1671-1675.
- Boyko EJ. Ruling out or ruling in disease with the most sensitive or specific diagnostic test: short cut or wrong turn? *Med Decis Making*. 1994;14:175-180.
- Riddle DL, Stratford PW. Interpreting validity indexes for diagnostic tests: an illustration using the Berg balance test. *Phys Ther*. 1999;79:939-948.
- 20. Hayden SR, Brown MD. Liklihood ratio: a powerful tool for incorporating the results of a diagnostic test into clinical decision making. *Ann Emerg Med*. 1999;33:575-580.
- 21. Simel DL, Samsa GP, Matchar DB. Liklihood ratios with confidence: sample size estimation for diagnostic test studies. *J Clin Epidem*. 1991;44:763-770.
- 22. Jaeschke R, Guyatt GH, Sackett DL III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? *JAMA*. 1994;271:703-707.
- Fagan TJ. Nomogram for Bayes's theorem. N Engl J Med. 1975;293:257.
- Sackett DL, Haynes RB, Guyatt GH, Tugwell P. Clinical Epidemiology: A Basic Science for Clinical Medicine. Boston: Little, Brown; 1991.
- Wainner RS, Fritz JM, Irrgang JJ, et al. Reliability and diagnostic accuracy of the clinical examination and patient self-report measures for cervical radiculopathy. Spine. 2003;28:52-62.
- Mimori K, Muneta T, Nakagawa T, Shinomiya K. A new pain provocation test for superior labral tears of the shoulder. Am J Sports Med. 1999;27:137-142.
- Fidler F, Thomason N, Cumming G, et al. Editors can lead researchers to confidence intervals, but can't make them think. *Psychol Sci.* 2004;15:119-126.
- Moons KGM, Biesheuvel CJ, Grobbee DE. Test research versus diagnostic research. *Clin Chem*. 2004;50:473-476.

- 29. Reid MC, Lachs MS, Feinstein AR. Use of methodological standards in diagnostic test research. JAMA. 1995;274:645-651.
- 30. Whiting P, Harbord R, Kleijnen J. No role for quality scores in systematic reviews of diagnostic accuracy studies. BMC Med Res Methodol. 2005;5:19.
- 31. Whiting PF, Weswood ME, Rutjes AW, et al. Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol. 2006;6:9.

CLINICAL SUMMARY AND RECOMMENDATIONS	16
Anatomy	17
Osteology	17
Arthrology	20
Ligaments	21
Muscles	22
Nerves	26
Patient History	27
Initial Hypotheses Based on Patient History	27
The Association of Oral Habits with Temporomandibular Disorders	27
Reliability of Patient's Reports of Pain in Temporomandibular Dysfunction	28
Diagnostic Utility of the Patient History in Identifying Anterior Disc	
Displacement	29
Self-Reported Temporomandibular Pain	30
Research Diagnostic Criteria for Temporomandibular Disorders	31
Reliability and Diagnostic Utility of RDC/TMD Diagnoses	33
Physical Examination Tests	34
Palpation	34
Joint Sounds	39
Range of Motion	42
Dynamic Movements	46
Dynamic Movements and Range of Motion	48
Dynamic Movements	49
Other Tests	52
Combinations of Tests	54
Outcome Measures	60
Appendix Carling to TMD 11: 00110000	61
Quality Assessment of Diagnostic Studies for TMD Using QUADAS	61
References	63

CLINICAL SUMMARY AND RECOMMENDATIONS

Patient History	
Questions	Self-report of temporomandibular joint (TMJ) pain has been shown to be very good at identifying temporomandibular dysfunction (TMD) as defined by a comprehensive clinical examination (+LR of 9.8).
	A subject complaint of "periodic restriction" (the inability to open the mouth as wide as was previously possible) has been found to be the best single history item to identify anterior disc displacement, both in patients with reducing and nonreducing discs.
Physical Examination	
Palpation	Reproducing pain during palpation of the TMJ and related muscles has been found to be moderately reliable and appears to demonstrate good diagnostic utility for identifying TMJ effusion by magnetic resonance imaging (MRI) and TMD when compared with a comprehensive physical examination. We recommend that palpation at least include the TMJ ($+LR=4.87$ to 5.67), the temporalis muscle ($+LR=2.73$ to 4.12), and the masseter muscle ($+LR=3.65$ to 4.87).
	If clinically feasible, pressure pain threshold testing demonstrates superior diagnostic utility in identifying TMD when compared with a comprehensive physical examination.
Joint Sounds	Detecting joint sounds (clicking and crepitus) during jaw motion is generally unreliable and demonstrates poor diagnostic utility except in the detection of moderate to severe osteoarthritis ($+LR=4.79$) and nonreducing anterior disc displacement ($+LR=7.1$ to 15.2).
Range of Motion and Dynamic Movement	Measuring mouth range of motion appears to be highly reliable and, when restricted or deviated from midline, exhibits moderate diagnostic utility in identifying nonreducing anterior disc displacement.
	Detecting pain during motion is less reliable, but also demonstrates moderate to good diagnostic utility in identifying nonreducing anterior disc displacement and self-reported TMJ pain.
	The combination of <i>motion restriction</i> and <i>pain during assisted opening</i> has been found to be the best combination to identify nonreducing anterior disc displacement $(+LR = 7.71)$.
	Consistent with assessment of other body regions, assessment of "joint play" and "end-feel" are highly unreliable and have unknown diagnostic utility.
Interventions	Patients with TMD who report $symptoms \ge 4/10$ pain for ≤ 10 months' duration may benefit from nightly wear of an occlusal stabilization splint, especially if they have nonreducing anterior disc displacement and show improvement after 2 months (+LR = 10.8 if all four factors present).

ANATOMY

Osteology

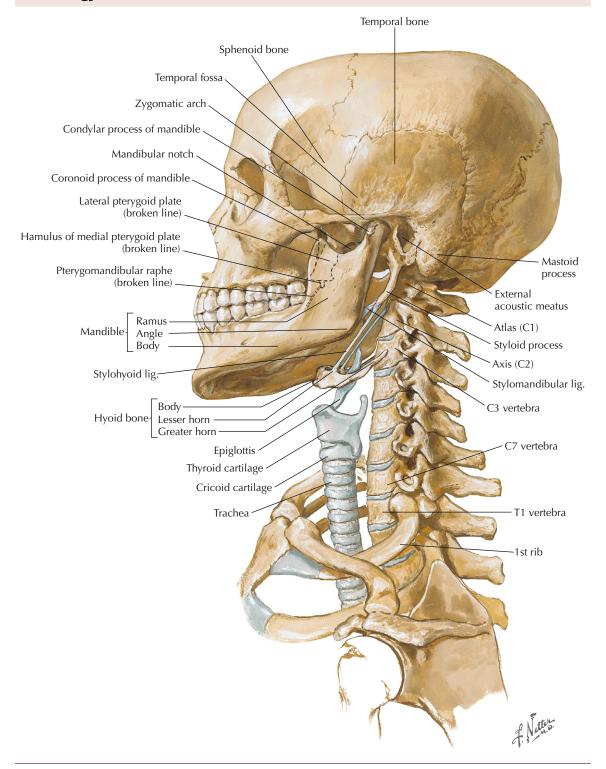
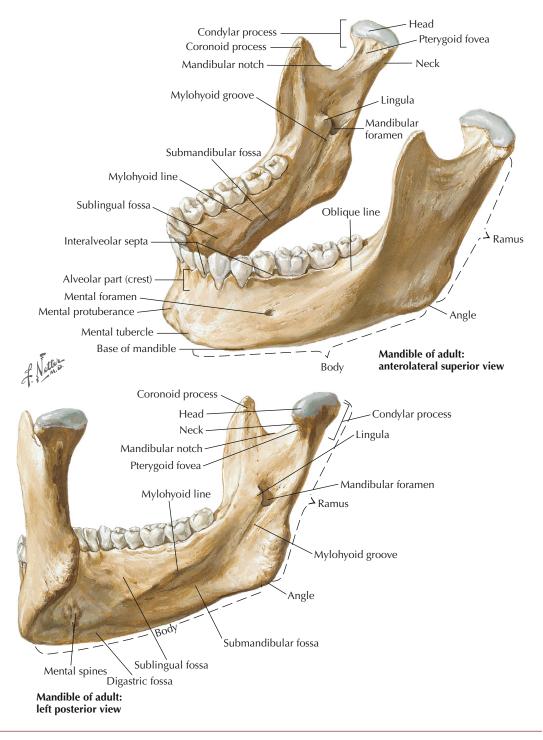
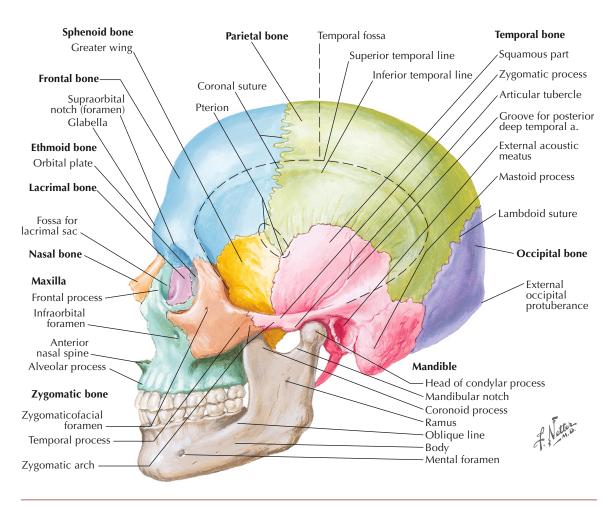




Figure 2-1 Bony framework of head and neck.

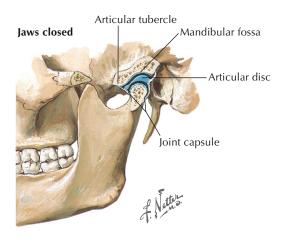
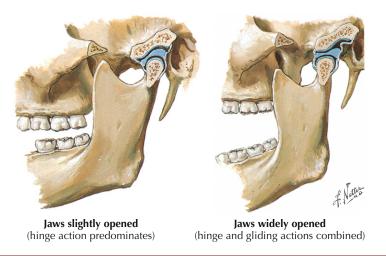


Figure 2-2 Mandible.


Figure 2-3 Lateral skull.

Arthrology

Figure 2-4 Temporomandibular joint.

The temporomandibular joint (TMJ) is divided by an intra-articular biconcave disc that separates the joint cavity into two distinct functional components. The upper joint is a plane-gliding joint that permits translation of the mandibular condyles. The lower joint is a hinge joint that permits rotation of the condyles. The closed pack position of the TMJ is full occlusion. A unilateral restriction pattern primarily limits contralateral excursion, but also affects mouth opening and protrusion.

Figure 2-5 Temporomandibular joint mechanics.

During mandibular depression from a closed mouth position, the initial movement occurs at the lower joint as the condyles pivot on the intra-articular disc. This motion continues to approximately 11 mm of depression. With further mandibular depression, motion begins to occur at the upper joint and causes anterior translation of the disc on the articular eminence. Normal mandibular depression is between 40 and 50 mm.

Ligaments

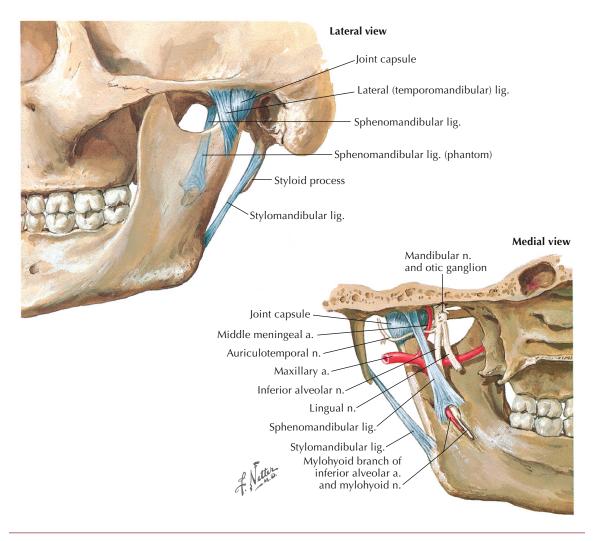
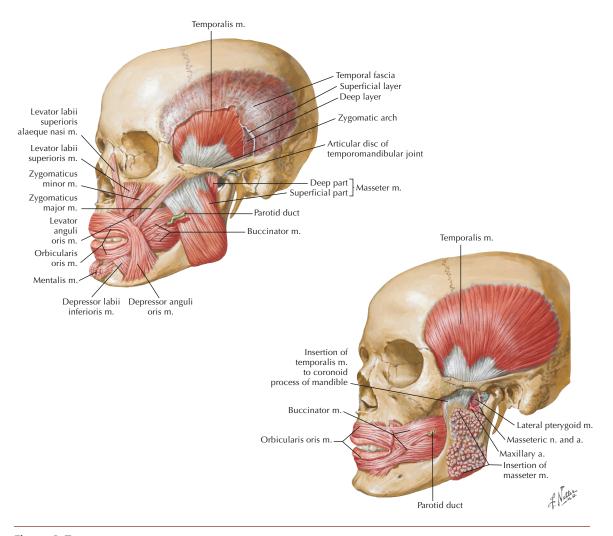



Figure 2-6 Temporomandibular joint ligaments.

Ligaments	Attachments	Function
Temporomandibular	Thickening of anterior joint capsule extending from neck of mandible to zygomatic arch	Strengthen the TMJ laterally
Sphenomandibular	Sphenoid bone to mandible	Serve as a fulcrum and reinforcement to TMJ motion
Stylomandibular	Styloid process to angle of the mandible	Provide minimal support to the joint

Figure 2-7Muscles involved in mastication, lateral views.

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Temporalis	Temporal fossa	Coronoid process and anterior ramus of mandible	Deep temporal branches of mandibu- lar nerve	Elevate mandible
Masseter	Inferior and medial aspects of zygomatic arch	Coronoid process and lateral ramus of mandible	Mandibular nerve via masseteric nerve	Elevate and protrude mandible

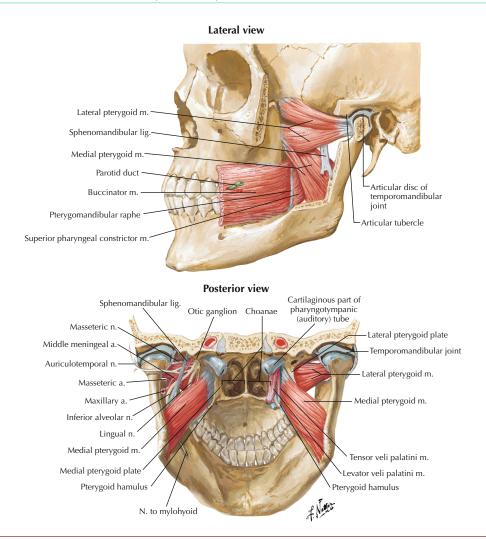


Figure 2-8 Muscles involved in mastication, lateral and posterior views.

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Medial pterygoid	Medial surface of lateral pterygoid plate, pyramidal process of palatine bone, and tu- berosity of maxilla	Medial aspect of man- dibular ramus	Mandibular nerve via medial pterygoid nerve	Elevate and protrude mandible
Lateral Pterygoid				
Superior head	Lateral surface of greater wing of sphe- noid bone	Neck of mandible, ar- ticular disc, and TMJ capsule	Mandibular nerve via lateral pterygoid nerve	Acting bilaterally: pro- trude and depress mandible
Inferior head	Lateral surface of lateral pterygoid plate			Acting unilaterally: laterally deviate mandible



Figure 2-9 Floor of mouth, inferior view.

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Mylohyoid	Mylohyoid line of mandible	Hyoid bone	Mylohyoid nerve (branch of cranial nerve [CN] V_3)	Elevates hyoid bone
Stylohyoid	Styloid process of tem- poral bone	Hyoid bone	Cervical branch of facial nerve	Elevates and retracts hyoid bone
Geniohyoid	Inferior mental spine of mandible	Hyoid bone	C1 via the hypoglossal nerve	Elevates hyoid bone anterosuperiorly
Digastric				
Anterior belly	Digastric fossa of mandible	Intermediate tendon to hyoid bone	Mylohyoid nerve	Depresses mandible; raises and stabilizes hyoid bone
Posterior belly	Mastoid notch of tem- poral bone		Facial nerve	

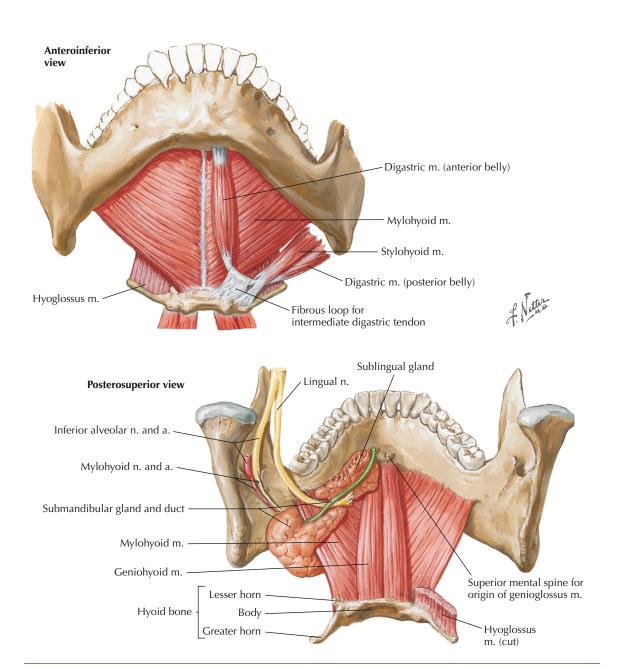
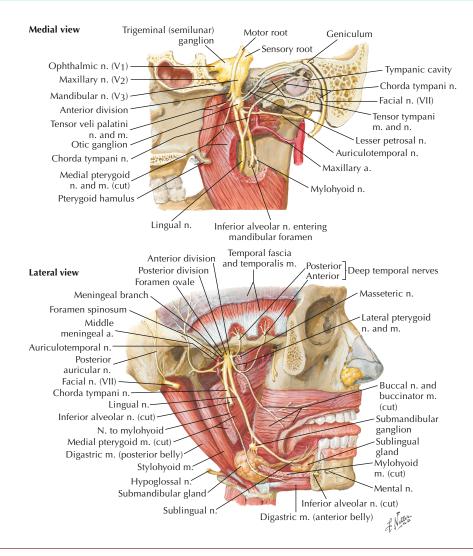



Figure 2-10 Floor of mouth, anteroinferior and posterosuperior views.

Mandibular Nerve

Figure 2-11Mandibular nerve, medial and lateral views.

Nerves	Segmental Levels	Sensory	Motor
Mandibular	CN V ₃	Skin of inferior third of face	Temporalis, masseter, lateral ptery- goid, medial pterygoid, digastric, mylohyoid
Nerve to mylohyoid	CN V ₃	No sensory	Mylohyoid
Buccal	CN V ₃	Cheek lining and gingiva	No motor
Lingual	CN V ₃	Anterior tongue and floor of mouth	No motor
Maxillary	CN V ₂	Skin of middle third of face	No motor
Ophthalmic	CN V ₁	Skin of superior third of face	No motor
CN V, trigeminal nerve.			

PATIENT HISTORY

Initial Hypotheses Based on Patient History

Patient Reports	Initial Hypothesis
Patient reports jaw crepitus and pain during mouth opening and closing. Might also report limited opening with translation of the jaw to the affected side at the end range of opening	Possible osteoarthrosis Possible capsulitis Possible internal derangement consisting of an anterior disc displacement that does not reduce ¹⁻³
Patient reports jaw clicking and pain during opening and closing of the mouth	Possible internal derangement consisting of anterior disc displacement with reduction 1,4,5
Patient reports of limited motion to about 20 mm with no joint noise	Possible capsulitis Possible internal derangement consisting of an anterior disc displacement that does not reduce ¹

The Association of Oral Habits with Temporomandibular Disorders



Figure 2-12 Frequent leaning of head on the palm.

Gavish and colleagues⁶ investigated the association with oral habits and signs and symptoms of temporomandibular disorders in 248 randomly selected female high school students. Although sensitivity and specificity were not reported, the results demonstrated that chewing gum, jaw play (nonfunctional jaw movements), chewing ice, and frequent leaning of the head on the palm were associated with the presence on TMJ disorders.

Reliability of Patient's Reports of Pain in Temporomandibular Dysfunction

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 2-13
Temporomandibular joint pain.

Historical Finding and Study	Description and Positive Findings	Population	Test-Retest Reliability
Visual analog scale ⁷	100-mm line with ends defined as "no pain" and "worst pain imaginable"		κ = .38
Numerical scale ⁷	An 11-point scale with 0 indicating "no pain" and 10 representing "worst pain"	38 consecutive pa- tients referred with	κ = .36
Behavior rating scale ⁷	A 6-point scale ranging from "minor discomfort" to "very strong discomfort"	TMD	κ = .68
Verbal scale ⁷	A 5-point scale ranging from "no pain" to "very severe pain"		κ = .44

Diagnostic Utility of the Patient History in Identifying Anterior Disc Displacement

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Historical Finding and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Clicking ⁸	Momentary snapping sound			In prese	ence of rec	ducing dis	SC .
during opening or functioning			.82	.19	1.01	.95	
	runctioning			In presence of nonreducing disc			
				.86	.24	1.13	.58
Locking ⁸	Sudden onset of restricted			In prese	ence of rec	ducing dis	SC .
LOCKING	movement during opening or closing			.53	.22	.68	2.14
	c.cosm.g			In prese	nce of no	nreducing	g disc
				.86	.52	1.79	.27
Restriction after	Inability to open as wide as			In prese	ence of rec	ducing dis	SC .
clicking ⁸	was previously possible after clicking			.26	.40	.43	1.85
				In prese	nce of no	nreducin	g disc
				.66	.74	2.54	.46
Periodic restriction ⁸	Periodic inability to open as			In prese	ence of rec	ducing dis	SC .
	wide as was previously possible			.60	.90	6.0	.44
	possible			In prese	nce of no	nreducing	g disc
				.12	.95	2.4	.93
Continuous restriction ⁸	Continuous inability to open	70 patients (90 TMJs) re-	Anterior	In prese	ence of rec	ducing dis	SC .
	as wide as was previously possible	ferred with	disc dis-	.35	.26	.47	2.5
	F	complaints of cranio-	placement via MRI	In presence of nonreducing disc			
		mandibular pain	via Miki	.78	.62	2.05	.35
Function related to				In prese	ence of rec	ducing dis	SC .
joint pain ⁸				.82	.10	.91	1.8
				In prese	nce of no	nreducin	g disc
				.96	.24	1.26	.17
Complaint of clicking ⁸				In prese	ence of rec	ducing dis	SC .
				.28	.24	.37	3.00
				In presence of nonreducing disc			
	Not reported			.82	.69	2.65	.26
Complaint of move-	Not reported			In prese	In presence of reducing disc		
ment-related pain ⁸				.71	.31	1.03	.94
				In prese	nce of no	nreducing	g disc
				.74	.36	1.16	.72
Complaint of severe				In prese	ence of rec	ducing dis	SC .
restriction ⁸				.60	.65	1.71	.62
				In prese	In presence of nonreducing disc		
				.38	.93	5.43	.67

Self-Reported Temporomandibular Pain

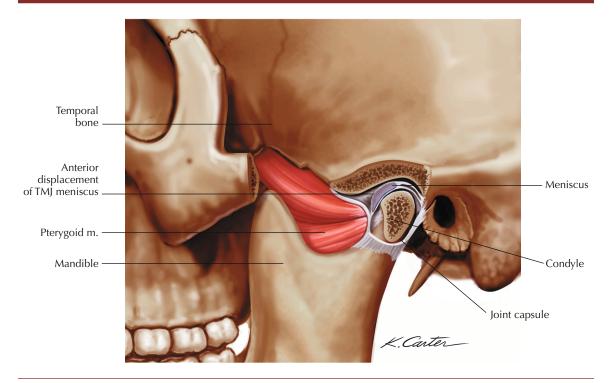
ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Historical Finding and Study	Description and Positive Findings	Population	Reliability
Self-report of TMJ pain ⁹	See diagnostic table on following page. Participants were asked same questions 2 weeks apart.	120 adolescents: 60 with self-reported TMJ pain, and 60 age- and sex-matched controls	Test-retest $\kappa = .83$ (.74, .93)

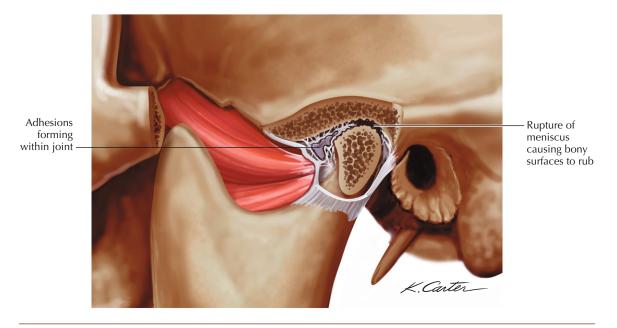
+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Historical Finding and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Self-report of TMJ pain ⁹	Participants were asked: (1) "Do you have pain in your temple, face, TMJ, or jaw once a week or more?" (2) "Do you have pain when you open your mouth wide or chew once a week or more?" If answer is "yes" to either question, test is positive.	120 adolescents: 60 with self- reported TMJ pain and 60 age- and sex-matched controls	RDC/TMD diag- nosis of myo- fascial pain or arthralgia, ar- thritis, and arthrosis	.98	.90	9.8 (4.8, 20.0)	.02 (.00, .16)

Research Diagnostic Criteria for Temporomandibular Disorders


The Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) was developed in response to a general lack of standardization in TMD assessment and diagnosis. 10 The RDC/ TMD is based on a biopsychosocial model and is comprised of a comprehensive set of history questions and physical examination procedures. The examination includes measurement of the range of mandibular motion, muscle and joint palpation with defined pressure, and recording of joint sounds. The specific examination questions, procedures, and scoring instructions are available at a website created by a consortium of worldwide researchers using the RDC/TMD (http://rdc-tmdinternational.org); they are summarized here.

RDC/TMD Examination Procedures		
Mandibular range of motion (measured in millimeters)	 Unassisted opening without pain Maximum unassisted opening Maximum assisted opening	Lateral excursions Protrusion
Joint sounds	 Clicking or crepitus during opening Clicking or crepitus during closing Joint sounds during lateral excursion (contralateral side) 	 Joint sounds during lateral excursion (ipsilateral side) Joint sounds during protrusion
Masticatory muscle and TMJ palpation tenderness	 Temporalis posterior Temporalis middle Temporalis anterior Masseter superior Masseter body Masseter inferior 	 Posterior mandibular region Submandibular region Lateral pterygoid area Tendon of temporalis TMJ lateral TMJ posterior


Based on the findings from these tests, the RCD/TMD purports the following eight different temporomandibular diagnoses:

- Ia: Myofascial pain without limited mouth opening
- Ib: Myofascial pain with limited mouth opening
- IIa: Disc displacement with reduction
- IIb: Disc displacement without reduction and with limited mouth opening
- IIc: Disc displacement without reduction and without limited mouth opening
- IIIa: Arthralgia
- IIIb: Osteoarthritis
- IIIC: Osteoarthrosis

Research Diagnostic Criteria for Temporomandibular Disorders

Figure 2-14 Anterior disc displacement.

Figure 2-15 Temporomandibular arthrosis.

Research Diagnostic Criteria for Temporomandibular Disorders

Reliability and Diagnostic Utility of RDC/TMD Diagnoses

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

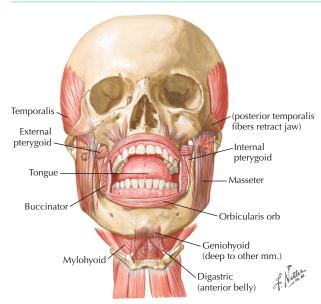
Diagnosis and Study	Description and Positive Findings	Population	Inter-examiner Reliability	
Myofascial pain without limited mouth opening ¹¹			ICC = .51	
Myofascial pain with limited mouth opening ¹¹			ICC = .58	
Disc displacement with reduction ¹¹			ICC = .61	
Disc displacement without reduction (acute) ¹¹	Used RDC/TMD examina- tion and criteria (see pre- vious page)	230 patients from 10 in- ternational TMD centers	ICC = .31	
Disc displacement without reduction (chronic) ¹¹			ICC = .06	
Arthralgia ¹¹			ICC = .47	
Osteoarthritis ¹¹			ICC = .00	
Osteoarthrosis 11			ICC = .00	
Group I diagnosis ¹¹			ICC = .75	
Group II diagnosis ¹¹			ICC = .61	
Group III diagnosis ¹¹			ICC = .54	
Each ICC estimate represents the median value from multiple inter-examiner comparisons.				

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Diagnosis and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
RDC/TMD diagnosis of myofascial pain with limited mouth opening 12	Used RDC/TMD ex- amination and crite-	61 patients seeking treatment for orofa- cial muscle pain and/ or TMJ pain and diag-	TMI pathosis	.29	.50	.57	1.43
RDC/TMD diagnosis of myofascial pain without limited mouth opening ¹²	ria (see previous page)	nosed with myofas- cial pain with or without limited mouth opening	via MRI	1.0	.84	6.33	.00

PHYSICAL EXAMINATION TESTS

Palpation


Reliability in Determining the Presence of Pain during Muscle Palpation

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Finding and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Extraoral ¹³	Examiner palpates the temporalis, masseter, posterior cervical, and sternocleidomastoid muscles		к = .91
Intraoral ¹³	Examiner palpates tendon of the temporalis, lateral pterygoid, masseter, and body of the tongue	64 healthy volunteers	κ = .90
Masseter ¹⁴	Examiner palpates the mid belly of the masseter muscle	79 randomly selected pa-	к = .33
Temporalis ¹⁴	Examiner palpates the mid belly of the temporalis muscle	tients referred to a crani- omandibular disorder	к = .42
Medial pterygoid ¹⁴	Examiner palpates the insertion of the medial pterygoid	department	к = .23
Masseter ¹⁵	Examiner palpates the superficial and deep portion of the masseter muscle		κ = .33
Temporalis ¹⁵	Examiner palpates the anterior and posterior aspects of the temporalis muscle	79 patients referred to a TMD and orofacial pain department	κ = .42
Medial pterygoid ¹⁵ attachment	Examiner palpates the medial pter- ygoid muscles extraorally		к = .23
Masseter ¹⁶	Examiner palpates the origin, body, and insertion of the masseter muscle		κ (Right) = .78 (Left) = .56
Temporalis ¹⁶	Examiner palpates the origin, body, and insertion of the temporalis muscle	27 TMD patients	κ (Right) = .87 (Left) = .91
Tendon of temporalis ¹⁶	Examiner palpates the tendon of the temporalis muscle		к (Right) = .53 (Left) = .48

Palpation

Reliability in Determining the Presence of Pain during TMJ Regional Palpation

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 2-16 Musculature of the temporomandibular joint.

Finding and Study	Description and Positive Findings	Population	Reliability
Lateral palpation ¹⁷	Examiner palpates anterior to the ear over the TMJ	61 patients with TMJ pain	Intra-examiner $\kappa = .53$
Posterior palpation ¹⁷	Examiner palpates TMJ through external meatus		Intra-examiner $\kappa = .48$
Palpation of TMJ ¹⁴	Examiner palpates the lateral and dorsal aspects of the condyle	79 randomly selected patients referred to a craniomandibular disorder department	Inter-examiner $\kappa = .33$
Masseter ¹⁵	Examiner palpates the superficial and deep portion of the masseter muscle	79 patients referred to a	Inter-examiner $\kappa = .33$
Palpation of TMJ ¹⁵	Examiner palpates the lateral pole of the condyle in open and closed mouth positions. The dorsal pole is palpated posteriorly through the external auditory meatus	temporomandibular disor- der and orofacial pain department	Inter-examiner $\kappa = .33$
Retromandibular region ¹⁶			Inter-examiner κ (Right) = .56 (Left) = .50
Submandibular region ¹⁶			Inter-examiner κ (Right) = .73 (Left) = .68
Lateral pterygoid area ¹⁶	Examiner palpation consistent with RDC/TMD guidelines	27 temporomandibular disorder patients	Inter-examiner κ (Right) = .50 (Left) = .37
Lateral pole and posterior attachment of TMJ ¹⁶			Inter-examiner κ (Right) = .43 (Left) = .46

Palpation

Lateral palpation of the temporomandibular joint

Posterior palpation of the temporomandibulor joint through external auditory meatus

Palpation of the temporalis

Palpation of the masseter

Palpation of the medial pterygoid

Figure 2-17 Palpation tests.

Palpation		Interpretation	-LR
		Large	<.1
Diagnostic Utility of Palpation in Identifying	5.0-10.0	Moderate	.12
Temporomandibular Conditions	2.0-5.0	Small	.25
1	1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Lateral palpa- tion ¹⁷	Examiner palpates the lateral pole of the condyle with the index finger. Positive if pain is present	61 patients with	Presence of TMJ	.83	.69	2.68	.25
Posterior pal- pation ¹⁷	Examiner palpates the posterior portion of the condyle with the little finger in the patient's ear. Positive if pain is present	TMJ pain	effusion via MRI	.85	.62	2.24	.24
Palpation ¹⁸	Palpation of lateral and posterior aspects of the TMJ and assessment of pain response with active movements. Positive if patient reports pain	84 patients with symptoms of TMJ pain	TMJ synovitis via arthroscopic investigation	.92	.21	1.16	.38
Palpation ¹⁹	Examiner palpates lateral and posterior aspects of the TMJ with one finger and determines the presence of tenderness	200 consecutive patients with TMJ disease	TMJ synovitis via arthroscopic investigation	.88	.36	1.38	.33
Tender joint	Examiner palpates the lateral	70 patients	Detecting ante-	In presence of reducing disc			
on palpation ⁸ and posterior aspects of the joint. Positive if pain is present	(90 TMJs) referred with complaints	rior disc dis- placement via	.38	.41	.64	1.51	
		of craniomandib- ular pain		In presence of nonreducing disc			g disc
		utai paili		.66	.67	2.0	.51
Palpation ²⁰	Examiner palpated the TMJ laterally and posteriorly, the temporalis muscle, and the masseter muscle. Pain recorded via visual analog scale (VAS) using a cutoff value to maximize sensitivity and specificity	147 patients re- ferred for cranio- mandibular com- plaints and 103 asymptomatic individuals	Patient report of tenderness in the masticatory muscles, the preauricular area, or TMJ in the past month	.75	.67	2.27	.37
Palpation of				Right s	ide*		
temporalis muscle ²¹				.60	.78	2.73	.51
asete				Left sic	de*		
	المالية المستورية المستورة الم			.70	.83	4.12	.36
Palpation of	Performed with index and middle fingers for 2 to 4 seconds with			Right side*			
temporoman- dibular joint ²¹	approximately 3 pounds of pressure on the muscle and	40 patients diag- nosed with TMD	TMD diagnosis	.68	.88	5.67	.36
	2 pounds of pressure on the	and 40 asymp-	from RCD/TMD evaluation	Left side*			
	joint. Pain recorded via VAS with cutoff values at 1 standard devia-	tomatic patients		.73	.85	4.87	.32
Palpation of	tion from the mean*			Right s	ide*		
masseter muscle ²¹				.73	.85	4.87	.32
				Left side*			
				.73	.80	3.65	.34

^{*}Gomes and colleagues²¹ also calculated sensitivity and specificity for cutoff values of 1.5 and 2 standard deviations. Values showed almost perfect specificity, but poor sensitivity.

Palpation

Diagnostic Utility of Pressure Pain Thresholds in Identifying Temporomandibular Disorder

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
PPT temporalis muscle ²¹				Right side			
				.68	.88	5.67	.36
				Left side	9		
				.63	.90	6.30	.41
PPT temporomandibular	Used pressure algometer fitted with a rubber tip.	40 settente lien		Right si	de		
joint ²¹	PPT defined as the light-	40 patients diag- nosed with TMD		.56	.95	11.20	.46
	est pressure to cause pain. Cutoff values repre-	and 40 asymp- tomatic patients		Left side			
	sent 1 standard devia- tion from the mean*	tomatic patients		.75	.95	15.00	.26
PPT masseter muscle ²¹			TMD diag- nosis from RCD/TMD evaluation	Right side			
				.75	.90	7.50	.28
				Left side			
				.78	.90	7.80	.24
PPT anterior temporalis muscle ²²	Used pressure algometer			.77	.91	8.37	.25
PPT middle temporalis muscle ²²	pressed into relaxed muscle belly. PPT defined as the lightest pressure to cause pain. Cutoff values chosen from re- ceiver operator curve	99 women with dental or intra- articular TMJ pain		.73	.91	7.93	.30
PPT posterior temporalis muscle ²²				.67	.91	7.28	.36
PPT masseter muscle ²²	when specificity was .91.			.55	.91	5.98	.50

PPT, pressure pain threshold.

^{*}Gomes and colleagues²¹ also calculated sensitivity and specificity for cutoff values of 1.5 and 2 standard deviations. Values showed almost perfect specificity, but poor sensitivity.

Joint Sounds

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Reliability of Detecting Joint Sounds during Active Motion

Test and Study	Description and Positive Findings	Population	Reliability
Click sounds during mouth opening ¹⁷	During mouth opening, ex- aminer records the presence of a click sound	61 patients with TML pain	Intra-examiner $\kappa = .12$
Crepitus sounds during mouth opening ¹⁷	During mouth opening, ex- aminer records the presence of a grating or grinding sound	61 patients with TMJ pain	Intra-examiner $\kappa = .15$
Clicking during active maximal mouth opening ¹⁴	Intensity of clicking and crepitation is graded on a 0- to	79 randomly selected pa- tients referred to a cranio- mandibular disorder	Inter-examiner $\kappa = .70$
Crepitation during active maximal mouth opening ¹⁴	2-scale from "none" to "clearly audible"		Inter-examiner $\kappa = .29$
Joint noise ¹⁴	Presence of joint noises are recorded by examiner	department	Inter-examiner $\kappa = .24$
Opening ¹⁵	Examiner records the pres-		Inter-examiner $\kappa = .59$
Lateral excursion, right ¹⁵	ence of joint sounds during mandibular opening, lateral	79 patients referred to a temporomandibular disor-	Inter-examiner $\kappa = .57$
Lateral excursion, left15	excursion, right and left and protrusion	der and orofacial pain department	Inter-examiner $\kappa = .50$
Protrusion ¹⁵	produsion		Inter-examiner $\kappa = .47$
TMJ sounds ¹⁶	Presence of joint noises are recorded by examiner during mouth opening	27 temporomandibular dis- order patients	Inter-examiner κ (Right) = .52 (Left) = .25

Reliability of Detecting Joint Sounds during Joint Play

Test and Study	Description and Positive Findings	Population	Reliability
Joint noise during joint play ¹⁴	Examiner records presence of joint noise during traction and translation	79 randomly selected patients referred to a craniomandibular disorder department	Inter-examiner $\kappa =01$
Traction, right ¹⁵	Examiner moves the mandib-	79 patients referred to a TMD and orofacial pain department	Inter-examiner $\kappa =02$
Traction, left ¹⁵	ular condyle in an inferior di- rection for traction and in a		Inter-examiner $\kappa = .66$
Translation, right ¹⁵	medial-lateral direction for		Inter-examiner $\kappa = .07$
Translation, left ¹⁵	translation. Examiner records presence of joint sound during translation and traction		Inter-examiner $\kappa =02$

Joint Sounds

Diagnostic Utility of Clicking in Identifying Temporomandibular Conditions

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 2-18 Auscultation performed with a stethoscope.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Clicking ³	Examiner palpates the lateral aspect of the TMJ during opening and closing. Examiner records audible, palpable clicking	146 patients at- tending a TMJ and craniofacial pain clinic	Anterior disc dis- placement with re- duction via MRI	.51	.83	3.0	.59
Clicking ¹⁷	Examiner auscultates for sounds during joint movement. Presence of a click sound is considered positive	61 patients with TMJ pain	Presence of TMJ effusion via MRI	.69	.51	1.41	.61
Reproducible	Auscultation with a			In presence of reducing disc			
clicking ⁸	stethoscope. Considered positive if ob-			.10	.40	.17	2.25
	served at least 4 times			In presence of nonreducing disc			
	during 5 repetitions of mouth opening	70 patients (90 TMJs) referred with	Detecting anterior	.71	.90	7.10	.32
Reciprocal			disc displacement via MRI	In presence of reducing disc			
clicking ⁸ scope. Considered positive if a click on opening is fol-	niomandibular pain	.40		.52	.83	1.15	
	lowed by a click on closing			In presence of nonreducing disc			
				.76	.95	15.2	.25

Joint Sounds

Diagnostic Utility of Crepitus in Identifying Temporomandibular Conditions

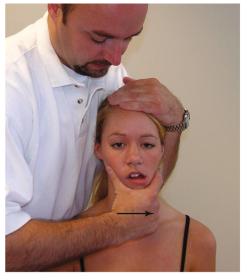
+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Presence of crepitus ¹⁷	Examiner auscultates for sounds during joint movement. Presence of grating or grinding noise is considered positive	61 patients with TMJ pain	Presence of TMJ effusion via MRI	.85	.30	1.21	.50
Presence of crepitus ¹⁸	Osteoarthritis based on the presence of crepitus during auscultation. Pres- ence of crepitus is consid- ered positive	84 patients with symp- toms of TMJ pain	TMJ osteoarthritis via ar- throscopic investigation	.70	.43	1.23	.70
Presence of				Minor osteoarthritis*			
ence	with stethoscope. Presence of crepitus is consid-	tive patients with TMJ disease	TMJ osteoarthritis via arthroscopic investigation	.45	.84	2.81	.65
	ered positive			Severe osteoarthritis*			
				.67	.86	4.79	.38

^{*}Minor osteoarthritis is defined as smooth, glossy white surfaces of the disc and fibrocartilage. Severe osteoarthritis is defined as one or more of the following features: (1) pronounced fibrillation of the articular cartilage and disc; (2) exposure of subchondral bone; (3) disc perforation.

Reliability of Mouth Opening Range of Motion Measurements of the Temporomandibular Joint

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement


Figure 2-19Measurement of mouth opening active range of motion.

Test and Study		Description and Positive Findings	Population	Reliability
Opening ²³	Without TMJ disorder	Patient is instructed to open mouth as much as	15 subjects with a	Inter-examiner ICC = .98 Intra-examiner ICC = .7789
	With TMJ disorder	possible without causing pain. Interincisal distance is measured to the nearest millimeter with a plastic ruler	TMJ disorder and 15 subjects without this disorder	Inter-examiner ICC = .99 Intra-examiner ICC = .94
Unassisted	In older adults	Measured in mm with	43 asymptomatic older adults (age 68 to 96 years) and 44 asymptomatic young adults (age 18 to	Inter-examiner ICC = .88 (.78, .94)
opening without pain ²⁴	In young adults			Inter-examiner ICC = .91 (.83, .95)
Maximum unas-	In older adults			Inter-examiner ICC = .95 (.91, .97)
sisted opening ²⁴	In young adults			Inter-examiner ICC = .98 (.96, .99)
Maximum as-	In older adults	ruler consistent with	45 years)	Inter-examiner ICC = .96 (.92, .98)
sisted opening ²⁴	In young adults	RMC/TMD guidelines		Inter-examiner ICC = .98 (.96, .99)
Unassisted opening without pain ¹⁶ Maximum unassisted opening ¹⁶ Maximum assisted opening ¹⁶				Inter-examiner ICC = .83
			27 TMD patients	Inter-examiner ICC = .89
				Inter-examiner ICC = .93

Reliability of Range of Motion Measurements of the Temporomandibular Joint

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study		Description and Positive Findings	Population	Reliability
	Without TMJ A horizontal line is made on disorder the lower incisor at the level			Inter-examiner ICC = .98 Intra-examiner ICC = .9096
Overbite ²³	With TMJ disorder	of the upper incisor with the TMJ closed. The vertical dis- tance between the line and the superior aspect of the lower incisor is measured		Inter-examiner ICC = .95 Intra-examiner ICC = .9097
Excursion, left ²³	Without TMJ disorder	Vertical marks are made in the median plane on the an-		Inter-examiner ICC = .95 Intra-examiner ICC = .9192
excursion, left	With TMJ disorder	terior surface of the lower central incisors in relationship to the upper central incisors.		Inter-examiner ICC = .94 Intra-examiner ICC = .8592
Excursion,	Without TMJ disorder	Patient is instructed to move the jaw as far lateral as possi- ble and the measurement is	15 subjects with a TMJ disorder and 15	Inter-examiner ICC = .90 Intra-examiner ICC = .7087
right ²³	With TMJ disorder subjects with TMJ disorder	subjects without TMJ disorder	Inter-examiner ICC = .96 Intra-examiner ICC = .7582	
	Without TMJ disorder	Two vertical lines are made on the first upper and lower canine incisors. Subject is instructed to move the jaw as far forward as possible and a measurement is made between the two marks		Inter-examiner ICC = .95 Intra-examiner ICC = .8593
Protrusion ²³	With TMJ disorder			Inter-examiner ICC = .98 Intra-examiner ICC = .8993
Overiet ²³	Without TMJ disorder	The horizontal distance between the upper and lower		Inter-examiner ICC = 1.0 Intra-examiner ICC = .98
Overjet	With TMJ disorder	incisors is measured when the mouth is closed		Inter-examiner ICC = .99 Intra-examiner ICC = .9899
Maximum	In older adults		42 -14	Inter-examiner ICC = .71 (.45, .84)
laterotrusion ²⁴	In young adults		43 older asymptom- atic adults (age 68 to 96 years) and 44	Inter-examiner ICC = .77 (.57, .88)
Maximum	In older adults		young asymptom- atic adults (age 18	Inter-examiner ICC = .78 (.59, .88)
Maximum protrusion ²⁴	In young adults	Measured in millimeters with ruler consistent with RMC/	to 45 years)	Inter-examiner ICC = .90 (.81, .95)
Lateral excursion, right ¹⁶		TMD guidelines		Inter-examiner ICC = .41
Lateral excursion,	left ¹⁶		27 TMD patients	Inter-examiner ICC = .40
Horizontal overbi	te ¹⁶			Inter-examiner ICC = .79
Vertical overlap ¹⁶				Inter-examiner ICC = .70

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 2-20 Translation of mandible, left.

The Reliability of Joint Play and End-Feel Assessment of the TMJ

Test and Study		Description and Positive Findings	Population	Reliability
Traction and translation ¹⁴	Restriction of movement	Examiner records the presence of restriction of movement at end-feel	79 randomly se- lected patients re-	Inter-examiner $\kappa = .08$
	End-feel	during traction and translation of the TMJ	ferred to a cranio- mandibular disorder department	Inter-examiner $\kappa = .07$
Traction right ¹⁵	Joint play	Examiner moves the mandibular condyle in an inferior direction for traction and a medial-lateral direction for translation. The extent of	79 patients referred to a temporoman- dibular disorder and orofacial pain department	Inter-examiner $\kappa =03$
Traction, right ¹⁵	End-feel			Inter-examiner $\kappa =05$
Traction, left ¹⁵	Joint play			Inter-examiner $\kappa = .08$
riaction, tert	End-feel			Inter-examiner $\kappa = .20$
Translation right15	Joint play			Inter-examiner $\kappa =05$
Translation, right ¹⁵ Translation, left ¹⁵	End-feel	joint play and end-feel are graded as "normal" or "abnormal"		Inter-examiner $\kappa =05$
	Joint play			Inter-examiner $\kappa =10$
	End-feel			Inter-examiner $\kappa =13$

Reliability of Measuring Mandibular Opening with Different Head Positions

Test and Study	Description and Positive Findings	Population	Reliability
Forward head position ²⁵	Patient is instructed to slide the jaw forward as far as possible and a measurement of vertical mandibular opening is recorded		Inter-examiner ICC = .92 Intra-examiner ICC = .97
Neutral head position ²⁵	Patient is placed in a position where a plumb line bisects the ear and a measurement of vertical mandibular opening is recorded	40 healthy subjects	Inter-examiner ICC = .93 Intra-examiner ICC = .93
Retracted head position ²⁵	Patient is instructed to slide the jaw backward as far as possible and a measurement of vertical mandibular opening is recorded		Inter-examiner ICC = .92 Intra-examiner ICC = .92

Diagnostic Utility of Limited Range of Motion in Identifying Anterior Disc Displacement

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Restriction of condylar translation ³	Examiner asks patient to maximally open mouth while palpating condylar movement. Examiner records any limitation of condylar translation	146 patients at- tending a TMJ and craniofacial pain clinic	Anterior disc displacement without reduc- tion via MRI	.69	.81	3.63	.38
Restriction range functional opening ³	Examiner asks patient to maximally open mouth and measures the distance in millimeters. Less than 40 mm is considered a restriction			.32	.83	1.88	.82
Restriction	Measurement is taken at the end			In prese	ence of red	ducing disc	ε
range func- tional	range of active mouth opening. Definition of positive not reported			.38	.21	.48	2.95
opening ⁸				In prese	In presence of nonreducing disc		
				.86	.62	2.26	.23
Restriction	Measurement is taken at the end range of passive mouth opening after 15 seconds. Definition of positive not reported Not reported			In presence of reducing disc			
range passive			Anterior disc displacement via MRI	.29	.29	.41	2.45
opening ⁸				In presence of nonreducing disc			
				.76	.69	2.45	.35
Restricted		70 patients		In presence of reducing disc			
translation ⁸		(90 TMJs) re- ferred with complaints of		.15	.38	.24	2.24
				In presence of nonreducing disc			
		craniomandibular pain		.66	.81	3.47	.42
Restricted	Measurement is taken at the end range of active mandibular protrusion. Definition of positive not			In presence of reducing disc			С
protrusion ⁸				.29	.38	.47	1.87
	reported			In presence of nonreducing disc			
				.62	.64	1.72	.59
Restricted	A measurement is taken at the end			In presence of reducing disc			С
contralateral movement ⁸	of contralateral movement from the midline. Definition of positive			.15	.34	.23	2.50
	not reported			In presence of nonreducing disc			
				.66	.76	2.75	.45

Diagnostic Utility of Deviations in Movement in Identifying Anterior Disc Displacement

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Deviation of mandible ³	Patient is asked to maximally open the mouth. If the midline of the upper and lower incisors does not line up, then the test is considered positive	146 patients at- tending a TMJ and craniofacial pain clinic	Anterior disc dis- placement without reduction via MRI	.32	.87	2.46	.78
Deviation of mandible with	Examiner observes active mouth opening. Test is considered positive if a deviation occurs and the mandible returns to midline	70 patients		In presence of reducing disc			
				.14	.57	.33	1.51
correction ⁸				In presence of nonreducing disc			
	(90 TMJs) re- ferred with	Anterior disc dis-	.44	.83	2.59	.67	
Deviation of	Examiner observes active mouth	complaints of craniomandibular pain	placement via MRI	In presence of reducing disc			
mandible without	mandible opening. Test is considered posi-			.18	.41	.31	2.0
correction ⁸	return to midline after deviation			In presence of nonreducing disc			
				.66	.83	3.88	.41

Reliability of Determining the Presence of Pain during Dynamic Movements

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

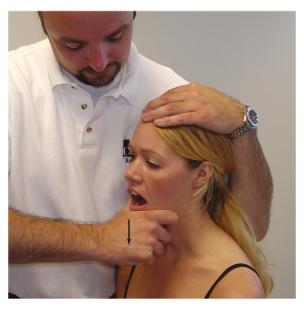


Figure 2-21 Assessment of pain during passive opening.

Test and Study	Description and Positive Findings	Population	Reliability
Mandibular movements ¹⁷	Patient is asked if pain is felt during opening, closing, lateral excursion, protrusion, and retrusion	61 patients with TMJ pain	Intra-examiner $\kappa = .43$
Maximum assisted opening ¹⁷	Examiner applies overpressure to the end-range of mandibular depression		Intra-examiner $\kappa =05$
Pain on opening ¹⁵	Patient is asked to maximally open mouth	79 patients referred to a tem- poromandibular disorder and orofacial pain department	Inter-examiner $\kappa = .28$
Pain on lateral ex- cursion, right ¹⁵	Patient is asked to move the mandible in a lateral direction as far as possible		Inter-examiner $\kappa = .28$
Pain on lateral ex- cursion, left ¹⁵			Inter-examiner $\kappa = .28$
Pain on protrusion ¹⁵	Patient is asked to actively protrude the jaw		Inter-examiner $\kappa = .36$
Passive opening ¹⁴	At the end of active opening the examiner applies a passive stretch to increase mouth opening	79 randomly selected pa- tients referred to a cranio- mandibular disorder	Inter-examiner $\kappa = .34$
Active opening ¹⁴	Patient is asked to open mouth as wide as possible	department	Inter-examiner $\kappa = .32$

Dynamic Movements and Range of Motion

Reliability of Detecting Pain during Resistance Tests

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

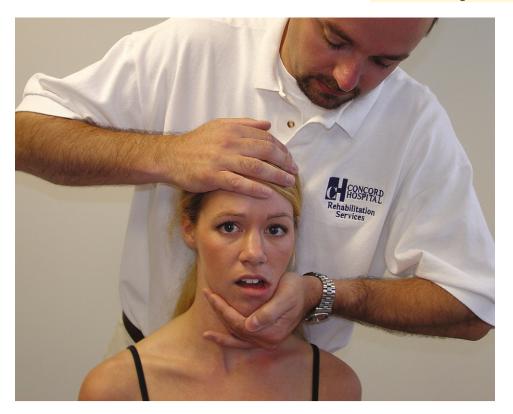


Figure 2-22 Manual resistance applied during lateral deviation.

Test and Study	Description and Positive Findings	Population	Reliability
Dynamic tests ¹⁷	Patient performs opening, closing, lateral excursion, protrusion, and re- trusion movements while examiner applies resistance	61 patients with TMJ pain	Intra-examiner $\kappa = .20$
Opening ¹⁵	Examiner applies isometric resistance during opening, closing, and lateral excursions to the right and left of the		Inter-examiner $\kappa = .24$
Closing ¹⁵		79 patients referred to a TMD and orofacial pain department	Inter-examiner $\kappa = .30$
Lateral excursion, right ¹⁵	TMJ. The presence of pain is recorded		Inter-examiner $\kappa = .28$
Lateral excursion, left ¹⁵			Inter-examiner $\kappa = .26$
Static pain test ¹⁴	The examiner applies resistance against the patient's mandible in an upward, downward, and lateral direction	79 randomly selected patients referred to a craniomandibular disorder department	Inter-examiner $\kappa = .15$

Reliability of Determining the Presence of Pain during Joint Play

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

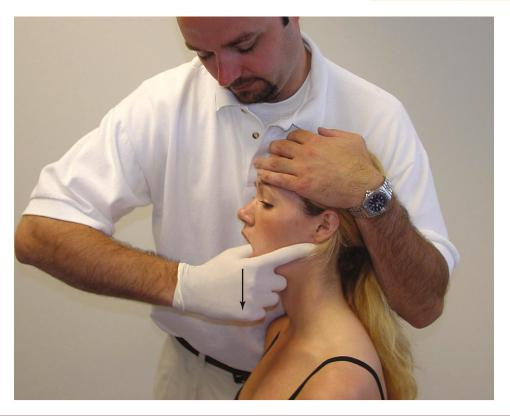


Figure 2-23 Temporomandibular traction.

Test and Study	Description and Positive Findings	Population	Reliability
Joint play ¹³	Examiner performs passive traction and translation movements	61 patients with TMJ pain	Intra-examiner ICC = .20
Joint play test ¹⁵	Examiner applies a traction and a translation (medial/lateral) force through the TMJ	79 randomly selected patients referred to a craniomandibular disorder department	Inter-examiner ICC = .46
Traction, right ¹⁶		79 patients referred to a TMD and orofacial pain department	Inter-examiner ICC =08
Traction, left ¹⁶	Examiner moves the mandibular condyle in an inferior direction for traction and a		Inter-examiner ICC = .25
Translation, right ¹⁶	mediolateral direction for translation. The		Inter-examiner ICC = .50
Translation, left ¹⁶	presence of pain is recorded		Inter-examiner ICC = .28

Diagnostic Utility of Pain in Identifying Temporomandibular Conditions

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

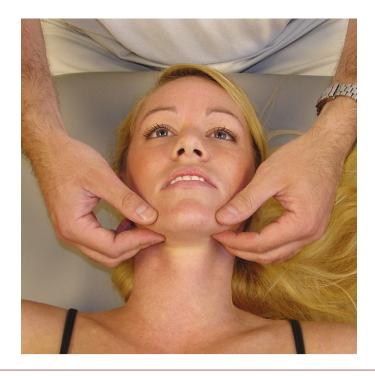
Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR	
Pain during man- dibular move- ments ¹⁷	Patient is asked to open, close, protrude, retrude, and perform lateral excursion of the mandible. Positive if pain present	61 patients with TMJ pain			.61	2.10	.30	
Pain during maximum opening and over- pressure ¹⁷	Patient is asked to perform the movements above while examiner applies resistance. Positive if pain present		Presence of TMJ	.93	.016	.95	4.38	
Pain during dynamic tests ¹⁷	Patient is instructed to open the mouth as wide as possi- ble and examiner applies overpressure. Positive if pain present		with TMJ pain eff	effusion via MRI	.74	.44	1.32	.59
Pain during joint play ¹⁷	Examiner passively performs translation and traction of the TMJ. Positive if pain present			.80	.39	1.31	.51	
TMJ pain during assisted opening ³	At the end of maximal mouth opening, examiner applies 2 to 3 pounds of overpressure. The presence or absence of pain is recorded	146 patients attending a TMJ and cra- niofacial pain clinic	Anterior disc displacement without reduction via MRI	.55	.91	6.11	.49	
Joint pain on	Patient is asked to open			In prese	ence of re	ducing dis	SC .	
opening ⁸	mouth as wide as possible. Positive if pain present			.44	.31	.64	1.81	
		70 patients		In presence of nonreducing disc			g disc	
Pain with contra- lateral motion ⁸ Patient is asked to perform	(90 TMJs) re- ferred with	Anterior disc dis-	.74	.57	1.72	.46		
	'	complaints of cranioman- dibular pain	placement via MRI	In prese	ence of re	ducing dis	SC .	
lateral motion	to the side of joint involve-			.60	.69	1.94	.58	
	ment. Positive if pain present			In prese	ence of no	onreducing	g disc	
				.34	.93	4.86	.71	

Diagnostic Utility of Pain in Identifying Temporomandibular Conditions

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Mouth opening

Mouth closing


Figure 2-24 Manual resistance applied during mouth opening and closing.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Dynamic/ static ²⁰	Manual resistance was applied during mouth opening, closing, protrusion, and lateral deviation. Pain was recorded via VAS using a cutoff value to maximize sensitivity and specificity			.63	.93	.90	.40
Active movements ²⁰	Patient was asked to maximally depress mandible, protrude, and deviate right and left. Pain was recorded via VAS using a cutoff value to maximize sensitivity and specificity	147 patients re- ferred for cranio- mandibular com- plaints and 103 asymptomatic individuals	derness in the mastica- tory muscles, the preauricular area, or	.87	.67	2.64	.19
Passive movements ²⁰	At the end of maximal mouth opening, examiner gently applied overpressure. Pain was recorded via VAS using a cutoff value to maximize sensitivity and specificity			.80	.64	2.22	.31

Other Tests

Reliability of the Compression Test

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

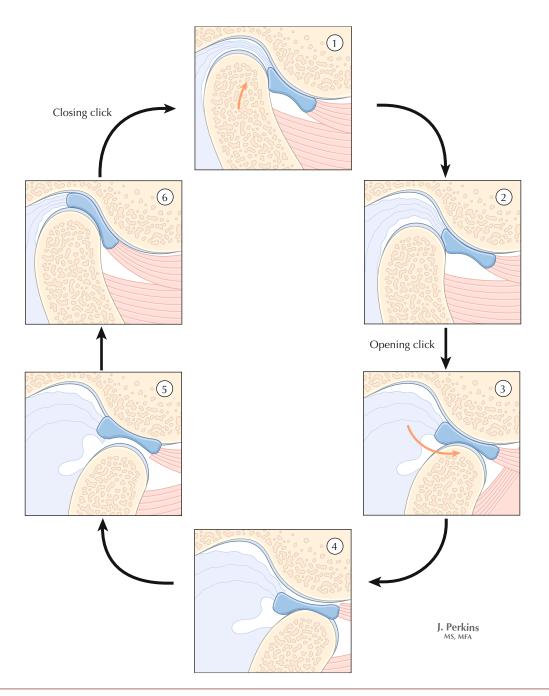
Figure 2-25Bilateral temporomandibular compression.

Test and Study		Description and Positive Findings	Population	Reliability
Compression, right ¹⁵	Pain			Inter-examiner $\kappa = .19$
Compression, left ¹⁵ Compression ¹⁴	Sounds	The examiner loads the intra- articular structures by moving	79 patients referred to a TMD and orofacial pain department	Not reported
	Pain			Inter-examiner $\kappa = .47$
	Sounds	the mandible in a dorsocranial		Inter-examiner $\kappa = 1.0$
	Pain	direction. The presence of pain and joint sounds are recorded	79 randomly selected pa-	Inter-examiner $\kappa = .40$
	Joint noises	·	tients referred to a cranio- mandibular disorder department	Inter-examiner $\kappa = .66$

Other Tests

Diagnostic Utility of Lower Extremity Measurements

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement


Test and Study	Description and Positive Findings	Population	Reliability
Leg length inequality ²⁶	With patient supine, examiner visually compares the position of the medial malleoli. Considered positive if leg length inequality \geq .5 cm		Inter-examiner $\kappa = .33$ to $.39$
Internal foot rota- tion test ²⁶	With patient supine, examiner exerts forced internal rotation of the root and assesses the amount of end-play. Considered positive if difference in rotation \geq 15 degrees	41 dental students	Inter-examiner $\kappa = .15$ to .27

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

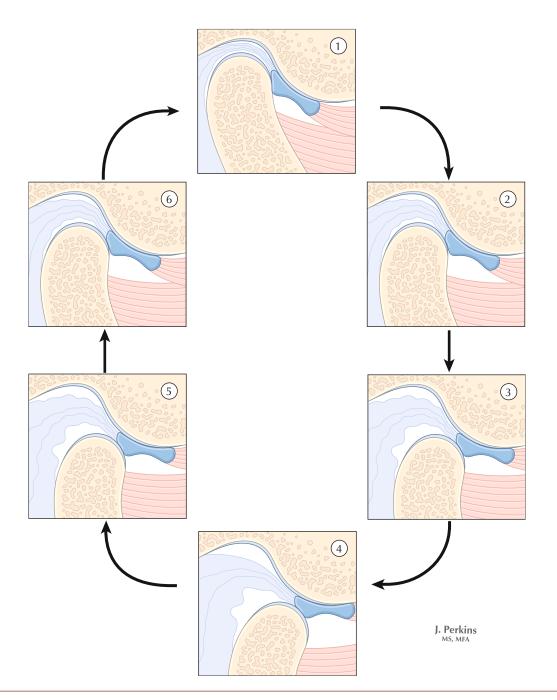
Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Leg length in- equality ²⁶			Jaw muscle myofascial pain from RCD/TMD evaluation	.43	.41	.73	1.39
	the medial malleoli. Considered positive if leg length inequality ≥ .5 cm	40 1 1 1	Anterior TMJ disc displace- ment from RCD/TMD evaluation	.50	.41	.85	1.22
Internal foot rotation test ²⁶	With patient supine, examiner exerts forced internal rotation of the	Judenius	Jaw muscle myofascial pain from RCD/TMD evaluation	.43	.47	.81	1.21
	root and assesses the amount of end-play. Considered positive if difference in rotation ≥ 15 degrees		Anterior TMJ disc displace- ment from RCD/TMD evaluation	.57	.52	1.19	.83

Combinations of Tests

Diagnostic Utility of Combined Tests for Detecting Anterior Disc Displacement with Reduction

Figure 2-26 Anterior disc displacement with reduction.

Combinations of Tests (continued)


Diagnostic Utility of Combined Tests for Detecting Anterior Disc Displacement with Reduction

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
No deviation of the mandible; no pain during assisted opening ³				.76	.30	1.09	.80
No deviation of the mandible; no limitation of opening ³				.76	.27	1.04	.89
No deviation of the mandible; no restriction of condylar translation ³	See previous de- scriptions under single test items	TMJ and cra-	Anterior disc displacement with reduc- tion via MRI	.75	.37	1.19	.68
No deviation of the mandible; clicking ³				.51	.85	3.40	.58
No deviation of the mandible; no pain during opening; no limitation of opening ³				.71	.35	1.09	.83
No deviation of the mandible; no pain during opening; no limitation of opening; no restriction of condylar translation ³				.68	.37	1.08	.86
No deviation of the mandible; no pain during opening; no limitation of opening; no restriction of condylar translation; clicking ³				.44	.86	3.14	.65

Combinations of Tests

Diagnostic Utility of Combined Tests for Detecting Anterior Disc Displacement without Reduction

Figure 2-27Anterior disc displacement without reduction.

Combinations of Tests (continued)

Diagnostic Utility of Combined Tests for Detecting Anterior Disc Displacement without Reduction

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Motion restriction; no clicking ³			Anterior disc displacement without reduc- tion via MRI	.61	.82	3.39	.48
Motion restriction; pain during assisted opening ³				.54	.93	7.71	.49
Motion restriction; limitation of maximal mouth opening ³				.31	.87	2.38	.79
Motion restriction; deviation of the mandible ³		445		.30	.90	3.0	.78
Motion restriction; no clicking, TMJ pain with assistive opening ³	See previous de- scriptions under single test items	146 patients at- tending a TMJ and craniofacial pain clinic		.46	.94	7.67	.59
Motion restriction; no clicking; TMJ pain with assistive opening; limitation of maximum mouth opening ³				.22	.96	5.50	.81
Motion restriction; no clicking; TMJ pain with assistive opening; limitation of maximum mouth opening; deviation of the mandible ³				.11	.98	5.5	.91
Clinical diagnosis using history and combined test ²⁷	Examination using Clinical Diagnostic Criteria for Tem- poromandibular Disorders (CDC/TMD)	69 patients re- ferred with TMD	Anterior disc displacement without reduc- tion via MRI	.75	.83	4.41	.3

Combinations of Tests

Predicting Treatment Success with Nightly Wear of Occlusal Stabilization Splint

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 2-28 Occlusal stabilization splint.

Test and Study Quality	Description and Positive Findings	Population Reference Standard		Sens	Spec	+LR	-LR*
Time since pain ²⁸	≤ 42 weeks		Treatment success (>70% reduction in VAS) after 6 months with nightly wear of occlusal stabilization splint	.62 (.49, .73)	.69 (.54, .80)	2.0 (1.3, 3.0)	.55
Baseline pain level ²⁸	≥40 mm on VAS			.48 (.35, .60)	.72 (.57, .83)	1.7 (1.0, 2.7)	.72
Change in VAS level at 2 months ²⁸	≥15 mm on VAS	119 consecu-		.72 (.75, .93)	.91, (.64, .88)	3.9 (2.3, 6.5)	.31
Disc displace- ment without reduction ²⁸	As observed on MRI	tive patients referred to TMD clinic di- agnosed with unilateral TMJ arthralgia		.25 (.15, .37)	.91 (.79, .97)	2.7 (1.0, 6.8)	.82
4 positive tests ²⁸	4/4 above			.10 (.04, .20)	.99 (.90, 1.00)	10.8 (.62, 188.1)	.91
≥3 positive tests ²⁸	≥3/4 above			.23, (.14, .36)	.91 (.79, .97)	2.5 (.97, 6.4)	.85
≥2 positive tests ²⁸	≥2/4 above			.49 (.37, .62)	.85 (.72, .93)	3.3 (1.7, 6.6)	.60

^{*}-LRs not reported in study and, therefore, were calculated by authors of this book. VAS, visual analog scale.

Combinations of Tests

Predicting Treatment Failure with Nightly Wear of Occlusal Stabilization Splint

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR*
Time since pain ²⁸	>43 weeks	119 consecu- tive patients referred to TMD clinic di- agnosed with unilateral TMJ arthralgia		.56 (.45, .67)	.65 (.47, .79)	1.68	.68 (.52, .89)
Baseline pain level ²⁸	<40 mm on VAS			.76 (.65, .84)	.68 (.50, .82)	2.38	.36 (.24, .54)
Change in VAS level at 2 months ²⁸	≤ 9 mm on VAS		Treatment failure after	.82 (.71, .89)	.97 (.84, .99)	27.33	.19 (.12, .30)
Disc displacement with reduction ²⁸	As observed on MRI		to 6 months nic di- with nightly with wear of oc- nl TMJ clusal stabili-	.10 (.05, .19)	.57 (.40, .73)	.23	1.59 (1.42, 1.78)
4 positive tests ²⁸	4/4 above			.96 (.67, 1.0)	.76 (.67, .84)	4.00	.05 (.00, .77)
≥3 positive tests ²⁸	≥3/4 above			.19 (.09, .36)	.96 (.89, .99)	4.75	.84 (.72, .98)
≥2 positive tests ²⁸	≥2/4 above			.38 (.23, .55)	.78 (.67, .86)	1.73	.80 (.62, 1.0)

^{*-}LRs not reported in study and, therefore, were calculated by authors of this book. VAS, visual analog scale.

OUTCOME MEASURES

Outcome Measure	Scoring and Interpretation	Test-Retest Reliability	MCID
Mandibular Function Impairment Questionnaire (MFIQ)	Users rate perceived level of difficulty on a Likert scale ranging from 0 (no difficulty) to 4 (very great difficulty or impossible without help) on a series of 17 questions about jaw function. The sum item score for function impairment ranges from 0 to 68 with higher scores representing more disability	Spearman's r = .69 to .96 ^{29,30}	14 ²⁹
Numeric Pain Rating Scale (NPRS)	Users rate their level of pain on an 11-point scale ranging from 0 to 10, with high scores representing more pain. Often asked as current pain, least, worst, and average pain in the past 24 hours	ICC = .72 ³¹	2 ^{32,33}
MCID, minimum clinically important	difference.		

APPENDIX

Quality Assessment of Diagnostic Studies for TMD Using QUADAS

	Riolo 1988	Schiffman 1989	Cacchiotti 1991	Stegenga 1992	Paesani 1992 ³⁴	Holmund 1996	Israel 1998	Orsini 1999	Visscher 2000	Emshoff 2002
Was the spectrum of patients representative of the patients who will receive the test in practice?	U	U	N	Υ	N	Υ	Υ	Υ	N	Y
2. Were selection criteria clearly described?	N	N	N	Υ	N	N	Υ	Υ	Υ	Y
Is the reference standard likely to correctly classify the target condition?	U	U	N	Υ	U	Υ	Υ	Υ	U	Y
4. Is the time period between reference stan- dard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	U	U	U	U	U	U	U	U	U	Y
5. Did the whole sample, or a random selection of the sample, receive verification using a reference standard of diagnosis?	U	U	Y	Y	N	Y	Y	Υ	Υ	Y
6. Did patients receive the same reference standard regardless of the index test result?	U	Y	Y	Υ	U	Υ	Y	Υ	Υ	Y
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y
8. Was the execution of the index test described in sufficient detail to permit replication of the test?	Y	U	Υ	Υ	Υ	Υ	Y	Υ	Υ	Y
9. Was the execution of the reference stan- dard described in sufficient detail to permit its replication?	Y	N	N	Υ	U	Y	U	Υ	Υ	Y
10. Were the index test results interpreted without knowledge of the results of the reference test?	U	U	U	U	U	U	U	Υ	Υ	Y
11. Were the reference standard results inter- preted without knowledge of the results of the index test?	U	Y	U	U	U	U	U	Y	Y	Y
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	U	U	U	U	U	Y	U	U	U
13. Were uninterpretable/intermediate test results reported?	U	U	Υ	U	U	Υ	Υ	Υ	U	Y
14. Were withdrawals from the study explained?	U	U	Y	U	U	Y	Y	U	U	Υ
Quality summary rating:								\rightarrow		\langle
Y = yes, N = no, U = unclear. Good quality ($Y = yes, N = no, U = unclear.$ Good quality $(Y - N = 10 to 14)$ Fair quality $(Y - N = 5 to 9)$ Poor quality $(Y - N \le 4)$									

APPENDIX

Quality Assessment of Diagnostic Studies for TMD Using QUADAS

	Manfredini 2003	Schmitter 2004	Farella 2005	Silva 2005	Nilsson 2006	Emshoff 2008	Gomes 2008
Was the spectrum of patients representative of the patients who will receive the test in practice?	Υ	Υ	N	Υ	Υ	Y	Y
2. Were selection criteria clearly described?	U	Υ	Υ	Υ	N	Y	U
3. Is the reference standard likely to correctly classify the target condition?	Υ	Y	Υ	Υ	Y	Y	Υ
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	Υ	N	U	U	Y	Y	U
5. Did the whole sample, or a random selection of the sample, receive verification using a reference standard of diagnosis?	Υ	Υ	U	Υ	Υ	Υ	U
6. Did patients receive the same reference standard regardless of the index test result?	Υ	Υ	Υ	Υ	Υ	Y	U
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Υ	Υ	Υ	U	Υ	Y	N
8. Was the execution of the index test described in sufficient detail to permit replication of the test?	Υ	Y	Υ	Υ	Y	Y	Υ
9. Was the execution of the reference standard described in sufficient detail to permit its replication?	Υ	Υ	Y	Υ	Υ	Y	Υ
10. Were the index test results interpreted without knowledge of the results of the reference test?	Υ	Y	U	U	U	Y	Υ
11. Were the reference standard results interpreted without knowledge of the results of the index test?	Y	Y	U	U	U	Y	Y
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	Y	U	U	U	U	Y	U
13. Were uninterpretable/intermediate test results reported?	U	Υ	U	U	Υ	Y	U
14. Were withdrawals from the study explained?	Υ	Υ	U	U	Υ	Υ	Υ
Quality summary rating:	\Q	\Q	0	•	0	\langle	0
$Y = yes, N = no, U = unclear.$ Good quality $(Y - N = 10 \text{ to } 14)$ Fair quality $(Y - N = 5 \text{ to } 9)$ Poor quality $(Y - N \le 4)$							

REFERENCES

- Barclay P, Hollender LG, Maravilla KR, Truelove EL. Comparison of clinical and magnetic resonance imaging diagnosis in patients with disc displacement in the temporomandibular joint. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88:37-43.
- Cholitgul W, Nishiyama H, Sasai T, et al. Clinical and magnetic resonance imaging findings in temporomandibular joint disc displacement. *Dentomaxillofac Radiol*. 1997;26:183-188.
- Orsini MG, Kuboki T, Terada S, et al. Clinical predictability of temporomandibular joint disc displacement. *J Dent Res.* 1999;78:650-660.
- Gross AR, Haines T, Thomson MA, et al. Diagnostic tests for temporomandibular disorders: an assessment of the methodologic quality of research reviews. *Man Ther*. 1996;1:250-257.
- Haley DP, Schiffman EL, Lindgren BR, et al. The relationship between clinical and MRI findings in patients with unilateral temporomandibular joint pain. *J Am Dent Assoc.* 2001;132:476-481.
- Gavish A, Halachmi M, Winocur E, Gazit E. Oral habits and their association with signs and symptoms of temporomandibular disorders in adolescent girls. *J Oral Rehabil*. 2000;27:22-32.
- Magnusson T, List T, Helkimo M. Self-assessment of pain and discomfort in patients with temporomandibular disorders: a comparison of five different scales with respect to their precision and sensitivity as well as their capacity to register memory of pain and discomfort. J Oral Rehabil. 1995;22:549-556.
- Stegenga B, de Bont LG, van der Kuijl B, Boering G. Classification of temporomandibular joint osteoarthrosis and internal derangement. 1. Diagnostic significance of clinical and radiographic symptoms and signs. *Cranio*. 1992;10:96-106; discussion 116-117.
- Nilsson IM, List T, Drangsholt M. The reliability and validity of self-reported temporomandibular disorder pain in adolescents. J Orofac Pain. 2006;20:138-144.
- Dworkin SF, LeResche L. Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. *J Cranioman*dib Disord. 1992;6:301-355.
- John MT, Dworkin SF, Mancl LA. Reliability of clinical temporomandibular disorder diagnoses. *Pain*. 2005;118:61-69.
- Schmitter M, Kress B, Rammelsberg P. Temporomandibular joint pathosis in patients with myofascial pain: a comparative analysis of magnetic resonance imaging and a clinical examination based on a specific set of criteria. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:318-324.
- Dworkin SF, LeResche L, DeRouen T, et al. Assessing clinical signs of temporomandibular disorders: reliability of clinical examiners. *J Prosthet Dent*. 1990;63:574-579.v

- Lobbezoo-Scholte AM, de Wijer A, Steenks MH, Bosman F. Interexaminer reliability of six orthopaedic tests in diagnostic subgroups of craniomandibular disorders. J Oral Rehabil. 1994;21:273-285.
- de Wijer A, Lobbezoo-Scholte AM, Steenks MH, Bosman F. Reliability of clinical findings in temporomandibular disorders. J Orofac Pain. 1995;9:181-191.
- Leher A, Graf K, PhoDuc JM, Rammelsberg P. Is there a difference in the reliable measurement of temporomandibular disorder signs between experienced and inexperienced examiners? *J Orofac Pain*. 2005;19:58-64.
- Manfredini D, Tognini F, Zampa V, Bosco M. Predictive value of clinical findings for temporomandibular joint effusion. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod*. 2003;96:521-526.
- 18. Israel HA, Diamond B, Saed-Nejad F, Ratcliffe A. Osteoarthritis and synovitis as major pathoses of the temporomandibular joint: comparison of clinical diagnosis with arthroscopic morphology. *J Oral Maxillofac Surg.* 1998;56:1023-1027; discussion 1028.
- Holmlund AB, Axelsson S. Temporomandibular arthropathy: correlation between clinical signs and symptoms and arthroscopic findings. *Int J Oral Maxillofac Surg.* 1996;25:178-181.
- 20. Visscher CM, Lobbezoo F, de Boer W, et al. Clinical tests in distinguishing between persons with or without craniomandibular or cervical spinal pain complaints. *Eur J Oral Sci.* 2000;108:475-483.
- Gomes MB, Guimaraes JP, Guimaraes FC, Neves AC. Palpation and pressure pain threshold: reliability and validity in patients with temporomandibular disorders. Cranio. 2008;26:202-210.
- 22. Silva RS, Conti PC, Lauris JR, et al. Pressure pain threshold in the detection of masticatory myofascial pain: an algometer-based study. *J Orofac Pain*. 2005;19:318-324.
- Walker N, Bohannon RW, Cameron D. Discriminant validity of temporomandibular joint range of motion measurements obtained with a ruler. J Orthop Sports Phys Ther. 2000;30:484-492.
- Hassel AJ, Rammelsberg P, Schmitter M. Inter-examiner reliability in the clinical examination of temporomandibular disorders: influence of age. Community Dent Oral Epidemiol. 2006;34:41-46.
- Higbie EJ, Seidel-Cobb D, Taylor LF, Cummings GS. Effect of head position on vertical mandibular opening. J Orthop Sports Phys Ther. 1999;29:127-130.
- Farella M, Michelotti A, Pellegrino G, et al. Interexaminer reliability and validity for diagnosis of temporomandibular disorders of visual leg measurements used in dental kinesiology. *J Orofac Pain*. 2005;19:285-290.
- 27. Emshoff R, Innerhofer K, Rudisch A, Bertram S. Clinical versus magnetic resonance imaging findings with internal derangement of the temporomandibular joint: an evaluation of anterior disc displacement

- without reduction. *J Oral Maxillofac Surg.* 2002;60:36-41; discussion 42-43.
- Emshoff R, Rudisch A. Likelihood ratio methodology to identify predictors of treatment outcome in temporomandibular joint arthralgia patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106: 525-533.
- Kropmans TJ, Dijkstra PU, van Veen A, et al. The smallest detectable difference of mandibular function impairment in patients with a painfully restricted temporomandibular joint. *J Dent Res.* 1999;78:1445-1449.
- Undt G, Murakami K, Clark GT, et al. Cross-cultural adaptation of the JPF-Questionnaire for German-speaking patients with functional temporomandibular joint disorders. J Craniomaxillofac Surg. 2006;34:226-233.

- Li L, Liu X, Herr K. Postoperative pain intensity assessment: a comparison of four scales in Chinese adults. *Pain Med.* 2007;8:223-234.
- Farrar JT, Berlin JA, Strom BL. Clinically important changes in acute pain outcome measures: a validation study. J Pain Symptom Manage. 2003;25:406-411.
- Farrar JT, Portenoy RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. *Pain*. 2000;88:287-294.
- Paesani D, Westesson PL, Hatala MP, et al. Accuracy of clinical diagnosis for TMJ internal derangement and arthrosis. Oral Surg Oral Med Oral Pathol. 1992;73:360-363.

Cervical Spine

CLINICAL SUMMARY AND RECOMMENDATIONS	66
Anatomy	67
Osteology	67
Arthrology	69
Ligaments	70
Muscles	72
Nerves	78
Patient History	80
Initial Hypotheses Based on Patient History	80
Cervical Zygapophyseal Pain Syndromes	80
Reliability of the Cervical Spine Historical Examination	82
Diagnostic Utility of Patient Complaints for Cervical Radiculopathy	83
Physical Examination Tests	85
Neurological Examination	85
Screening for Cervical Spine Injury	90
Range of Motion	94
Cervical Strength and Endurance	99
Passive Intervertebral Motion	100
Palpation	104
Postural and Muscle Length Assessment	106
Spurling's and Neck Compression Tests	108
Neck Distraction and Traction Tests	110
Shoulder Abduction Test	111
Neural Tension Tests	112
Sharp-Purser Test	115
Compression of Brachial Plexus	116
Combinations of Tests	117
Interventions	118
Outcome Measures	125
Appendix	126
Quality Assessment of Diagnostic Studies Using QUADAS	126
References	128

CLINICAL SUMMARY AND RECOMMENDATIONS

Patient History	
Complaints	The utility of patient history has only been studied in identifying cervical radiculopathy. Subjective reports of symptoms were generally not helpful, with diagnoses including complaints of "weakness," "numbness," "tingling," "burning," or "arm pain."
	The patient complaints most useful in diagnosing cervical radiculopathy were (1) a report of symptoms most bothersome in the scapular area (+LR [likelihood ratio] = 2.30) and (2) a report that symptoms improve with moving the neck (+LR = 2.23).
Physical Examina	tion
Screening	Traditional neurological screening (sensation, reflex, and manual muscle testing [MMT]) is of moderate utility in identifying cervical radiculopathy. Sensation testing (pin prick at any location) and MMT of the muscles in the lower arm and hand are unhelpful. Muscle stretch reflex (MSR) and MMT of the muscles in the upper arm (especially the biceps brachii), exhibit good diagnostic utility and are recommended.
	Both the Canadian C-Spine Rule (CCR) and the NEXUS Low-Risk Criteria are excellent at ruling out clinically important cervical spine injuries that require radiography. Because both methods are simple and have been shown to be superior to both a general clinical examination and physician judgment, we recommend use of the CCR because it has been consistently shown to have perfect sensitivity ($-LR = 0.0$).
Range of Motion and Manual Assessment	Measuring cervical range of motion is consistently reliable, but is of unknown diagnostic utility.
	The results of studies assessing the reliability of passive intervertebral motion are highly variable but generally report poor reliability when assessing limitations of movement and moderate reliability when assessing for pain.
	Assessing for both pain and limited movement during manual assessment is highly sensitive for zygopophyseal joint pain and is recommended to rule out zygopophyseal involvement ($-LR = .00$ to .23).
Special Tests	Multiple studies demonstrate high diagnostic utility of Spurling's test to identify cervical radiculopathy, cervical disc prolapse, and neck pain ($+LR=1.9$ to 18.6).
	Using a combination of Spurling's A test, upper limb tension test A, a distraction test, and assessing for cervical rotation $<$ 60° to the ipsilateral side is very good at identifying cervical radiculopathy and is recommended (+LR = 30.3 if all four factors present).
Interventions	Patients with $neck\ pain\ for < 30\ days\ have\ a\ high\ probability\ of\ rapid\ improvement\ if\ treated\ with\ thoracic\ manipulation\ (+LR = 6.4).$ Other factors associated with improved thoracic manipulation, especially in combination are (1) no symptoms distal to the shoulder, (2) low fear avoidance behavior, (3) patient reports that looking up does not aggravate symptoms, (4) cervical extension ROM $<$ 30°, and (5) decreased upper thoracic spine kyphosis (+LR = 12 if any four of six factors present).
	Because the risks of thoracic manipulation are minimal, we recommend such treatment be considered a first-line intervention for patients with neck pain (and no contraindications).

Osteology

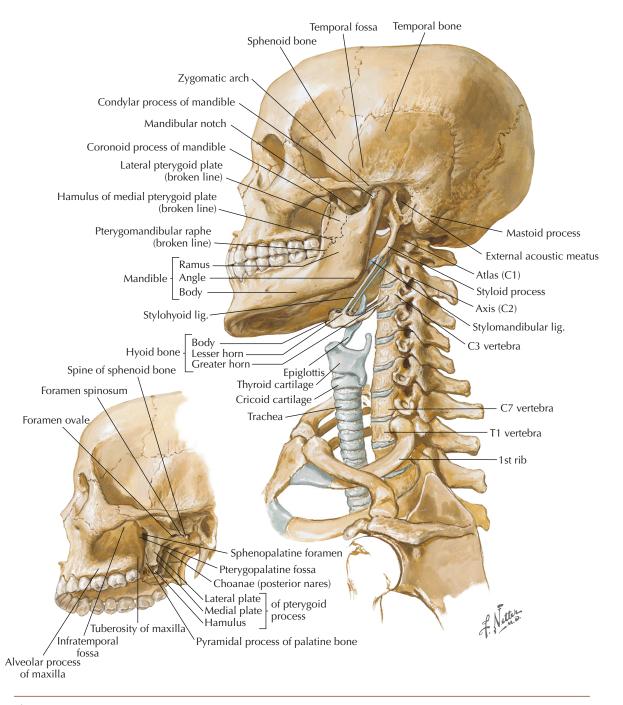
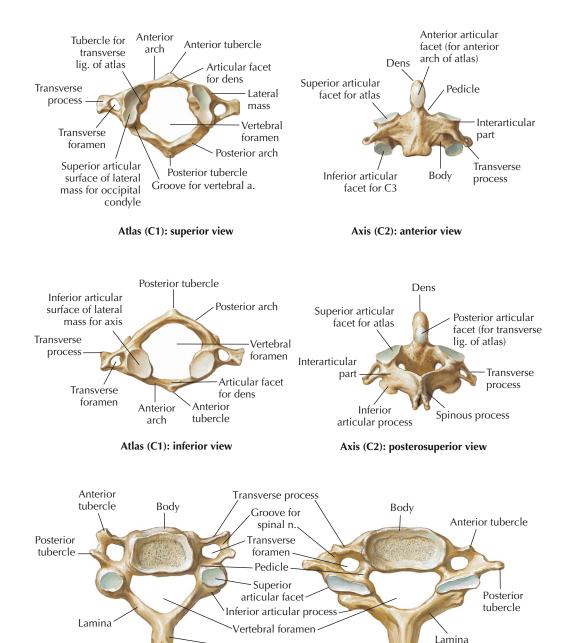



Figure 3-1 Bony framework of the head and neck.

Osteology

Spinous process

f. Netter.

7th cervical vertebra:

superior view

Figure 3-2Cervical vertebrae.

4th cervical vertebra:

superior view

Arthrology

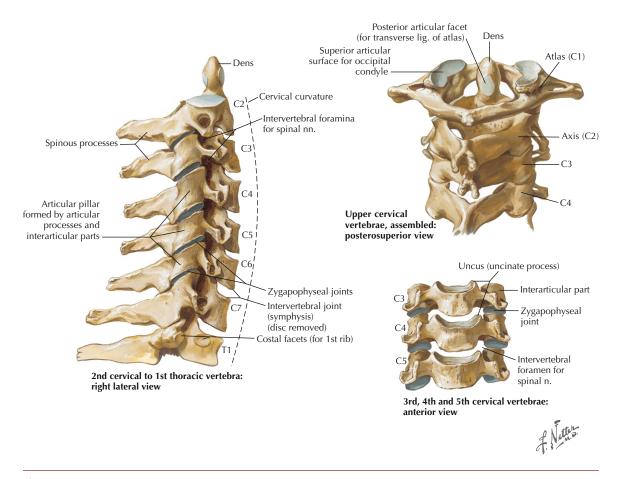
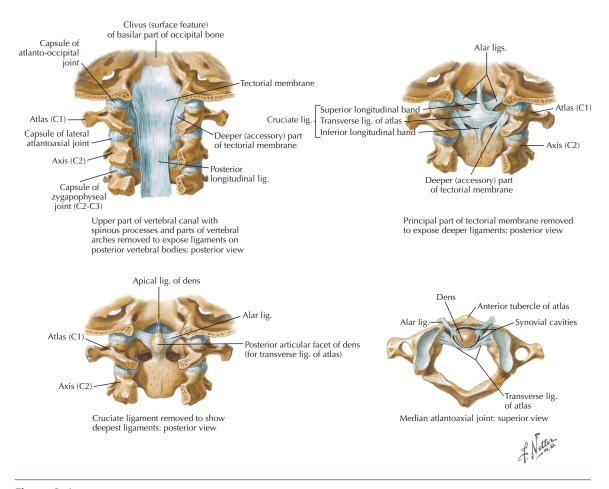



Figure 3-3 Joints of the cervical spine.

Joint	Type and Classification	Closed Packed Position	Capsular Pattern
Atlanto-occipital	Synovial: plane	Not Reported	Not Reported
Atlanto-odontoid/dens	Synovial: trochoid	Extension	Not Reported
Atlantoaxial Apophyseal joints	Synovial: plane	Extension	Not Reported
C3-C7 Apophyseal joints	Synovial: plane	Full extension	Limitation in sidebending = rotation = extension
C3-C7 Intervertebral joints	Amphiarthrodial	Not applicable	Not applicable

Ligaments

Figure 3-4 Ligaments of the atlanto-occipital joint.

Ligaments	Attachments	Function
Alar	Sides of dens to lateral aspects of foramen magnum	Limits ipsilateral head rotation and contra- lateral sidebending
Apical	Dens to posterior aspect of foramen magnum	Limits separation of dens from occiput
Tectorial membrane	Body of C2 to occiput	Limits forward flexion
Cruciform ligament	 Transverse ligament to the occiput Extends between lateral tubercles of C1 Transverse ligament to the body of C2 	Maintains contact between dens and anterior arch of atlas

Ligaments

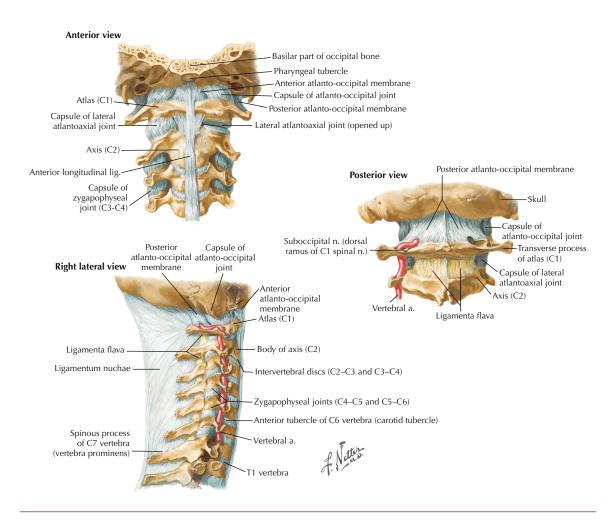
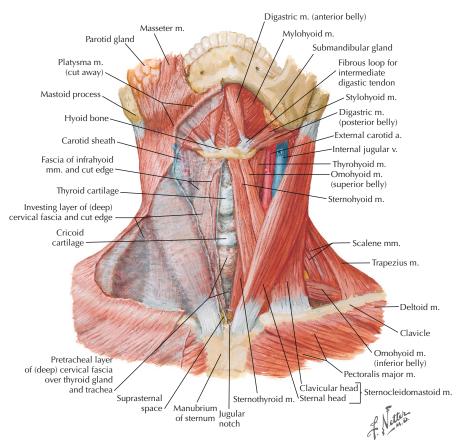



Figure 3-5 Spinal ligaments.

Ligaments	Attachments	Function
Anterior longitudinal	Extends from anterior sacrum to anterior tubercle of C1. Connects anterolateral vertebral bodies and discs	Maintains stability of vertebral body joints and prevents hyperextension of vertebral column
Posterior longitudinal	Extends from the sacrum to C2. Runs within the vertebral canal attaching the posterior vertebral bodies	Prevents hyperflexion of vertebral column and posterior disc protrusion
Ligamentum nuchae	An extension of the supraspinous ligament (occipital protuberance to C7)	Prevents cervical hyperflexion
Ligamenta flava	Attaches the lamina above each vertebra to the lamina below	Prevents separation of the vertebral lamina
Supraspinous	Connects apices of spinous processes C7-S1	Limits separation of spinous processes
Interspinous	Connects adjoining spinous processes C1-S1	Limits separation of spinous processes
Intertransverse	Connects adjacent transverse processes of vertebrae	Limits separation of transverse processes

Figure 3-6Anterior muscles of the neck.

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Sternocleidomastoid	Lateral aspect of mastoid process and lateral supe- rior nuchal line	Sternal head: anterior aspect of manubrium Clavicular head: supero- medial aspect of clavicle	Spinal root of ac- cessory nerve	Neck flexion, ipsilateral side- bending, and contralateral rotation
Scalenes				
Anterior	Transverse pro- cesses of vertebrae C4-C6	1st rib	C4, C5, C6	Elevates first rib, ipsilateral sidebending, and contralateral rotation
 Middle 	Transverse pro-	Superior aspect of 1st rib	Ventral rami of cer- vical spinal nerves	Elevates 1st rib, ipsilateral side- bending, contralateral rotation
Posterior	cesses of vertebrae C1-C4	External aspect of 2nd rib	Ventral rami of cervical spinal nerves C3, C4	Elevates 2nd rib, ipsilateral sidebending, contralateral rotation
Platysma	Inferior mandible	Fascia of pectoralis major and deltoid	Cervical branch of facial nerve	Draws skin of neck superiorly with clenched jaw, draws corners of the mouth inferiorly

Muscles

Suprahyoid and Infrahyoid Muscles

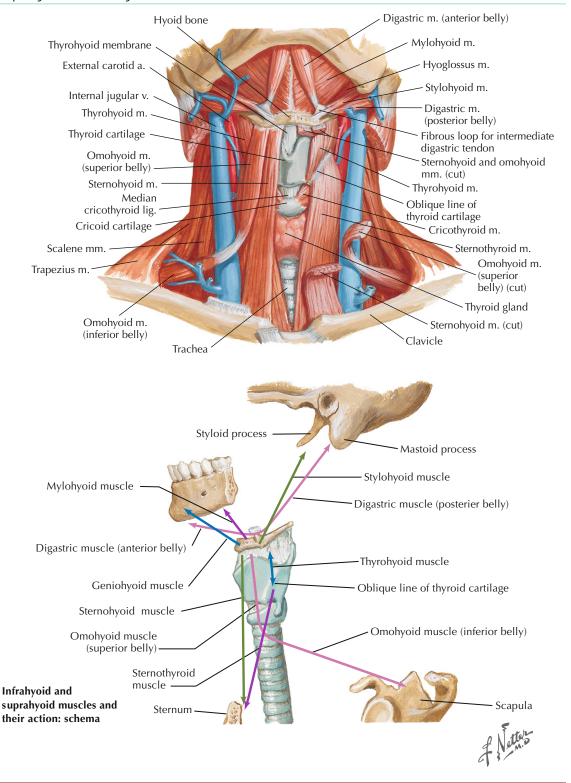


Figure 3-7 Suprahyoid and infrahyoid muscles.

Muscles (continued)

Suprahyoid and Infrahyoid Muscles

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Suprahyoids				
Mylohyoid	Mandibular mylohyoid line	Hyoid bone	Mylohyoid nerve	Elevates hyoid bone, floor of mouth, and tongue
Geniohyoid	Mental spine of mandible	Body of hyoid bone	Hypoglossal nerve	Elevates hyoid bone anterosuperiorly, widens pharynx
Stylohyoid	Styloid process of temporal bone	Body of hyoid bone	Cervical branch of facial nerve	Elevates and retracts hyoid bone
Digastric	Anterior belly: digastric fossa of mandible Posterior belly: mastoid notch of temporal bone	Greater horn of hyoid bone	Anterior belly: mylohyoid nerve Posterior belly: facial nerve	Depresses mandible and raises hyoid
Infrahyoids				
Sternohyoid	Manubrium and medial clavicle	Body of hyoid bone	Branch of ansa cervicalis (C1, C2, C3)	Depresses hyoid bone after it has been elevated
Omohyoid	Superior border of scapula	Inferior aspect of hyoid bone	Branch of ansa cervicalis (C1, C2, C3)	Depresses and re- tracts hyoid bone
Sternothyroid	Posterior aspect of manubrium	Thyroid cartilage	Branch of ansa cervicalis (C2, C3)	Depresses hyoid bone and larynx
Thyrohyoid	Thyroid cartilage	Body and greater horn of hyoid bone	Hypoglossal nerve (C1)	Depresses hyoid bone, elevates larynx



Figure 3-8 Scalene and prevertebral muscles.

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Longus capitis	Basilar aspect of occip- ital bone	Anterior tubercles of transverse processes C3-C6	Ventral rami of C1-C3 spinal nerves	Flexes head on neck
Longus colli	Anterior tubercle of C1, bodies of C1-C3, and transverse processes of C3-C6	Bodies of C3-T3 and transverse processes of C3-C5	Ventral rami of C2-C6 spinal nerves	Neck flexion, ipsilateral sidebending and rotation
Rectus capitis anterior	Base of skull anterior to occipital condyle	Anterior aspect of lateral mass of C1	Branches from loop	Flexes head on neck
Rectus capitis lateralis	Jugular process of oc- cipital bone	Transverse process of C1	between C1 and C2 spinal nerves	Flexes head and assists in stabilizing head on neck

Muscles

Posterior Muscles of the Neck

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Upper trapezius	Superior nuchal line, occipital protuberance, nuchal ligament, spinous processes C7-C12	Lateral clavicle, acro- mion, and spine of scapula	Spinal root of accessory nerve	Elevates scapula
Levator scapulae	Transverse processes of C1-C4	Superomedial border of scapula	Dorsal scapular nerve (C3, C4, C5)	Elevates scapula and inferiorly rotates glenoid fossa
Semispinalis capitis and cervicis	Cervical and thoracic spinous processes	Superior spinous pro- cesses and occipital bone	Dorsal rami of spinal nerves	Bilaterally: extends the neck Unilaterally: ipsilateral sidebending
Splenius capitis and cervicis	Spinous processes T1- T6 and ligamentum nuchae	Mastoid process and lateral superior nuchal line	Dorsal rami of middle cervical spinal nerves	Bilaterally: head and neck extension Unilaterally: ipsilateral rotation
Longissimus capitis and cervicis	Superior thoracic transverse processes and cervical transverse processes	Mastoid process of temporal bone and cervical transverse processes	Dorsal rami of cervical spinal nerves	Head extension, ipsi- lateral sidebending, and rotation of head and neck
Spinalis cervicis	Lower cervical spinous processes of vertebrae	Upper cervical spinous processes of vertebrae	Dorsal rami of spinal nerves	Bilaterally: extends neck Unilaterally: ipsilateral sidebending of neck
Posterior Occipitals				
Rectus capitis posterior major	Spinous process of C2	Lateral inferior nuchal line of occipital bone	Suboccipital nerve (C1)	Head extension and ip- silateral rotation
Rectus capitis posterior minor	Posterior arch of C1	Medial inferior nuchal line	Suboccipital nerve (C1)	Head extension and ipsilateral rotation
Obliquus capitis superior	Transverse process of C1	Occipital bone	Suboccipital nerve (C1)	Head extension and sidebending
Obliquus capitis inferior	Spinous process of C2	Transverse process of C1	Suboccipital nerve (C1)	Ipsilateral neck rotation

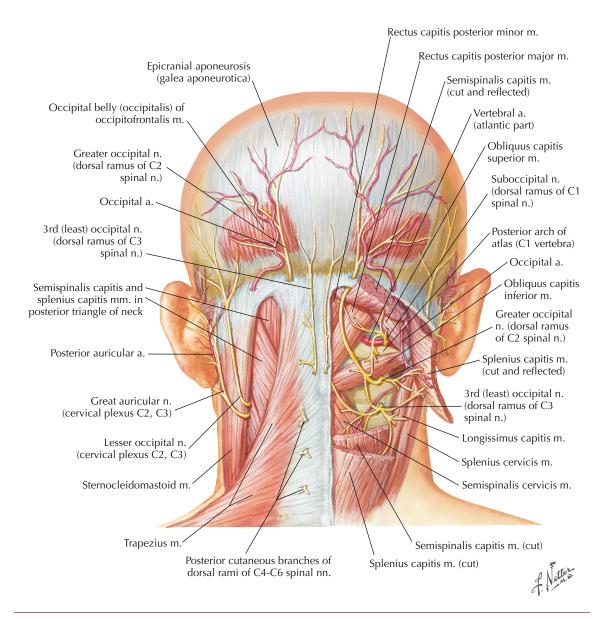
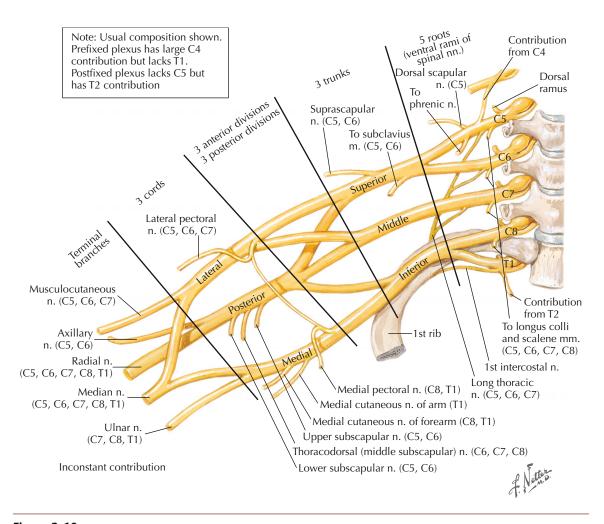
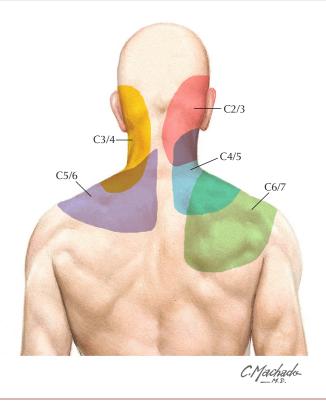


Figure 3-9 Posterior muscles of the neck.

Nerves

Nerves	Segmental Levels	Sensory	Motor
Dorsal scapular	C4, C5	No sensory	Rhomboids, levator scapulae
Suprascapular	C4, C5, C6	No sensory	Supraspinatus, infraspinatus
Nerve to subclavius	C5, C6	No sensory	Subclavius
Lateral pectoral	C5, C6, C7	No sensory	Pectoralis major
Medial pectoral	C8, T1	No sensory	Pectoralis major Pectoralis minor
Long thoracic	C5, C6, C7	No sensory	Serratus anterior
Medial cutaneous of arm	C8, T1	Medial aspect of arm	No motor
Medial cutaneous of forearm	C8, T1	Medial aspect of forearm	No motor
Upper subscapular	C5, C6	No sensory	Subscapularis
Lower subscapular	C5, C6, C7	No sensory	Subscapularis, teres major
Thoracodorsal	C6, C7, C8	No sensory	Latissimus dorsi
Axillary	C5, C6	Lateral shoulder	Deltoid, teres minor
Radial	C5, C6, C7, C8, T1	Dorsal lateral aspect of hand in- cluding the thumb and up to the base of digits 2 and 3	Triceps brachii, brachioradialis, anco- neus, extensor carpi radialis longus, extensor carpi radialis brevis
Median	C5, C6, C7, C8, T1	Palmar aspect of lateral hand including lateral half of 4th digit and dorsal distal half of digits 1-3 and lateral border of 4	Pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, flexor digitorum profundus (lateral half), pronator quadratus, lumbricals to digits 2 and 3, thenar muscles
Ulnar	C8, T1	Medial border of both palmar and dorsal hand including medial half of 4th digit	Flexor carpi ulnaris, flexor digitorum profundus (medial half), palmar in- terossei, adductor pollicis, palmaris brevis, dorsal interossei, lumbricals to digits 4 and 5, hypothenar muscles
Musculocutaneous	C5, C6, C7	Lateral forearm	Coracobrachialis, biceps brachii, brachialis




Figure 3-10 Nerves of the neck.

PATIENT HISTORY

Initial Hypotheses Based on Patient History

History	Initial Hypotheses
Patient reports diffuse nonspecific neck pain that is exacerbated by neck movements	Mechanical neck pain ¹ Cervical facet syndrome ² Cervical muscle strain or sprain
Patient reports pain in certain postures that are alleviated by positional changes	Upper crossed postural syndrome
Traumatic mechanism of injury with complaint of nonspecific cervical symptoms that are exacerbated in the vertical positions and relieved with the head supported in the supine position	Cervical instability, especially if patient reports dysesthesias of the face occurring with neck movement
Reports of nonspecific neck pain with numbness and tingling into one upper extremity	Cervical radiculopathy
Reports of neck pain with bilateral upper extremity symptoms with occasional reports of loss of balance or lack of coordination of the lower extremities	Cervical myelopathy

Cervical Zygapophyseal Pain Syndromes

Figure 3-11Pain referral patterns. Distribution of zygapophyseal pain referral patterns as described by Dwyer and colleagues.³

Cervical Zygapophyseal Pain Syndromes (continued)

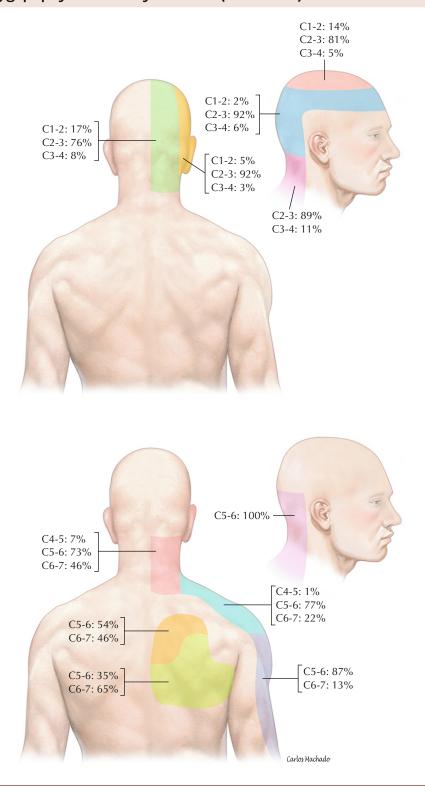


Figure 3-12 Pain referral patterns. Probability of zygapophyseal joints at the segments indicated being the source of pain, as described by Cooper and colleagues.⁵

Reliability of the Cervical Spine Historical Examination

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Historical Question and Study	Possible Responses	Population	Inter-examiner Reliability
Mode of onset ⁶	Gradual, sudden, or traumatic		к = .72 (.47, .96)
Nature of neck symptoms ⁶	Constant or intermittent		к = .81 (.56, 1.0)
Prior episode of neck pain ⁶	Yes or No		к = .90 (.70, 1.0)
Turning the head aggravates symptoms ⁶	Yes or No	22 patients with mechan- ical neck pain	(Right) $\kappa =04$ (2.11, .02)* (Left) $\kappa = 1.0$ (1.0, 1.0)
Looking up and down aggra- vates symptoms ⁶	Yes or No		(Down) $\kappa = .79$ (.51, 1.0) (Up) $\kappa = .80$ (.55, 1.0)
Driving aggravates symptoms ⁶	Yes or No		к =06 (39, .26)*
Sleeping aggravates symptoms ⁶	Yes or No		κ = .90 (.72, 1.0)
Which of the following symptoms are most bothersome for you? ⁷	PainNumbness and tinglingLoss of feeling		κ = .74 (.55, .93)
Where are your symptoms most bothersome? ⁷	 Neck Shoulder or shoulder blade Arm above elbow Arm below elbow Hands and/or fingers 	50 patients with sus-	к = .83 (.68, .96)
Which of the following best describes the behavior of your symptoms? ⁷	ConstantIntermittentVariable	pected cervical radiculop- athy or carpal tunnel syndrome	к = .57 (.35, .79)
Does your entire affected limb and/or hand feel numb? ⁷	Yes or No		к = .53 (.26, .81)
Do your symptoms keep you from falling asleep? ⁷	Yes or No		к = .70 (.48, .92)
Do your symptoms improve with moving your neck? ⁷	Yes or No		к = .67 (.44, .90)

Diagnostic Utility of Patient Complaints for Cervical Radiculopathy

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0



Figure 3-13 Cervical radiculopathy.

Complaint and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Weakness ⁸				.65	.39	1.07	.90
Numbness ⁸				.79	.25	1.05	.84
Arm pain ⁸	Not specifically	183 patients referred to electrodiagnostic laboratories	Cervical radiculopathy via electrodiagnostics	.65	.26	.88	1.35
Neck pain ⁸	described			.62	.35	.95	1.09
Tingling ⁸				.72	.25	.96	1.92
Burning ⁸				.33	.63	.89	1.06

Diagnostic Utility of Patient Complaints for Cervical Radiculopathy (continued)

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Complaint and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR		
Which of the following	Pain			.47 (.23, .71)	.52 (.41, .65)	.99 (.56, 1.7)			
symptoms are most bother- some for you? ⁷	Numbness and tingling			.47 (.23, .71)	.56 (.42, .68)	1.1 (.6, 1.9)			
♦	Loss of feeling			.06 (.00, .17)	.92 (.85, .99)	.74 (.09, 5.9)			
Where are your symptoms	Neck			.19 (.00, .35)	.90 (.83, .98)	1.9 (.54, 6.9)			
most bother- some? ⁷	Shoulder or scapula			.38 (.19, .73)	.84 (.75, .93)	2.3 (1.0, 5.4)			
	Arm above elbow			.03 (.14, .61)	.93 (.86, .99)	.41 (.02, 7.3)	Not reported		
	Arm below elbow	82 consecutive patients re-		.06 (.0, .11)	.84 (.75, .93)	.39 (.05, 2.8)			
	Hands and/ or fingers	ferred to an electrophysio-	Cervical radicu-	.38 (.14, .48)	.48 (.36, .61)	.73 (.37, 1.4)			
Which of the following best	Constant logic laboratory with suspected diagnosis of		lopathy via needle electromyography and nerve con-	.12 (.00, .27)	.84 (.75, .93)	.74 (.18, 3.1)			
describes the behavior of your symp-	Intermittent	cervical radicu- lopathy or carpal tunnel	duction studies	.35 (.13, .58)	.62 (.50, .74)	.93 (.45, 1.9)			
toms? ⁷	Variable	syndrome.	•	.53 (.29, .77)	.54 (.42, .66)	1.2 (.68, 1.9)			
Does your entire affected limb and/or hand feel numb? ⁷						.24 (.03, .44)	.73 (.62, .84)	.87 (.34, 2.3)	1.1 (.77, 1.4)
Do your symptoms keep you from falling asleep? ⁷	Yes or No				.47 (.23, .71)	.60 (.48, .72)	1.19 (.66, 2.1)	.88 (.54, 1.4)	
Do your symptoms improve with moving your neck?				.65 (.42, .87)	.71 (.60, .82)	2.23 (1.3, 3.8)	.50 (.26, .97)		

PHYSICAL EXAMINATION TESTS

Neurological Examination

Reliability of Sensation Testing

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

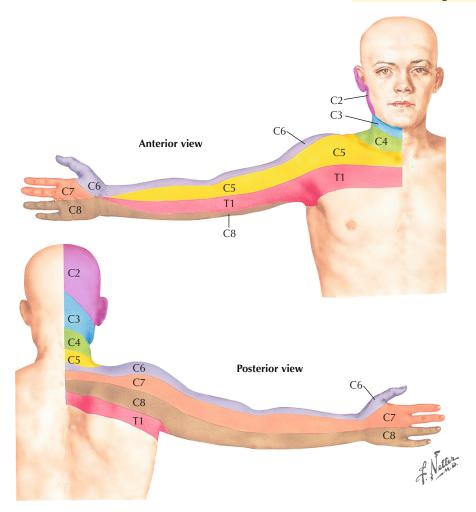


Figure 3-14 Dermatomes of the upper limb.

Test and Study	Description and Positive Findings	Population	Reliability
Identifying sensory deficits in the extremities ⁹	No details given	8924 adult patients who presented to the emergency department after blunt trauma to the head/neck and had a Glasgow Coma Score of 15	Inter-examiner $\kappa = .60$

Diagnostic Utility of Pin Prick Sensation Testing for Cervical Radiculopathy

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR	
C5 Derma- tome ⁷		82 consecutive		.29 (.08, .51)	.86 (.77, .94)	2.1 (.79, 5.3)	.82 (.60, 1.1)	
C6 Derma- tome ⁷	Pin prick sensation	patients referred to an electro- physiologic labo- ratory with sus- pected diagnosis	cerred lopathy via needle electromyography and nerve conduction studies	.24 (.03, .44)	.66 (.54, .78)	.69 (.28, 1.8)	1.16 (.84, 1.6)	
C7 Derma- tome ⁷	testing. Graded as			.18 (.0, .36)	.77 (.66, .87)	.76 (.25, 2.3)	1.07 (.83, 1.4)	
C8 Derma- tome ⁷	"normal" or "abnormal"	of cervical radicu- lopathy or carpal		of cervical radicu- lopathy or carpal	.12 (.0, .27)	.81 (.71, .90)	.61 (.15, 2.5)	1.09 (.88, 1.4)
T1 Derma- tome ⁷		tunnel syndrome		.18 (.0, .36)	.79 (.68, .89)	.83 (.27, 2.6)	1.05 (.81, 1.4)	
Decreased sensation to pin prick ⁸	Not specifi- cally described	183 patients re- ferred to electro- diagnostic laboratories	Cervical radicu- lopathy via electrodiagnostics	.49	.64	1.36	.80	

Reliability of Manual Muscle Testing

ICC or κ Interpretation	
.81-1.0 Substantial agre	ement
.6180 Moderate agree	ment
.4160 Fair agreement	
.1140 Slight agreemen	t
.010 No agreement	

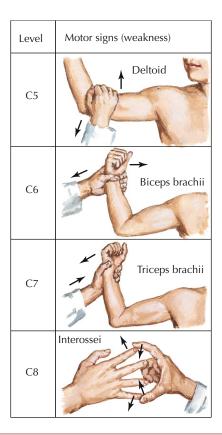


Figure 3-15 Manual muscle testing of the upper limb.

Test and Study	Description and Positive Findings	Population	Reliability
Identifying motor defi- cits in the extremities ⁹	No details given	8924 adult patients who presented to the emergency department after blunt trauma to the head/neck and had a Glasgow Coma Score of 15	Inter-examiner $\kappa = .93$

Diagnostic Utility of Manual Muscle Testing for Cervical Radiculopathy

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR		
MMT deltoid ⁷				.24 (.03, .44)	.89 (.81, .97)	2.1 (.70, 6.4)	.86 (.65, 1.1)		
MMT biceps brachii ⁷				.24 (.03, .44)	.94 (.88, 1.0)	3.7 (1.0, 13.3)	.82 (.62, 1.1)		
MMT extensor carpi radialis longus/brevis ⁷	Standard strength	82 consecutive patients re- ferred to an electrophysio- logic laboratory with suspected diagnosis of cervical radicu- lopathy or carrel tuppel	n Cervical radicu-	.12 (.00, .27)	.90 (.83, .98)	1.2 (.27, 5.6)	.98 (.81, 1.2)		
MMT triceps brachii ⁷	testing using methods of Kendall and		logic laboratory with suspected diagnosis of cervical radicu- lopathy or	hods of logic laboratory lopathy via .12	needle electro-	··-	.94 (.88, 1.0)	1.9 (.37, 9.3)	.94 (.78, 1.1)
MMT flexor carpi radia- lis ⁷	McCreary. Graded as "normal" or "abnormal"			nerve conduc-	.06 (.00, .17)	.89 (.82, .97)	.55 (.07, 4.2)	1.05 (.91, 1.2)	
MMT abduc- tor pollicis brevis ⁷	a a constitue	syndrome		.06 (.00, .17)	.84 (.75, .93)	.37 (.05, 2.7)	1.12 (.95, 1.3)		
MMT first dorsal inter- osseus ⁷				.03 (.00, .10)	.93 (.87, .99)	.40 (.02, 7.0)	1.05 (.94, 1.2)		

Diagnostic Utility of Muscle Stretch Reflex Testing for Cervical Radiculopathy

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

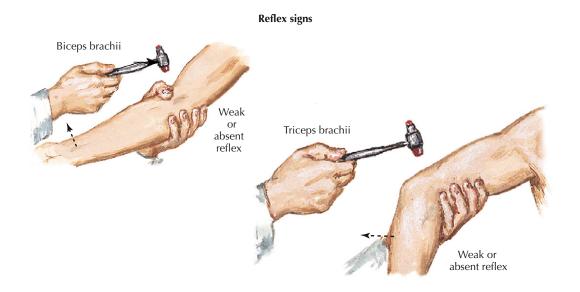
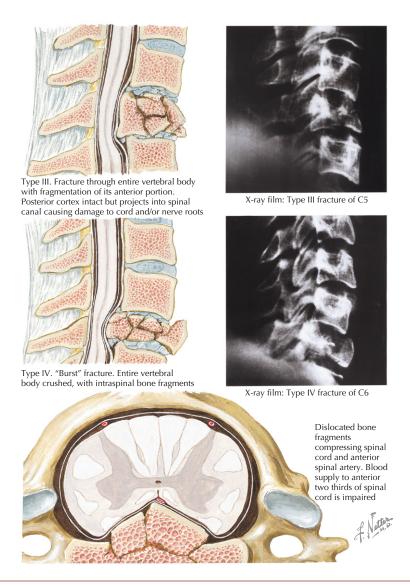



Figure 3-16 Reflex testing.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR	
Biceps brachii MSR ⁷	Tested bilater- ally using a	82 consecutive patients referred to an electro-	Cervical radicu-	.24 (.3, .44)	.95 (.90, 1.0)	4.9 (1.2, 20.0)	.80 (.61, 1.1)	
Brachioradia- lis MSR ⁷	standard reflex hammer.	tandard reflex ammer. ammer. iraded as of cervical radic-	ratory with sus- pected diagnosis of cervical radic- ulopathy or carpal tunnel needle electro- myography and nerve conduc- tion studies	.06 (.0, .17)	.95 (.90, 1.9)	1.2 (.14, 11.1)	.99 (.87, 1.1)	
Triceps MSR ⁷	"normal" or "abnormal"			.03 (.0, .10)	.93 (.87, .99)	.40 (.02, 7.0)	1.05 (.94, 1.2)	
Biceps ⁸		183 patients re- ferred to electro- diagnostic	192 patients vo		.10	.99	10.0	.91
Triceps ⁸	Not specifically described		ferred to electro-	.10	.95	2.0	.95	
Brachioradia- lis ⁸		laboratories		.08	.99	8.0	.93	

Screening for Cervical Spine Injury

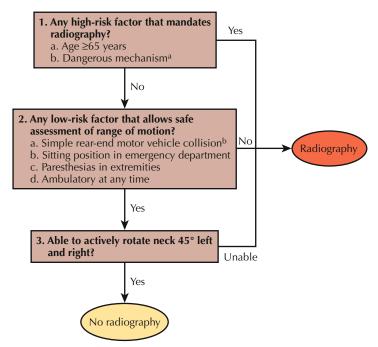


Figure 3-17 Compression fracture of the cervical spine.

NEXUS Low-Risk Criteria¹⁰

Cervical spine radiography is indicated for patients with trauma unless they meet all of the following criteria:

- 1. No posterior midline cervical spine tenderness
- 2. No evidence of intoxication
- 3. Normal level of alertness
- 4. No focal neurological deficit
- 5. No painful distracting injuries

^aA dangerous mechanism is considered to be a fall from an elevation of 3 feet or greater or three to five stairs; an axial load to the head (e.g., diving); a motor vehicle collision at high speed (>100 km/hr) or with rollover or ejection.

^bA simple rear-end motor vehicle collision excludes being pushed into oncoming traffic, being hit by a bus or a large truck, a rollover, or being hit by a high-speed vehicle.

Screening for Cervical Spine Injury

Diagnostic Utility of the Clinical Examination for Identifying Cervical Spine Injury

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR	
NEXUS Low- Risk Crite- ria ¹¹		34,069 patients who presented to the emergency department after blunt trauma and had cervical spine radiography	Clinically important cervical spine injury demonstrated by ra- diography, computed tomography (CT), or magnetic resonance imaging (MRI)	.99 (.98, 1.0)	.13 (.13, .13)	1.14	.08	
NEXUS Low- Risk Crite- ria ¹²	See previous page	8924 alert adult patients who presented to the emergency department after blunt trauma to the head/neck	Clinically important	.93 (.87, .96)	.38 (.37, .39)	1.50	.18	
NEXUS Low- Risk Crite- ria ¹⁰		7438 alert adult patients who presented to the emergency	cervical spine injury defined as any frac- ture, dislocation, or ligamentous insta-	.91 (.85, .94)	.37 (.36, .38)	1.44	.24	
Canadian C- Spine Rule ¹⁰		department after blunt trauma to the head/neck	bility demonstrated by radiography CT	.99 (.96, 1.0)	.45 (.44, .46)	1.80	.02	
Canadian C- Spine Rule ⁹	See previous page	8924 alert adult patients who presented to the emergency department after blunt trauma to the head/neck	tients who presented to the emergency department after blunt trauma to the	follow-up	1.0 (.98, 1.0)	.43 (.40, .44)	1.75	.00
Canadian C- Spine Rule ¹³				1.0 (.94, 1.0)	.44 (.43, .45)	1.79	.00	
Physician judgment ¹³	Physicians were asked to estimate the probability that the patient would have a clinically important cervical spine injury by circling one of the following: 0%, 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%,40%, 50%, 75%, or 100%	6265 alert adult patients who presented to the emergency department after trauma to the head/neck	Clinically important cervical spine injury demonstrated by ra- diography, CT, and/ or a telephone follow-up	.92 (.82, .96)	.54 (.53, .55)	2.00	.15	

Screening for Cervical Spine Injury (continued)

Diagnostic Utility of the Clinical Examination for Identifying Cervical Spine Injury

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Clinical ex- amination ¹⁴	Patient history in- cluding mechanism of injury and sub- jective complaints of neck pain and/or neurological deficits followed by physical examination of ten- derness to palpa- tion, abnormalities to palpation, and neurological deficits	534 patients consult- ing a level I trauma center after blunt trauma to head/neck	Cervical fracture via CT	.77	.55	1.70	.42
	Among subset of patients with a Glasgow Coma Score of 15 (i.e., alert), who were not intoxicated, and who did not have a distracting injury			.67	.62	1.76	.54

Positioning of inclinometer to measure flexion and extension

Measurement of flexion

Measurement of extension

Positioning of inclinometer to measure side bending

Measurement of side bending to the right

Figure 3-18
Range of motion.

Reliability of Measuring Range of Motion

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Instrumentation	Population	Inter-examiner Reliability
Extension ¹⁵			ICC = .86 (.73, .93)
Flexion ¹⁵		30 patients with neck	ICC = .78 (.59, .89)
Rotation in flexion ¹⁵	Inclinometer		(Right) ICC = .78 (.60, .89) (Left) ICC = .89 (.78, .95)
Lateral bending ¹⁵		pain	(Right) ICC = .87 (.75, .94) (Left) ICC = .85 (.70, .92)
Rotation ¹⁵			(Right) ICC = .86 (.74, .93) (Left) ICC = .91 (.82, .96)
Flexion ⁶			ICC = .75 (.50, .89)
Extension ⁶	Inclinometer	22 patients with me- chanical neck pain	ICC = .74 (.48, .88)
Sidebending ⁶			(Right) ICC = .66 (.33, .84) (Left) ICC = .69 (.40, .86)
Rotation ⁶	Goniometer		(Right) ICC = .78 (.55, .90) (Left) ICC = .77 (.52, .90)
Flexion-Extension ¹⁶		32 patients with neck al inclinometer pain referred to physical therapy	Single measurement ICC = $.89$ (.77, $.94$) Mean of 2 measurements ICC = $.95$ (.90, $.98$)
Lateral-flexion ¹⁶	Digital inclinometer		Single measurement ICC = .77 (.58, .88) Mean of 2 measurements ICC = .89 (.77, .94)
Rotation ¹⁶			Single measurement ICC = $.88 (.78, .94)$ Mean of 2 measurements ICC = $.95 (.90, .98)$
Flexion ⁷	In Proceeding		ICC = .79 (.65, .88)
Extension ⁷	Inclinometer		ICC = .84 (.70, .95)
Left rotation ⁷	Caniamatan	50 patients with sus- pected cervical radiculop-	ICC = .75 (.59, .85)
Right rotation ⁷	Goniometer	athy or carpal tunnel	ICC = .63 (.22, .82)
Left sidebending ⁷		syndrome	ICC = .63 (.40, .78)
Right sidebending ⁷	Inclinometer		ICC = .68 (.62, .87)

Reliability of Measuring Range of Motion (continued)

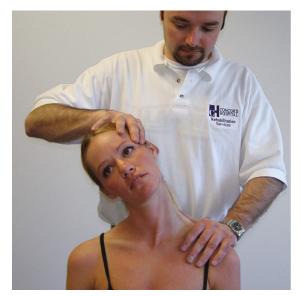
ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Instrumentation	Population	Inter-examiner Reliability
Flexion ¹⁷			ICC = .58
Extension ¹⁷			ICC = .97
Right sidebending ¹⁷			ICC = .96
Left sidebending ¹⁷	Cervical range-of-motion	60 potients with neck pain	ICC = .94
Right rotation ¹⁷	(CROM) instrument	60 patients with neck pain	ICC = .96
Left rotation ¹⁷			ICC = .98
Protraction ¹⁷			ICC = .49
Retraction ¹⁷			ICC = .35
Flexion/Extension ¹⁸			Inclinometer ICC = .84 CROM ICC = .88
Sidebending ¹⁸	Inclinometer and CROM	30 asymptomatic subjects	Inclinometer ICC = .82 CROM ICC = .84
Rotation ¹⁸			Inclinometer ICC = .81 CROM ICC = .92
Flexion ¹⁹		60 patients in whom the assessment of cervical ROM testing would be appropriate during the PT evaluation	CROM ICC = .86 Goniometer ICC = .57 Visual estimation ICC = .42
Extension ¹⁹			CROM ICC = .86 Goniometer ICC = .79 Visual estimation ICC = .42
Left sidebending ¹⁹	CROM, universal goniome-		CROM ICC = .73 Goniometer ICC = .79 Visual estimation ICC = .63
Right sidebending ¹⁹	ter, and visual estimation		CROM ICC = .73 Goniometer ICC = .79 Visual estimation ICC = .63
Left rotation ¹⁹			CROM ICC = .82 Goniometer ICC = .54 Visual estimation ICC = .70
Right rotation ¹⁹			CROM ICC = .92 Goniometer ICC = .62 Visual estimation ICC = .82
Identifying ability to actively rotate neck 45° left and right ⁹	No details given	8924 adult patients who presented to the emergency department after	κ = .67
Identifying ability to actively flex neck ⁹		blunt trauma to the head/neck and had a Glasgow Coma Score of 15	к = .63

Reliability of Pain Responses during Active Physiologic Range of Motion

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Extension ¹⁵	Symptom response recorded as "no effect," "increases symptoms," "decreases symptoms," "centralizes symptoms," or "peripheralizes symptoms"	30 patients with neck pain	к = .65 (.54, .76)
Flexion ¹⁵			к = .87 (.81, .94)
Rotation in flexion ¹⁵			(Right) $\kappa = .25$ (.12, .39) (Left) $\kappa = .69$ (.59, .78)
Lateral bending ¹⁵			(Right) $\kappa = .75$ (.66, .84) (Left) $\kappa = .28$ (.15, .41)
Rotation ¹⁵			(Right) $\kappa = .76$ (.67, .84) (Left) $\kappa = .74$ (.64, .84)
Flexion ⁶	Patient asked about change in symptoms during active range of motion (AROM). Answers were "no change," "increased pain," or "decreased pain"	22 patients with mechanical neck pain	κ = .55 (.23, .87)
Extension ⁶			к = .23 (.09, .37)
Sidebending ⁶			(Right) $\kappa = .81$ (.57, 1.0) (Left) $\kappa = .00$ (22, .23)
Rotation ⁶			(Right) $\kappa = .40$ (07, .87) (Left) $\kappa = .73$ (.46, 1.0)
Flexion ⁶	The effect of each movement on centralization (the movement caused the pain and/or paresthesias to move proximally) or peripheralization of symptoms (the movement causes the pain and/or paresthesias to move more distally) was recorded	22 patients with mechanical neck pain	к = 1.0 (1.0, 1.0)
Extension ⁶			к = .44 (.17, .71)
Sidebending ⁶			(Right) $\kappa =06$ (15, .03) (Left) $\kappa = .02$ (25, .66)
Rotation ⁶			(Right) $\kappa =05$ (15, .03) (Left) $\kappa =10$ (21, .00)
Flexion ²⁰	Patient seated with back supported. Patient is asked to perform full flexion and pressure is applied by the examiner. Pain responses are recorded on an 11-point numeric pain rating scale (NPRS)	32 patients with neck pain	к = .63
Extension ²⁰			к = .71
Rotation, right ²⁰			к = .70
Rotation, left ²⁰			к = .66
Sidebending, right ²⁰			к = .65
Sidebending, left ²⁰			к = .45
Flexion CO-C1 ²⁰	Patient is asked to perform high cervical flexion/extension by nodding. Pain responses are recorded on an 11-point NPRS		к = .36
Extension C0-C1 ²⁰			к = .56
Flexion ²¹	Patient performs AROM and pain is determined to be either present or not present	24 patients with headaches	κ = .53 (.17, .89)
Extension ²¹			κ = .67 (.34, .99)
Rotation, right ²¹			κ = .65 (.31, .99)
Rotation, left ²¹			κ = .46 (.10, .79)


Range of Motion

Diagnostic Utility of Pain Responses during Active Physiologic Range of Motion

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Testing flexion with overpressure

Testing sidebending with overpressure

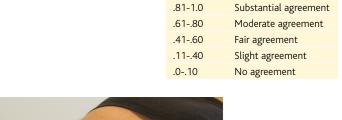
Figure 3-19Overpressure testing.

Test and Measure	Test Procedure and Determination of Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Active flexion and exten- sion of the neck ²²	Active flexion and extension per- formed to the extremes of the range. Positive if subject reported pain with procedure	75 males (22 with neck pain)	Patient reports of neck pain	.27	.90	2.70	.81

Cervical Strength and Endurance

Reliability of Cervical Strength and Endurance Testing

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement


Figure 3-20 Cervical flexor endurance.

Test and Study	Description and Positive Findings	Population	Reliability
Neck flexor muscle endurance test ²³	With patient supine with knees flexed, examiner's hand is placed behind occiput and the subject gently flexes the upper neck and lifts the head off the examiner's hand while retaining the upper neck flexion. The test was timed and terminated when the subject was unable to maintain the position of the head off the examiner's hand	21 patients with postural neck pain	Inter-examiner ICC = .93 (.86, .97)
Chin tuck neck flexion test ⁶	With patient supine, subject tucks the chin and lifts the head approximately 1 inch. The test was timed with a stopwatch and terminated when the patient's position deviated	22 patients with mechanical neck pain	Inter-examiner ICC = .57 (.14, .81)
Cervical flexor endurance ²⁴	With patient supine, knees flexed, and chin maximally retracted, subject lifts the head slightly. The test was timed with a stopwatch and terminated when the subject lost maximal retraction, flexed the neck, or could not continue	27 asymptom- atic subjects	Intra-examiner ICC = 0.74 (.50, .87) Inter-examiner Test #1 ICC = .54 (.31, .73) Test #2 ICC = .66 (.46, .81)
Cervical flexor endurance ²⁵	With patient supine with knees flexed and chin maximally retracted, subject lifts the head approximately 1 inch. The test was timed with a stopwatch and terminated when the subject	20 asymptom- atic subjects	Intra-examiner ICC = .8291 Inter-examiner ICC = .6778
	lost maximal retraction	20 patients with neck pain	Inter-examiner ICC = .67
Craniocervical flexion test ²⁶	With patient supine with a pressure biofeedback unit placed suboccipitally, subjects perform a gentle head-nodding action of craniocervical flexion for five 10-second incremental stages of increasing range (22, 24, 26, 28, and 30 mm Hg). Performance was measured by the highest level of pressure the individual could hold for 10 seconds	10 asymptom- atic subjects	Intra-examiner $\kappa =$.72
Cervical flexor endurance ²⁷	With patient supine with knees flexed, subject holds the tongue on the roof of the mouth and breathes normally. Subject then lifts his or her head off the table and holds it as long as possible with the neck in a neutral position. The test was timed with a stopwatch and terminated when the head moved $> 5^{\circ}$ either forward or backward	30 patients with grade II whip- lash-associated disorders	Inter-examiner ICC = .96

Reliability of Assessing Limited Passive Intervertebral Motion

Testing rotation of C1-C2

ICC or ĸ

Interpretation

Testing of stiffness of 1st rib

Figure 3-21Assessing limited passive intervertebral motion.

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Rotation of C1-C2 ²⁸	With patient seated, C2 is stabilized while C1 is rotated on C2 until the end of passive ROM. Positive if decreased rotation on one side compared with contralateral side		κ = .28
Lateral flexion of C2-C3 ²⁸	With patient supine, examiner's left hand stabilizes the patient's head while the right hand performs sidebending flexion of C2-C3 until the end of passive ROM. This is repeated in the contralateral direction. Positive if lateral flexion on one side is reduced compared with contralateral side	d performs sidebending passive ROM. This is re- on. Positive if lateral	
Flexion and extension ²⁸	With patient sidelying, examiner stabilizes the patient's neck with one hand while palpating the movement at C7-T1 with the other. Positive if flexion and extension are "stiff" compared with the vertebrae superior and inferior	neck problems	κ = .36
First rib ²⁸	With patient supine, the cervical spine is rotated toward the side being tested. The first rib is pressed in a ventral and caudal direction. Positive if the rib is more "stiff" than the contralateral side		κ = .35
Identification of hypomobile segment ²⁹	With subject sitting, examiner palpates passive physiologic intervertebral motion at each cervical vertebra in rotation and lateral flexion and determines the most hypomobile segment	3 asymptomatic patients with single-level con- genital fusions in the cervical spine (2 at C2- C3 and 1 at C5-C6)	κ = .68

Reliability of Assessing Limited and Painful Passive Intervertebral Motion

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and	Description and Positive	Population		Inter-examiner	Reliability	
Study	Findings			ovements	Pai	n
			Right	Left	Right	Left
C0-C1 ⁶	With patient supine, examiner cradles the occiput with both hands, rotates the head 30° toward the side to be tested, and an anterior to posterior glide is performed to assess the amount of available motion compared with the contralateral side	22 patients	κ =26 (57, .07)	κ = .46 (.06, .86)	κ =52 (09,14)	κ = .08 (37, .54)
C1-C2 ⁶	With patient supine, examiner passively and maximally flexes the neck followed by passive cervical rotation to one side and then to the other. The amount of motion to each side was compared, and if one side was determined to have less motion, it was considered to be "hypomobile"	with mechan- ical neck pain	к = .72 (.43, .91)	к = .74 (.40, 1.0)	к = .15 (05, .36)	κ =16 (56, .22)
C0-C1 ²⁰	With patient supine, passive flexion is performed. Motion classified as "limited" or "not limited" and patient pain response assessed on 11-point numeric pain rating (NPR) scale		κ = .29	Not reported	ICC = . 73	Not reported
C1-C2 ²⁰	With patient supine, rotation is performed and classified as "limited" or "not limited." Patient pain response assessed on 11-point NPR scale	32 patients with neck	к = .20	к = .37	ICC = .56	ICC = . 35
C2-C3 ²⁰		pain	κ = .34	κ = .63	ICC = . 50	ICC = . 78
C3-C4 ²⁰	With patient supine, fixation		к = .20	к = .26	ICC = . 62	ICC = . 75
C4-C5 ²⁰	of lower segment with side- bending to the right and left.		к = .16	к =09	ICC = . 62	ICC = . 55
C5-C6 ²⁰	Motion classified as "limited"		к = .17	к = .09	ICC = . 66	ICC = . 65
C6-C7 ²⁰	or "not limited" and patient pain response assessed on		к = .34	κ = .03	ICC = . 59	ICC = . 22
C7-T1 ²⁰	11-point NPR scale		к = .08	κ = .14	ICC = . 45	ICC = . 34
T1-T2 ²⁰			κ = .33	к = .46	ICC = . 80	ICC = . 54

Reliability of Assessing Limited and Painful Passive Intervertebral Motion (continued)

Testing side bending of C5-C6

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 3-22Assessing limited and painful passive intervertebral motion.

Test and Study	Description and Positive Findings	Inter-examin	er Reliability	
			Limited Movements	Pain
C2 ⁶			к = .01 (35, .38)	к = .13 (04, .31)
C3 ⁶	Posterior to anterior (PA) spring testing		к = .10 (25, .44)	к = .13 (21, .47)
C4 ⁶	centrally over the spinous process of the vertebrae. Mobility judged as "normal,"	22 patients with mechani-	к = .10 (22, .40)	κ = .27 (12, .67)
C5 ⁶	"hypomobile," or "hypermobile" and as	cal neck pain	к = .10 (15, .35)	κ = .12 (09, .42)
C6 ⁶	"painful" or "not painful"		к = .01 (21, .24)	$\kappa = .55$ (.22, .88)
C7 ⁶			κ = .54 (0.2, .88)	$\kappa = .90$ (.72, 1.0)
CO-C1 lateral glide ¹⁵			к = .81 (.72, .91)	к =32 (.15, .49)
CO-C1 lateral bend ¹⁵		30 patients with neck pain	κ = .35 (.08, .62)	к = .35 (.15, .55)
C1-C2 rotation in full flexion ¹⁵			κ = .21 (.08, .34)	к = .36 (.24, .49)
C1-C2- full lateral flexion ¹⁵	Makilik		κ = .30 (.17, .43)	κ = .61 (.5, .72)
C2 lateral glide ¹⁵	Mobility was recorded as "normal" or "hypomobile" when compared with the contralateral side. Pain reproduction re-		к = .46 (.33, .59)	к = .42 (.28, .56)
C3 lateral glide ¹⁵	corded as "pain" or "no pain"		к = .25 (.12, .38)	к = .29 (.16, .43)
C4 lateral glide ¹⁵			κ = .27 (.13, .40)	κ = .65 (.54, .76)
C5 lateral glide ¹⁵			к = .18 (.03, .33)	к = .55 (.43, .67)
C6 lateral glide ¹⁵			к =07 (34, .20)	к = .76 (.64, .87)

Diagnostic Utility of Assessing Limited and Painful Passive Intervertebral Motion

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Posteroanterior central glides to the mid cervical spine

Figure 3-23 Assessing limited and painful passive intervertebral motion.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Manual ex- amination ³⁰	Subjective examina- tion, followed by central PA glides, fol-	173 patients with cervical pain		.89 (.82, .96)	.47 (.37, .57)	1.7 (1.2, 2.5)	.23
Manual ex- amination ³¹	lowed by passive physiologic intervertebral movements of flexion, extension, sidebending, and rotation. Joint dysfunction was diagnosed if the examiner concluded that the joint demonstrated an abnormal end-feel, abnormal quality of resistance to motion, and the reproduction of pain	20 patients with cervical pain	Level of zygapophy- seal pain via radiolog- ically controlled diag- nostic nerve block	1.0 (.81, 1.0)*	1.0 (.51, 1.0)*	Undefined	.00
Identification of hypomobile segment ²⁹	With subject sitting, examiner palpates passive physiologic intervertebral motion at each cervical vertebra in rotation and lateral flexion and determines the most hypomobile segment	3 asymptomatic patients with single-level congenital fusions in the cervical spine (2 at C2-C3 and 1 at C5-C6).	Level of congenital cervical fusion	.98	.74	3.77	.03

*Confidence intervals were not originally reported by Jull and colleagues, 31 but were later calculated and presented by King and colleagues.

Palpation

Reliability of Assessing Pain with Palpation

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

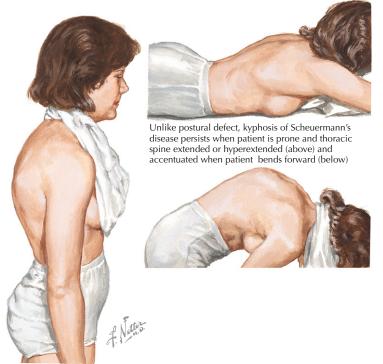
Test and Study		Description and Positive Findings	Population	Inter-examiner Reliability
Upper cervical spinous p	rocess ³²	Patient supine. Graded as "no		к = .47
Lower cervical spinous pr	rocess ³²			κ = .52
Right side of neck ³²	Right side of neck ³²		52 patients referred for cer-	κ = .24
Suprascapular area ³²		tenderness," "moderate ten- derness," and "marked tenderness"	vical myelography	(Right) $\kappa = .42$ (Left) $\kappa = .44$
Scapular area ³²				(Right) $\kappa = .34$ (Left) $\kappa = .56$
Zygapophyseal joint pressure ²¹	High cervical	Method of classification for		к = .14 (12, .39)
	Middle cervical	Method of classification for high, middle, and low not described		κ = .37 (.12, .85)
	Low cervical			к = .31 (.28, .90)
Occiput ²¹	Occiput ²¹			(Right) $\kappa = .00$ (-1.00, .77) (Left) $\kappa = .16$ (31, .61)
Mastoid process ²¹				к = .77 (.34, 1.00)
Sternocleidomastoid (SCM) muscle ²¹	Insertion	SCM insertion on occiput (minor occipital nerve)	24 patients with headaches	(Right) $\kappa = .68$ (.29, 1.00) (Left) $\kappa = .35$ (17, .86)
	Anterior	Just anterior to SCM muscle border		(Right) $\kappa = .35$ (17, .86) (Left) $\kappa = .55$ (.10, .99)
	Middle			(Right) $\kappa = .52$ (.12, .92) (Left) $\kappa = .42$ (.01, .82)
Posterior		Just posterior to SCM muscle border		(Right) $\kappa = .60$ (.19, 1.00) (Left) $\kappa = .87$ (.62, 1.00)
Midline neck tenderness ^s)	No details given	8924 adult patients who presented to the emergency department after	к = .78
Posterolateral neck tende	erness ⁹			к = .32
Maximal tenderness at n	Maximal tenderness at midline ⁹		blunt trauma to the head/ neck and had a Glasgow Coma Score of 15	κ = .72

Palpation

Reliability of Assessing Pain with Palpation with and without a Patient History

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and	Population	Inter-examiner Reliability		
	Positive Findings		Without knowledge of history	With knowledge of history	
Spinous processes C2-C3 ³³			κ = .60	κ = .49	
Spinous processes C4-C7 ³³			κ = .42	κ = .50	
Spinous processes T1-T3 ³³		100 patients with neck and/ or shoulder problems with or without radiating pain	κ = .55	κ = .79	
Paraspinal joints C1-C3 ³³			κ = .32	κ = .22	
Paraspinal joints C4-C7 ³³	No details given		κ = .34	κ = .55	
Paraspinal joints T1-T3 ³³			κ = .41	κ = .51	
Neck muscles ³³			к = .32	κ = .46	
Brachial plexus ³³			к = .27	к = .22	
Paraspinal muscles ³³			κ =04	κ = .46	


Diagnostic Utility of Assessing Pain with Palpation

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Measure	Test Procedure and Determination of Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Palpation over the facet joints in the cervical spine ²²	Articulations were pal- pated 2 cm lateral to the spinous process. Positive if patient reported pain with procedure	75 males (22 with neck pain)	Patient reports of neck pain	.82	.79	3.90	.23

Postural and Muscle Length Assessment

Reliability of Postural Assessment

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

In adolescent, exaggerated thoracic kyphosis and compensatory lumbar lordosis due to Scheuermann's disease may be mistaken for postural defect

Figure 3-24Thoracic kyphosis.

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Forward head ⁶	Answered "yes" if the patient's ex- ternal auditory meatus was anteri- orly deviated (anterior to the lumbar spine)		к =1 (2,00)
Excessive shoulder protraction ⁶	Answered "yes" if the patient's acromions were anteriorly deviated (anterior to the lumbar spine)		κ = .83 (.51, 1.0)
C7-T2 excessive kyphosis ⁶	Recorded as" normal" (no deviation), "excessive kyphosis," or "diminished kyphosis." Excessive ky-	22 patients with mechanical neck pain	к = .79 (.51, 1.0)
T3-5 excessive kyphosis ⁶			κ = .69 (.3, 1.0)
T3-5 decreased kyphosis ⁶	phosis was defined as an increase in the convexity and a diminished		κ = .58 (.22, .95)
T6-10 excessive kyphosis ⁶	kyphosis was defined as a flatten- ing of the convexity of the tho-		к = .9 (.74, 1.0)
T6-10 decreased kyphosis ⁶	racic spine (at each segmental group)		к = .9 (.73, 1.0)

Postural and Muscle Length Assessment

Reliability of Muscle Length Assessment

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

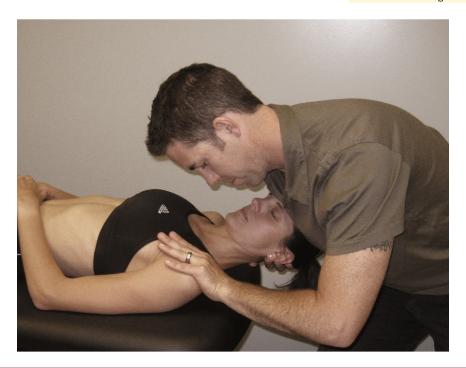


Figure 3-25 Muscle length assessment.

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Latissimus dorsi ⁶		22 patients with mechanical neck pain	(Right) $\kappa = .80$ (.53, 1.0) (Left) $\kappa = .69$ (.30, 1.0)
Pectoralis minor ⁶			(Right) $\kappa = .81$ (.57, 1.0) (Left) $\kappa = .71$ (.43, 1.0)
Pectoralis major ⁶			(Right) $\kappa = .90$ (.72, 1.0) (Left) $\kappa = .50$ (.01, 1.0)
Levator scapulae ⁶	Each muscle was recorded as "normal" or "restricted length"		(Right) $\kappa = .61$ (.26, .95) (Left) $\kappa = .54$ (.19, .90)
Upper trapezius ⁶			(Right) $\kappa = .79$ (.52, 1.0) (Left) $\kappa = .63$ (.31, .96)
Anterior and middle scalenes ⁶			(Right) $\kappa = .81$ (.57, 1.0) (Left) $\kappa = .62$ (.29, .96)
Suboccipitals ⁶			(Right) $\kappa = .63$ (.26, 1.0) (Left) $\kappa = .58$ (.15, 1.0)

Spurling's and Neck Compression Tests

Reliability of Spurling's and Neck Compression Tests

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 3-26 Cervical compression test.

Test and Study		Description and Positive Findings	Population	Inter-examiner Reliability
Straight compression ³³		Patient seated with examiner standing behind patient. Examiner exerts pressure on head. Positive if pain is provoked	100 patients with neck and/or shoulder prob- lems with or without radiating pain	$\kappa = .34$ without knowledge of patient history $\kappa = .44$ with knowledge of patient history
	Right shoulder/ arm pain	Cervical compression performed		(Right) $\kappa = .61$ (Left) Not available
Neck compres-	Left shoulder/ arm pain	with patient sitting. Examiner passively rotates and sidebends the	52 patients referred for	(Right) Not available (Left) $\kappa = .40$
sion with ³² :	Right forearm/ hand pain	head to the right and/or left. A com- pression force of 7 kg is applied. Presence and location of pain, pares-	cervical myelography	(Right) $\kappa = .77$ (Left) $\kappa = .54$
	Left forearm/ hand pain	thesias, or numbness is recorded		(Right) Not available (Left) $\kappa = .62$
Spurling's A ⁷		Patient seated with neck sidebent toward ipsilateral side; 7 kg of over- pressure is applied	$\kappa =$ 50 patients with suspected cervical radicu-	к = .60 (.32, .87)
Spurling's B ⁷		Patient seated with extension and sidebending/rotation to ipsilateral side; 7 kg of overpressure is applied	lopathy or carpal tunnel syndrome	к = .62 (.25, .99)
Spurling to the right ³³		Cervical compression performed with patient seated. Examiner pas- sively rotates and sidebends head to	100 patients with neck and/or shoulder prob-	$\kappa = .37$ without knowledge of patient history $\kappa = .28$ with knowledge of patient history
Spurling to the left ³³		right or left and applies compression force of 7 kg. Presence and location of pain, paresthesias, or numbness is recorded	lems with or without radiating pain	$\kappa = .37$ without knowledge of patient history $\kappa = .46$ with knowledge of patient history

Spurling's and Neck Compression Tests

Diagnostic Utility of Spurling's Test

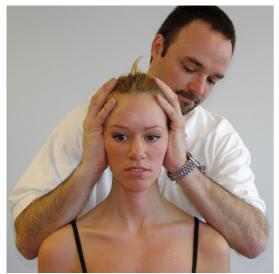
+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Spurling's A test

Spurling's B test

Figure 3-27 Spurling's test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Spurling's A ⁷	Patient is seated, the neck is sidebent toward the ipsi- lateral side, and 7 kg of overpressure is applied (see Fig. 3-27). Positive if symp- toms are reproduced	electrophysiologic lopathy via		.50 (.27, .73)	.86 (.77, .94)	3.5 (1.6, 7.5)	.58 (.36, .94)
Spurling's B ⁷	Patient seated. Extension and sidebending/rotation to the ipsilateral side and then 7 kg of overpressure is applied (see Fig. 3-27). Positive if symptoms are reproduced	laboratory with sus- pected diagnosis of cervical radiculopa- thy or carpal tunnel syndrome	needle electro- myography and nerve conduc- tion studies	.50 (.27, .73)	.74 (.63, .85)	1.9 (1.0, 3.6)	.67 (.42, 1.1)
Spurling's test ³⁴	The patient's neck was extended and laterally flexed toward the involved side, and downward axial pressure was applied on the head. Positive if radicular pain or tingling in the upper limb was reproduced or aggravated	50 patients present- ing to neurosurgery with neck and arm pain suggestive of radicular pain	Soft lateral cervical disc prolapse via MRI	.93 (.84, 1.0)	.95 (.86, 1.0)	18.6	.07
Spurling's test ³⁵	Patient sidebends and extends the neck and examiner applies compression. Positive if pain or tingling that starts in the shoulder radiates distally to the elbow	255 consecutive patients referred to a physiatrist with upper extremity nerve disorders	Cervical radicu- lopathy via electrodiagnos- tic testing	.30	.93	4.29	.75
Spurling's test ²²	Extension of the neck with rotation and sidebending to the same side. Positive if subject reported pain with procedure	75 males (22 with neck pain)	Patient reports of neck pain	.77	.92	9.63	.25


Neck Distraction and Traction Tests

Reliability of Neck Distraction and Traction Tests

Interpretation
Substantial agreement
Moderate agreement
Fair agreement
Slight agreement
No agreement

Neck distraction test

Traction test

Figure 3-28 Neck distraction and traction tests.

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Axial manual traction ³²	With patient supine, examiner applies axial distraction force of 10-15 kg. Positive if radicular symptoms decrease	52 patients referred for cervical myelography	κ = .50
Neck distraction test ⁷	With patient supine, examiner grasps patient under chin and occiput while slightly flexing patient's neck while applying distraction force of 14 lb. Positive if symptoms are reduced	50 patients with sus- pected cervical radicu- lopathy or carpal tunnel syndrome	к = .88 (.64, 1.0)
Traction ³³	With patient seated, examiner stands behind patient with hands underneath each maxilla and thumbs on the back of the head. Positive if symptoms are reduced during traction	100 patients with neck and/or shoulder prob- lems with or without ra- diating pain	$\kappa = .56$ without knowledge of history $\kappa = .41$ with knowledge of history

Shoulder Abduction Test

Reliability of Shoulder Abduction Test

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

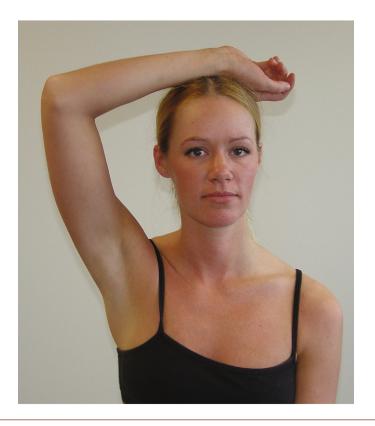


Figure 3-29 Shoulder abduction test.

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Shoulder abduction test ⁷	Patient is seated and asked to place the symptomatic extremity on head. Positive if symptoms are reduced	50 patients with sus- pected cervical radicu- lopathy or carpal tunnel syndrome	$\kappa = .20 (.00, .59)$
Shoulder abduction test ³²	Patient is seated and asked to raise the symptomatic extremity above the head. Positive if symptoms are reduced	52 patients referred for cervical myelography	(Right) $\kappa = .21$ (Left) $\kappa = .40$

Neural Tension Tests

Reliability of Neural Tension Tests

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Upper limb tension test A ⁷ With patient supine, examiner performs the lowing movements: 1. Scapular depression 2. Shoulder abduction 3. Forearm supination 4. Wrist and finger extension 5. Shoulder lateral rotation 6. Elbow extension 7. Contralateral/ipsilateral cervical sidebender positive response defined by any of the following: 1. Patient symptoms reproduced 2. Side-to-side differences in elbow extension 3. Contralateral cervical sidebending increases symptoms or ipsilateral sidebending decreases symptoms		50 patients with sus- pected cervical radicu- lopathy or carpal	κ = .76 (.51, 1.0)
Upper limb tension test B ⁷	With patient supine and shoulder abducted 30°, examiner performs the following movements: 1. Scapular depression 2. Shoulder medial rotation 3. Full elbow extension 4. Wrist and finger flexion 5. Contralateral/ipsilateral cervical sidebending Positive response defined by any of the following: 1. Patient symptoms reproduced 2. Side-to-side differences in wrist flexion > 10° 3. Contralateral cervical sidebending increases symptoms or ipsilateral sidebending decreases symptoms	tunnel syndrome	κ = .83 (.65, 1.0)
Brachial plexus test ³²	With patient supine, examiner abducts the humerus to the limit of pain-free motion, then adds lateral rotation of the arm and elbow flexion. If no limitation of motion is noted, the humerus is abducted to 90°. The appearance of symptoms is recorded	52 patients referred for cervical myelography	(Right) $\kappa = .35$ Left not calculated because prevalence of positive findings was $< 10\%$

Neural Tension Tests

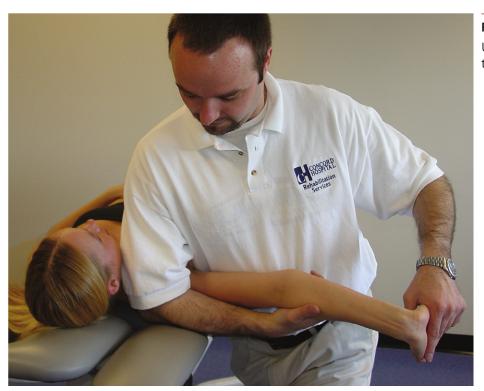
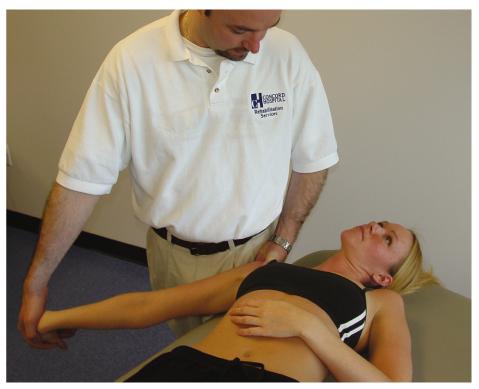



Figure 3-30 Upper limb tension tests.

Test B

Neural Tension Tests

Diagnostic Utility of Neural Tension Tests for Cervical Radiculopathy

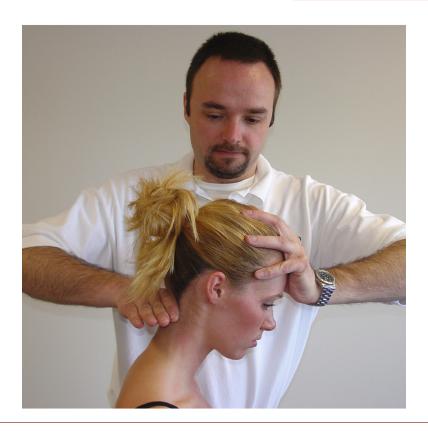
+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

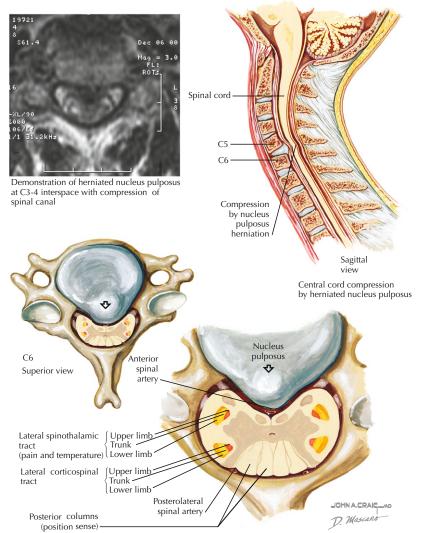
Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Upper limb tension test A ⁷	With patient supine, examiner performs the following movements: 1. Scapular depression 2. Shoulder abduction 3. Forearm supination 4. Wrist and finger extension 5. Shoulder lateral rotation 6. Elbow extension 7. Contralateral and ipsilateral cervical sidebending Positive response defined by any of the following: 1. Patient symptoms reproduced 2. Side-to-side differences in elbow extension > 10° 3. Contralateral cervical sidebending increases symptoms or ipsilateral sidebending decreases symptoms	82 consecutive patients referred to an electrophysiologic laboratory with suspected diag-	Cervical radic- ulopathy via needle elec- tromyography	.97 (.90, 1.0)	.22 (.12, .33)	1.3 (1.1, 1.5)	.12 (.01, 1.9)
Upper limb tension test B ⁷	With patient supine and patient's shoulder abducted 30°, examiner performs the following movements: 1. Scapular depression 2. Shoulder medial rotation 3. Full elbow extension 4. Wrist and finger flexion 5. Contralateral and ipsilateral cervical sidebending Positive response defined by any of the following: 1. Patient symptoms reproduced 2. Side-to-side differences in wrist flexion > 10° 3. Contralateral cervical sidebending increases symptoms or ipsilateral sidebending decreases symptoms	nosis of cervical radiculopathy or carpal tunnel syndrome	and nerve conduction studies	.72 (.52, .93)	.33 (.21, .45)	1.1 (.77, 1.5)	.85, (.37, 1.9)
Upper limb tension test ²²	With patient seated and arm in extension, abduction and external rotation of the glenohumeral joint, extension of the elbow, the forearm in supination, and the wrist and fingers in extension. Contralateral flexion of the neck is added. Positive if patient reported pain with procedure	75 males (22 with neck pain)	Patient reports of neck pain	.77	.94	12.83	.25

Sharp-Purser Test

Diagnostic Utility of the Sharp-Purser Test for Cervical Instability

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0




Figure 3-31 Sharp-purser test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Sharp-Purser test ³⁶	Patient sits with neck in a semiflexed position. Examiner places palm of one hand on patient's forehead and index finger of the other hand on the spinous process of axis. When posterior pressure is applied through the forehead, a sliding motion of the head posteriorly in relation to axis indicates a positive test for atlantoaxial instability	123 consecutive outpatients with rheumatoid arthritis	Full flexion and ex- tension lateral ra- diographs. Atlan- todens interval greater than 3 mm was considered abnormal	.69	.96	17.25	.32

Compression of Brachial Plexus

Diagnostic Utility of Brachial Plexus Compression for Cervical Cord Compression

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 3-32Cervical disc herniation causing cord compression.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Compression of brachial plexus ³⁷	Firm compression and squeezing of the brachial plexus with the thumb. Positive only when pain radiates to the shoulder or upper extremity	65 patients who had undergone MRI of the cervical spine as a result of radiating pain	Cervical cord compression via MRI	.69	.83	4.06	.37

Combinations of Tests

Diagnostic Utility of Clusters of Tests for Cervical Radiculopathy

Wainner and colleagues⁷ identified a test item cluster, or an optimal combination of clinical examination tests, to determine the likelihood of the patient presenting with cervical radiculopathy. The four predictor variables most likely to identify patients presenting with cervical radiculopathy are the upper limb tension test A, Spurling's A test, distrac-

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

tion test, and cervical rotation less than 60° to the ipsilateral side.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Upper limb tension	All 4 tests positive	82 consecutive		.24 (.05, .43)	.99 (.97, 1.0)	30.3 (1.7, 38.2)	
test A + Any 3 tests Positive	patients re- ferred to an		.39 (.16, .61)	.94 (.88, 1.0)	6.1 (2.0, 18.6)		
A test + Distraction test + Cervical rotation < 60° to the ipsilateral side ⁷	Any 2 tests positive	electrophysio- logic labora- tory with sus- pected diagnosis of cervical radicu- lopathy or carpal tunnel syndrome	Cervical radicu- lopathy via needle electro- myography and nerve conduc- tion studies	.39 (.16, .61)	.56 (.43, .68)	.88 (1.5, 2.5)	Not reported

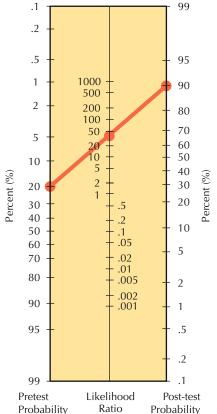


Figure 3-33

Fagan's nomogram. Considering the 20% prevalence or pretest probability of cervical radiculopathy in the study by Wainner and colleagues,7 the nomogram demonstrates the major shifts in probability that occur when all four tests from the cluster are positive. (Reprinted with permission from Fagan TJ. Nomogram for Bayes' theorem. N Engl J Med. 1975;293:257. Copyright 2005, Massachusetts Medical Society. All rights reserved.)

Diagnostic Utility of Single and Combinations of Factors for Identifying Positive Short-term Clinical Outcome for Cervical Radiculopathy

We used the baseline examination and physical therapy interventions received to investigate predictors for short-term improvement in patients with cervical radiculopathy.³⁸ Patients were treated at the discretion of their physical therapist for a mean of 6.4 visits over an average of 28 days. In addition to identifying the single factors most strongly associated with improvement, we used logistic regression to identify the combination of factors most predictive of short-term improvement.

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Age < 54 years ³⁸	Self-report			.76 (.64, .89)	.52 (.38, .67)	1.5 (1.2, 2.1)	
Dominant arm is not affected ³⁸	Self-report			.74 (.62, .86)	.52 (.38, .67)	1.5 (1.1, 2.2)	
Looking down does not worsen symp- toms ³⁸	Self-report		Improvement at physical therapy discharge as defined by surpassing the minimal detectable change in all outcome measures	.68 (.55, .81)	.48 (.34, .62)	1.3 (.93, 1.8)	
>30° of cervical flexion ³⁸	Patient sitting. Used an inclinometer after two warm-up repetitions	96 patients referred to physical therapy with cervical radiculopathy as defined by being positive on all 4 items in Wainner's diagnostic		.56 (.42, .70)	.59 (.44, .73)	1.4 (.89, 2.1)	
Age < 54 years + Dominant arm is not	All 4 tests positive			.18 (.07, .29)	.98 (.94, 1.0)	8.3 (1.9, 63.9)	Not reported
affected + Looking down does not worsen	Any 3 tests positive	test item cluster ⁷ (see previous)		.68 (.55, .81)	.87 (.77, .97)	5.2 (2.4, 11.3)	
symptoms + Provided with multimodal treatment including manual therapy, cervical traction, and deep neck flexor muscle strengthening for ≥ 50% of visits ³⁸	Any 2 tests positive			.94 (.87, 1.0)	.37 (.23, .51)	1.5 (1.2, 1.9)	
	Any 1 test positive			1.0 (1.0, 1.0)	.08 (.01, .2)	1.1 (1.0, 2.0)	

Diagnostic Utility of Historical and Physical Examination Findings for Immediate Improvement with Cervical Manipulation

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 3-34

Cervical manipulation. Delivered by Tseng and colleagues³⁹ at the discretion of the therapist to the most hypomobile segments. "Once a hypomobile segment was localized, the manipulator carefully flexed and sidebent the patient's neck to lock the facet joints of other spinal segments until the barrier was reached. A specific cervical manipulation with a high-velocity, low-amplitude thrust force was then exerted on the specific, manipulable lesion to gap the facet."39

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
ability Index > 11.5 + Bilateral involvement pattern + Not performing sedentary work > 5 hours/day +	5 or 6 tests positive			.07 (.00, .13)	1.00 (1.00, 1.00)	Undefined	
	Any 4 tests positive		Immediate improve- ment after cervical	.40 (.28, .52)	.93 (.84, 1.00)	5.33 (1.72, 16.54)	
	Any 3 tests positive	manipulati termined b the followi 100 patients referred to physical therapy for neck pain 2. ≥4 (mu proved) neck pain global ra change 3. Patient rating o isfied" a	manipulation as determined by any of the following: 1. ≥50% decrease in numeric pain rating 2. ≥4 (much improved) on the	.43 (.31, .56)	.78 (.65, .90)	1.93 (1.01, 3.67)	
	Any 2 tests positive			.08 (.01, .15)	.57 (.42, .73)	.20 (.08, .49)	Not reported
the neck + Without feeling worse while ex- tending the neck + Diagnosis of spondylosis without radicu- lopathy ³⁹	Any 1 test positive		global rating of change scale 3. Patient satisfaction rating of "very sat- isfied" after manipulation.	.02 (02, .05)	.75 (.62, .88)	.07 (.01, .50)	

Diagnostic Utility of Historical and Physical Examination Findings for Immediate Improvement with Thoracic Manipulation

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR
Symptom duration < 30 days ⁴⁰				.36 (.22, .52)	.94 (.80, .99)	6.4 (1.60, 26.3)
No symptoms distal to the shoulder ⁴⁰	Self-report			.67 (.50, .80)	.53 (.36, .69)	1.4 (.94, 2.2)
FABQPA score < 12 ⁴⁰	Questionnaire to quantify a person's beliefs			.28 (.16, .45)	.91 (.76, .98)	3.4 (1.05, 11.20)
FABQW score < 10 ⁴⁰	about the influ- ence of work and activity on their neck pain			.55 (.39, .70)	.69 (.52, .83)	1.8 (1.02, 3.15)
≥3 prior episodes of neck pain ⁴⁰			Improvement after several standardized tho-	.23 (.15, .35)	.83 (.54, .96)	1.9 (1.3, 2.7)
Patient reports that looking up does not aggravate symptoms ⁴⁰	Self-report	78 patients re- ferred to physi- cal therapy with mechanical neck pain	racic manipulations and cervical ROM exercise as determined by ≥ 5 ("quite a bit better") on the global rating of	67 (.50, .80)	.86 (.70, .95)	4.8 (2.07, 11.03)
Exercises > 3 times/week ⁴⁰			change scale on the second or third visit	.65 (.50, .76)	.67 (.46, .83)	1.9 (1.1, 3.4)
Cervical extension ROM < 30°40	Measured with inclinometer			.62 (.46, .76)	.75 (.57, .87)	2.5 (1.34, 4.57)
Decreased upper thoracic spine ky- phosis ⁴⁰	Increased con- vexity at T3-T5			54 (.42, .65)	.64 (.48, .78)	1.1 (.77, 1.60)
Shoulders pro- tracted ⁴⁰	Positive if acro- mion was noted to be anterior to the lumbar spine			.65 (.51, .77)	.76 (.52, .90)	2.7 (1.6, 3.0)

FABQPA, Fear-Avoidance Beliefs Questionnaire physical activity subscale; FABQW: Fear-Avoidance Beliefs Questionnaire work subscale. –LR not reported.

Diagnostic Utility of a Cluster of Historical and Physical Examination Findings for Immediate Improvement with Thoracic Manipulation

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

All patients received a standardized series of 3 thrust manipulations directed at the thoracic spine. In the first technique (A), with the patient sitting, the therapist uses his or her sternum as a fulcrum on the patient's middle thoracic spine and applies a high-velocity distraction thrust in an upward direction. The second and third techniques (B) are delivered supine. The therapist uses his or her body to push down through the patient's arms to perform a high-velocity, low-amplitude thrust directed toward either T1 through T4 or T5 through T8.40

After the manipulations, patients were instructed in a cervical range-of-motion exercise to perform 3-4 times/day.⁴⁰

Figure 3-35 Thoracic spine manipulation and active range of motion.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR
Symptom duration < 30 days + No symptoms distal to the shoulder + FABQPA score < 12 + Patient reports that looking up does not aggravate symptoms + Cervical extension ROM < 30° + Decreased upper thoracic spine ky- phosis (T3-T5) ⁴⁰	All 6 tests positive			.05 (.00, .17)	1.0 (.97, 1.00)	Undefined
	At least 5 tests positive		Improvement after	.12 (.04, .25)	1.0 (.94, 1.00)	Undefined
	At least 4 tests positive	78 patients referred to physical therapy with me- chanical neck pain	several standardized thoracic manipulations and cervical ROM exercise as determined by ≥ 5 ("quite a bit better") on the global rating of change scale on the second or third visit	.33 (.26, .35)	.97 (.89, 1.00)	12 (2.28, 70.8)
	At least 3 tests positive			.76 (.67, .82)	.86 (.75, .93)	5.49 (2.72, 12.0)
	At least 2 tests positive			.93 (.84, .97)	.56 (.46, .61)	2.09 (1.54, 2.49)
	At least 1 test positive			1.00 (.95, 1.00)	.17 (.11, .24)	1.2 (1.06, 1.2)

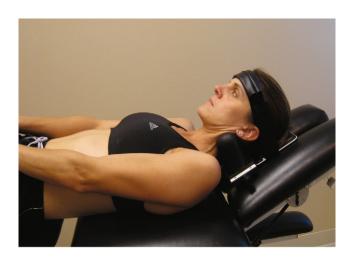
FABQPA, Fear-Avoidance Beliefs Questionnaire physical activity subscale; FABQW, Fear-Avoidance Beliefs Questionnaire work subscale. –LR not reported.

Diagnostic Utility of Historical and Physical Examination Findings for Improvement with 3 Weeks of Mechanical Cervical Traction

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Neck distraction test ⁴¹	Patient lies supine and the neck is comfortably positioned. Examiner securely grasps the patient's head under the occiput and chin and gradually applies an axial traction force up to approximately 30 lb. Positive response defined by reduction of symptoms		Improvement	.83 (.66, .93)	.50 (.35, .65)	1.67 (1.18, 2.45)	.33 (.14, .73)
Shoulder abduction test ⁴¹	While sitting, the patient is instructed to place the hand of the affected extremity on the head in order to support the extremity in the scapular plane. Positive response defined by alleviation of symptoms	68 patients referred to physical therapy with neck pain with or without upper extrem-	after 6 treat- ments over 3 weeks of me- chanical cervical traction and postural/deep neck flexor strengthening exercise as de- termined by	.33 (.19, .51)	.87 (.73, .94)	2.53 (1.01, 6.50)	.77 (.55, 1.00)
Positive ULTT A ⁴¹	With patient supine, examiner performs the following movements: 1. Scapular depression 2. Shoulder abduction 3. Forearm supination 4. Wrist and finger extension 5. Shoulder lateral rotation 6. Elbow extension 7. Contralateral and ipsilateral cervical sidebending Positive response defined by reproduction of symptoms	ity symptoms	≥ +7 ("A very great deal better") on the global rating of change scale	.80 (.63, .90)	.37 (.23, .53)	1.27 (.93, 1.75)	.54 (.23, 1.18)

Diagnostic Utility of Historical and Physical Examination Findings for Improvement with 3 Weeks of Mechanical Cervical Traction


+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	−LR
Pain with manual muscle testing ⁴¹				.63 (.46, .78)	.71 (.55, .83)	2.19 (1.27, 3.92)	.52 (.30, .82)
Body mass index ≥ 28.4 ⁴¹				.67 (.49, .81)	.68 (.53, .81)	2.11 (1.26, 3.66)	.49 (.27, .81)
Frequency of past epi- sodes ⁴¹				.70 (.48, .85)	.67 (.47, .82)	2.10 (1.15, 4.08)	.45 (.21, .87)
Symptoms distal to the shoulder ⁴¹				.67 (.49, .81)	.58 (.42, .72)	1.58 (1.01, 2.53)	.58 (.32, .99)
Headaches ⁴¹		68 patients referred to physical therapy with neck pain	Improvement after 6 treatments over 3 weeks of me-	.43 (.27, .61)	.55 (.40, .70)	.97 (.56, 1.65)	1.02 (.65, 1.57)
Diminished strength ⁴¹	No details		chanical cervical traction and pos- tural/deep neck	.43 (.27, .61)	.76 (.61, .87)	1.83 (.92, 3.69)	.74 (.50, 1.04)
Peripheralization with PA C4-C7 ⁴¹	given	with or without upper ex-	flexor strengthen- ing exercise as de- termined by ≥ +7 ("A very great deal	.37 (.22, .54)	.82 (.67, .91)	1.99 (.90, 4.47)	.78 (.54, 1.04)
Ipsilateral rotation < 60°41		tremity symptoms	better") on the global rating of change scale	.43 (.27, .61)	.66 (.50, .79)	1.27 (.69, 2.31)	.86 (.57, 1.26)
Patient-reported neck stiffness ⁴¹				.43 (.27, .61)	.34 (.21, .50)	.66 (.40, 1.02)	1.65 (.97, 2.88)
Flexion AROM < 55°41				.60 (.42, .75)	.55 (.40, .70)	1.34 (.84, 2.14)	.72 (.42, 1.19)
Age $\geq 55^{41}$.47 (.30, .64)	.89 (.76, .96)	4.43 (1.74, 11.89)	.60 (.40, .81)
Ipsilateral sidebending < 40°41				.73 (.56, .86)	.45 (.3060)	1.33 (.92, 1.93)	.60 (.29, 1.14)

Diagnostic Utility of a Cluster of Historical and Physical Examination Findings for Improvement with 3 Weeks of Mechanical Cervical Traction

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Age ≥ 55 + Positive shoulder	At least 4 tests positive	68 patients referred to physical therapy with neck pain with or without upper extremity	Improvement after 6 treatments over	.30 (.17, .48)	1.0 (.91, 1.0)	23.1 (2.50, 227.9)	.71 (.53, .85)
+	At least 3 tests positive		3 weeks of mechanical cervical traction and postural/deep neck flexor strengthening exercise as determined by ≥ +7 ("A very great deal better") on the global rating of change scale	.63 (.46, .78)	.87 (.73, .94)	4.81 (2.17, 11.4)	.42 (.25, .65)
Symptom peripheralization with PA at lower cervi-	At least 2 tests positive			.30 (.17, .48)	.97 (.87, 1.00)	1.44 (1.05, 2.03)	.40 (.16, .90)
cal (C4-7) spine + Positive neck dis- traction test ⁴¹	At least 1 test positive	symptoms		.07 (.02, .21)	.97 (.87, 1.00)	1.15 (.97, 1.4)	.21 (.03, 1.23)
ULTT, upper limb tension	n test.						

Figure 3-36

Cervical traction. The cervical traction in this study⁴¹ was performed with patient supine and legs supported on a stool. The neck was flexed to 24 degrees for patients with full cervical range of motion, and to 15° otherwise. The traction force was set at 10 to 12 pounds initially and adjusted upward during the first treatment session to optimally relieve symptoms. Each traction session lasted approximately 15 minutes and alternated between 60 seconds of pull and 20 seconds of release at 50% force.

OUTCOME MEASURES

Outcome Measure	Scoring and Interpretation	Test-Retest Reliability	MCID
Neck Disability Index (NDI)	Users are asked to rate the difficulty of performing 10 functional tasks on a scale of 0 to 5 with different descriptors for each task. A total score out of 100 is calculated by summing each score and doubling the total. The answers provide a score between 0 and 100, with higher scores representing more disability	ICC = .50 ⁴²	19 ⁴²
Fear-Avoidance Beliefs Questionnaire (FABQ)	Users are asked to rate their level of agreement with statements concerning beliefs about the relationship between physical activity, work, and their back pain ("Neck" can be substituted for "back"). Level of agreement is answered on a Likert-type scale ranging from 0 (completely disagree) to 7 (completely agree). The FABQ is composed of two parts: a sevenitem work subscale (FABQW), and a four-item physical activity subscale (FABQPA). Each scale is scored separately, with higher scores representing higher fear-avoidance	FABQW: ICC = .82 FABQPA: ICC = .66 ⁴³	Not Available
Numeric Pain Rating Scale (NPRS)	Users rate their level of pain on an 11-point scale ranging from 0 to 10, with high scores representing more pain. Often asked as "current pain" and "least," "worst," and "average pain" in the past 24 hours	ICC = .76 ⁴²	1.3 ⁴²
MCID, minimum clinically importa	nt difference.		

APPENDIX

Quality Assessment of Diagnostic Studies Using QUADAS

	Jull 1988	Uitvlugt 1988	Viikari-Juntura 1989 ⁴⁴	Uchihara 1994	Sandmark 1995	Lauder 2000	Hoffman 2000	Stiell 2001	Tong 2002	Wainner 2003
Was the spectrum of patients representative of the patients who will receive the test in practice?	Υ	Y	N	U	N	Y	Y	Y	Y	Y
2. Were selection criteria clearly described?	Υ	N	N	N	Υ	Υ	Υ	Υ	Υ	Υ
3. Is the reference standard likely to correctly classify the target condition?	Υ	Y	U	Y	N	Υ	Υ	Y	Υ	Υ
4. Is the time period between reference stan- dard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	N	U	Y	U	U	Y	Y	U	U	U
5. Did the whole sample or a random selection of the sample, receive verification using a reference standard of diagnosis?	Υ	Υ	U	Y	Y	Y	Y	Y	U	Y
6. Did patients receive the same reference standard regardless of the index test result?	Y	Y	U	Υ	Y	Y	Y	N	Υ	Υ
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Υ	Υ	N	Y	Y	Υ	Υ	Υ	Y	Y
8. Was the execution of the index test described in sufficient detail to permit replication of the test?	Υ	Y	Y	Y	Υ	Υ	Υ	Y	Y	Y
9. Was the execution of the reference stan- dard described in sufficient detail to permit its replication?	Υ	Y	N	Y	Y	Y	Y	Y	Y	Y
O. Were the index test results interpreted without knowledge of the results of the reference test?	Υ	U	N	Y	Υ	Y	Y	Y	Υ	Υ
Were the reference standard results inter- preted without knowledge of the results of the index test?	U	U	N	Y	Y	U	Y	Y	U	Υ
2. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	Y	Y	Y	N	Y	Y	Y	Υ	Υ
3. Were uninterpretable/ intermediate test results reported?	Y	Υ	U	Y	Y	U	Υ	Υ	U	U
4. Were withdrawals from the study explained?	Υ	Y	U	Y	Y	U	Υ	Y	U	Υ
Quality summary rating:	\Diamond					\Diamond	\Diamond	\Diamond		\Diamond

APPENDIX

Quality Assessment of Diagnostic Studies Using QUADAS

	Bandiera 2003	Stiell 2003	Dickinson 2004	Humphreys 2004	Shah 2004	Tseng 2006	Duane 2007	Cleland 2007	King 2007	Raney 2009
	Ваі	Sŧi	Θ	로	Shi	T _s	Da	ฮื	Ξ	Rai
 Was the spectrum of patients representa- tive of the patients who will receive the test in practice? 	Y	Y	Υ	Ν	Υ	Υ	Υ	Y	Y	Y
2. Were selection criteria clearly described?	Υ	Υ	Υ	Υ	Υ	Υ	U	Υ	Υ	Υ
Is the reference standard likely to correctly classify the target condition?	Y	Υ	Υ	N	Υ	U	Υ	Υ	Υ	Y
4. Is the time period between reference stan- dard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	U	U	U	U	U	Y	U	Y	U	Y
5. Did the whole sample or a random selection of the sample, receive verification using a reference standard of diagnosis?	Y	Υ	Y	Υ	Y	Υ	Υ	Y	N	Y
6. Did patients receive the same reference standard regardless of the index test result?	N	N	N	Υ	Y	Υ	Υ	Y	Υ	Υ
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Y	Υ	Y	Υ	Y	Υ	Υ	Y	Υ	Υ
8. Was the execution of the index test described in sufficient detail to permit replication of the test?	U	Y	Y	Y	Y	U	N	Υ	Υ	Y
9. Was the execution of the reference stan- dard described in sufficient detail to permit its replication?	Y	Y	Y	Y	Y	Y	U	Y	Υ	Y
10. Were the index test results interpreted without knowledge of the results of the reference test?	U	Y	Y	Y	U	Y	U	Υ	Υ	Y
11. Were the reference standard results inter- preted without knowledge of the results of the index test?	U	Y	Υ	Y	Υ	Υ	U	Υ	U	Y
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	Y	Υ	Υ	N	Υ	Y	U	Υ	Y	Υ
13. Were uninterpretable/intermediate test results reported?	Y	Υ	Y	Υ	Y	Υ	Υ	Y	Υ	U
14. Were withdrawals from the study explained?	Y	Υ	Y	Υ	Y	Υ	Υ	Y	Υ	U
Quality summary rating:	0	\langle	\Q		\Q	\Diamond		\langle	\langle	♦

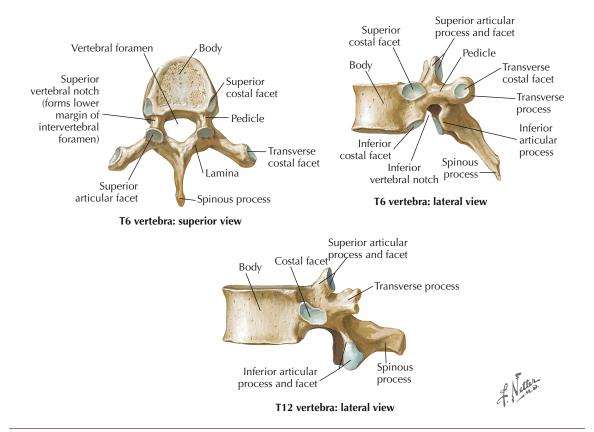
REFERENCES

- Bogduk N. Neck pain. Aust Fam Physician. 1984;13:26-30.
- Lord SM, Barnsley L, Wallis BJ, Bogduk N. Chronic cervical zygapophysial joint pain after whiplash. A placebo-controlled prevalence study. *Spine*. 1996;21:1737-44; discussion 1744-1745.
- Dwyer A, Aprill C, Bogduk N. Cervical zygapophyseal joint pain patterns. I: A study in normal volunteers. Spine. 1990;15:453-457.
- Fukui S, Ohseto K, Shiotani M, et al. Referred pain distribution of the cervical zygapophyseal joints and cervical dorsal rami. *Pain*. 1996;68:79-83.
- Cooper G, Bailey B, Bogduk N. Cervical zygapophysial joint pain maps. *Pain Med.* 2007;8:344-353.
- Cleland JA, Childs JD, Fritz JM, Whitman JM. Interrater reliability of the history and physical examination in patients with mechanical neck pain. *Arch Phys Med Rehabil.* 2006;87:1388-1395.
- Wainner RS, Fritz JM, Irrgang JJ, et al. Reliability and diagnostic accuracy of the clinical examination and patient self-report measures for cervical radiculopathy. Spine. 2003;28:52-62.
- Lauder TD, Dillingham TR, Andary M, et al. Predicting electrodiagnostic outcome in patients with upper limb symptoms: are the history and physical examination helpful? *Arch Phys Med Rehabil*. 2000;81:436-441.
- Stiell IG, Wells GA, Vandemheen KL, et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. *JAMA*. 2001;286:1841-1848.
- Stiell IG, Clement CM, McKnight RD, et al. The Canadian C-spine rule versus the NEXUS low-risk criteria in patients with trauma. N Engl J Med. 2003;349: 2510-2518.
- 11. Hoffman JR, Mower WR, Wolfson AB, et al. Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. National Emergency X-Radiography Utilization Study Group. N Engl J Med. 2000;343:94-99.
- Dickinson G, Stiell IG, Schull M, et al. Retrospective application of the NEXUS low-risk criteria for cervical spine radiography in Canadian emergency departments. *Ann Emerg Med.* 2004;43:507-514.
- 13. Bandiera G, Stiell IG, Wells GA, et al. The Canadian C-spine rule performs better than unstructured physician judgment. *Ann Emerg Med.* 2003;42:395-402.
- Duane TM, Dechert T, Wolfe LG, et al. Clinical examination and its reliability in identifying cervical spine fractures. *J Trauma*. 2007;62:1405-1410.
- Piva SR, Erhard RE, Childs JD, Browder DA. Intertester reliability of passive intervertebral and active movements of the cervical spine. *Man Ther.* 2006;11: 321-330.
- Hoving JL, Pool JJ, van Mameren H, et al. Reproducibility of cervical range of motion in patients with neck pain. BMC Musculoskelet Disord. 2005;6:59.

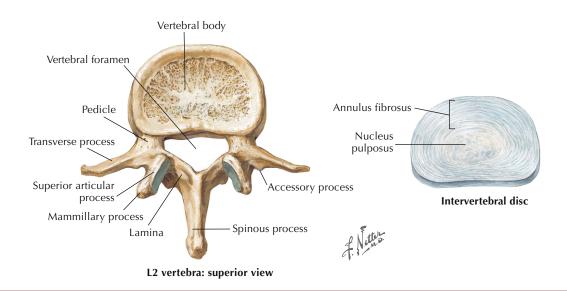
- Olson SL, O'Connor DP, Birmingham G, et al. Tender point sensitivity, range of motion, and perceived disability in subjects with neck pain. *J Orthop Sports Phys Ther*. 2000;30:13-20.
- Hole DE, Cook JM, Bolton JE. Reliability and concurrent validity of two instruments for measuring cervical range of motion: effects of age and gender. *Man Ther.* 1995;1:36-42.
- Youdas JW, Carey JR, Garrett TR. Reliability of measurements of cervical spine range of motion—comparison of three methods. *Phys Ther*. 1991;71:98-104; discussion 105-6.
- 20. Pool JJ, Hoving JL, de Vet HC, et al. The interexaminer reproducibility of physical examination of the cervical spine. *J Manipulative Physiol Ther*. 2004;27: 84-90.
- Van Suijlekom HA, De Vet HC, Van Den Berg SG, Weber WE. Interobserver reliability in physical examination of the cervical spine in patients with headache. Headache. 2000;40:581-586.
- Sandmark H, Nisell R. Validity of five common manual neck pain provoking tests. Scand J Rehabil Med. 1995;27:131-136.
- Edmondston SJ, Wallumrod ME, Macleid F, et al. Reliability of isometric muscle endurance tests in subjects with postural neck pain. *J Manipulative Physiol Ther*. 2008;31:348-354.
- 24. Olson LE, Millar AL, Dunker J, et al. Reliability of a clinical test for deep cervical flexor endurance. *J Manipulative Physiol Ther*. 2006;29:134-138.
- Harris KD, Heer DM, Roy TC, et al. Reliability of a measurement of neck flexor muscle endurance. *Phys Ther*. 2005;85:1349-1355.
- Chiu TT, Law EY, Chiu TH. Performance of the craniocervical flexion test in subjects with and without chronic neck pain. J Orthop Sports Phys Ther. 2005;35:567-571.
- 27. Kumbhare DA, Balsor B, Parkinson WL, et al. Measurement of cervical flexor endurance following whiplash. *Disabil Rehabil*. 2005;27:801-807.
- Smedmark V, Wallin M, Arvidsson I. Inter-examiner reliability in assessing passive intervertebral motion of the cervical spine. *Man Ther*. 2000;5:97-101.
- Humphreys BK, Delahaye M, Peterson CK. An investigation into the validity of cervical spine motion palpation using subjects with congenital block vertebrae as a 'gold standard'. BMC Musculoskelet Disord. 2004;5:19.
- 30. King W, Lau P, Lees R, Bogduk N. The validity of manual examination in assessing patients with neck pain. *Spine J.* 2007;7:22-26.
- Jull G, Bogduk N, Marsland A. The accuracy of manual diagnosis for cervical zygapophysial joint pain syndromes. *Med J Aust*. 1988;148:233-236.

- Viikari-Juntura E. Interexaminer reliability of observations in physical examinations of the neck. *Phys Ther.* 1987;67:1526-1532.
- Bertilson BC, Grunnesjo M, Strender LE. Reliability of clinical tests in the assessment of patients with neck/shoulder problems—impact of history. Spine. 2003;28:2222-2231.
- Shah KC, Rajshekhar V. Reliability of diagnosis of soft cervical disc prolapse using Spurling's test. Br J Neurosurg. 2004;18:480-483.
- Tong HC, Haig AJ, Yamakawa K. The Spurling test and cervical radiculopathy. Spine. 2002;27:156-159.
- 36. Uitvlugt G, Indenbaum S. Clinical assessment of atlantoaxial instability using the Sharp-Purser test. *Arthritis Rheum*. 1988;31:918-922.
- Uchihara T, Furukawa T, Tsukagoshi H. Compression of brachial plexus as a diagnostic test of cervical cord lesion. Spine. 1994;19:2170-2173.
- Cleland JA, Fritz JM, Whitman JM, Heath R. Predictors of short-term outcome in people with a clinical diagnosis of cervical radiculopathy. *Phys Ther*. 2007;87:1619-1632.

- 39. Tseng YL, Wang WT, Chen WY, et al. Predictors for the immediate responders to cervical manipulation in patients with neck pain. *Man Ther.* 2006;11:306-315.
- 40. Cleland JA, Childs JD, Fritz JM, et al. Development of a clinical prediction rule for guiding treatment of a subgroup of patients with neck pain: use of thoracic spine manipulation, exercise, and patient education. *Phys Ther.* 2007;87:9-23.
- 41. Raney NH, Petersen EJ, Smith TA, et al. Development of a clinical prediction rule to identify patients with neck pain likely to benefit from cervical traction and exercise. *Eur Spine J.* 2009
- Cleland JA, Childs JD, Whitman JM. Psychometric properties of the Neck Disability Index and Numeric Pain Rating Scale in patients with mechanical neck pain. Arch Phys Med Rehabil. 2008;89:69-74.
- Grotle M, Brox JI, Vollestad NK. Reliability, validity and responsiveness of the fear-avoidance beliefs questionnaire: methodological aspects of the Norwegian version. J Rehabil Med. 2006;38:346-353.
- 44. Viikari-Juntura E, Porras M, Laasonen EM. Validity of clinical tests in the diagnosis of root compression in cervical disc disease. *Spine*. 1989;14:253-257.


CLINICAL SUMMARY AND RECOMMENDATIONS	132
Anatomy	133
Osteology	133
Arthrology	134
Ligaments	137
Muscles	139
Fascia	144
Nerves	145
Patient History	149
Initial Hypotheses Based on Patient History	149
Lumbar Zygapophyseal Joint Referral Patterns	149
Thoracic Zygapophyseal Joint Referral Patterns	151
Reliability of the Historical Examination	152
Diagnostic Utility of the Patient History for Identifying Lumbar Spinal	
Stenosis	153
Diagnostic Utility of the Patient History for Identifying Lumbar	
Radiculopathy	154
Diagnostic Utility of the Patient History for Identifying Ankylosing	
Spondylitis	154
Physical Examination Tests	156
Neurological Examination	156
Range of Motion	159
Thoracolumbar Strength and Endurance	162
Postural Assessment	163
Passive Intervertebral Motion	165
Palpation	172
Centralization Phenomena	173
Straight-Leg Raise Test	175
Crossed Straight-Leg Raise Test	177
Slump Test	178
Tests for Lumbar Segmental Instability	180
Tests for Lumbar Spinal Stenosis	182
Tests for Radiographic Lumbar Instability	184
Tests for Ankylosing Spondylitis	186
Classification Methods	187
Interventions	189
Outcome Measures	192
Appendix	193
Quality Assessment of Diagnostic Studies Using QUADAS	193
References	195

CLINICAL SUMMARY AND RECOMMENDATIONS


Barra at I Para	
Patient History	
Complaints	A few subjective complaints appear to be useful in identifying specific spinal pathologies. A report of "no pain when seated" is the single question with the best diagnostic utility for lumbar spinal stenosis (+likelihood ratio [LR] = 6.6). "Pain not relieved by lying down," "back pain at night," and "morning stiffness $> 1/2$ hour" are all somewhat helpful in identifying ankylosing spondylitis (+LRs = 1.51 to 1.57). Subjective complaints of weakness, numbness, tingling, and/or burning do not appear to be especially helpful, at least in identifying lumbar radiculopathy.
Physical Examination	
Neurological Screening	Traditional neurological screening (sensation, reflex, and manual muscle testing) is reasonably useful in identifying lumbar radiculopathy. When tested in isolation, weakness with manual muscle testing, and even more so, reduced reflexes, are suggestive of lumbar radiculopathy, especially at the L3/4 spinal levels. Sensation testing (vibration and pin prick) alone does not seem to be especially useful. However, when changes in reflexes, muscular strength, and sensation are found in conjunction with a positive straight-leg raise, lumbar radiculopathy is highly likely ($+LR=6.0$).
	In addition, decreased sensation (vibration and pin prick), muscle weakness, and reflex changes are each modestly helpful in identifying lumbar spinal stenosis ($+LR=2.1$ to 2.8).
Range of Motion, Strength, and Manual Assessment	Measuring both thoracolumbar range of motion (ROM) and trunk strength have consistently been shown to be very reliable, but are of unknown diagnostic utility.
	The results of studies assessing the reliability of passive intervertebral motion (PIVM) are highly variable but generally report poor reliability when assessing for limited or excessive movement and moderate reliability when assessing for pain.
	Diagnostic studies assessing PIVM suggest that abnormal segmental motion is moderately useful both in identifying radiographic hypomobility/hypermobility and for predicting the responses to certain conservative treatments. However, restricted PIVM may have little or no association with low back pain.
Special Tests	The centralization phenomenon (movement of symptoms from distal/lateral regions to more central regions) has been shown to be both highly reliable and decidedly useful in identifying painful lumbar discs $(+LR=6.9)$.
	The straight-leg raise (SLR), the crossed straight-leg raise, and the slump test have all been shown to be moderately useful in identifying disc pathologies including bulges, herniations, and extrusions.
	An abundance of tests purport the ability to identify lumbar segmental instability. Reliability of these tests is highly variable, and their diagnostic utility is unknown, presumably due to a lack of an established reference standard.
	Both the Romberg test and a two-stage treadmill test have been found to be moderately useful in identifying lumbar spinal stenosis.
Interventions	Patients with low back pain of duration less than 16 days and no symptoms distal to the knees, and/or meet at least 4 out of 5 of the Flynn and colleagues' criteria, should be treated with a lumbosacral manipulation.
	Patients with low back pain that meet at least three out of five of the Hicks' ² criteria, should be treated with lumbar stabilization exercises.
400 11 11 11 11	c Clinical Evamination: An Evidence Raced Approach

ANATOMY

Osteology

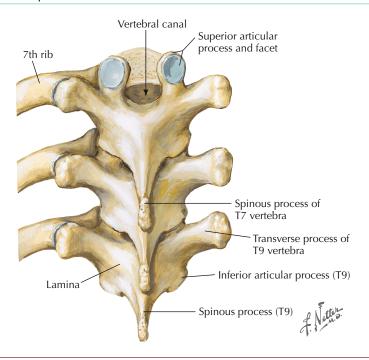


Figure 4-1Thoracic vertebrae.

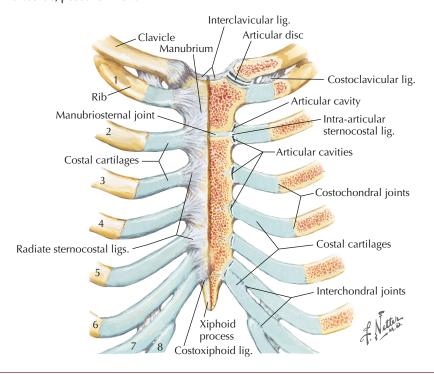


Figure 4-2Lumbar vertebrae.

Joints of the Thoracic Spine

Figure 4-3 T7, T8, and T9 vertebrae, posterior view.

Figure 4-4Sternocostal articulations, anterior view.

Arthrology (continued)

Joints of the Thoracic Spine

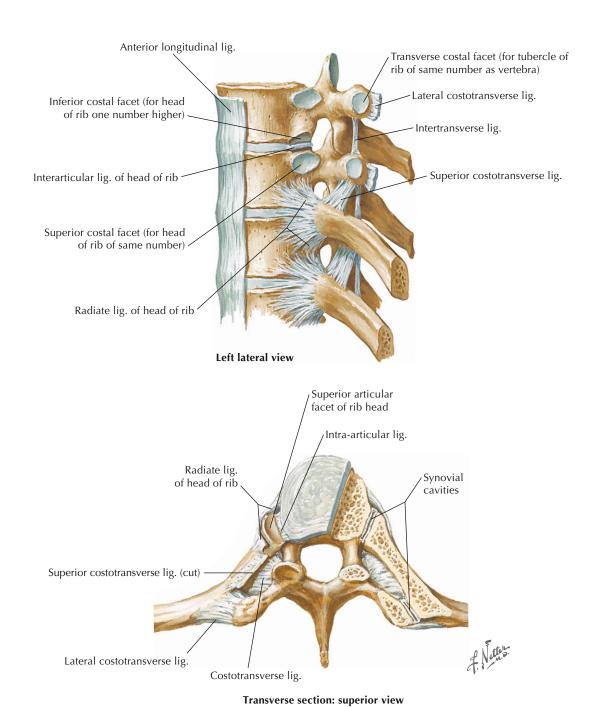
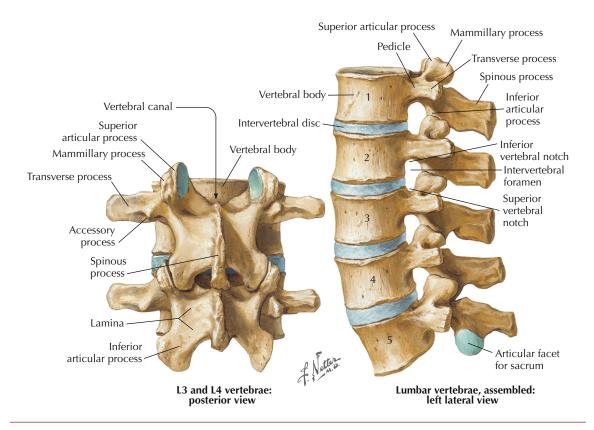



Figure 4-5 Costovertebral joints.

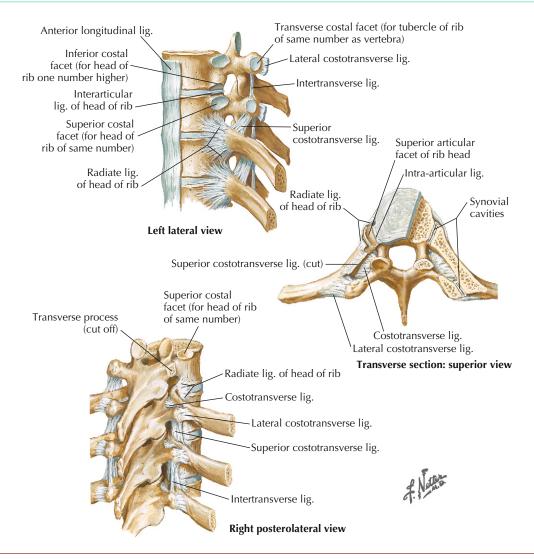


Figure 4-6 Lumbar spine.

Thoracolumbar Joints	Type and Classification	Closed Packed Position	Capsular Pattern
7vgapaphysaal jaints	Synovial: plane	Extension	Lumbar: significant limitation of side- bending bilaterally and limitations of flexion and extension
Zygapophyseal joints	зупоча. рыне	Extension	Thoracic: limitation of extension, side- bending, and rotation, less limitation of flexion
Intervertebral joints	Amphiarthrodial	Not applicable	Not applicable
Thoracic Spine	Type and Classification	Closed Packed Position	Capsular Pattern
Costotransverse	Synovial	Not reported	Not reported
Costoverterbal	Synovial	Not reported	Not reported
Costochondral	Synchondroses	Not reported	Not reported
Interchondral	Synovial	Not reported	Not reported
Sternocostal			
1st joint 2nd-7th joint	Amphiarthrodial Synovial	Not applicable Not reported	Not applicable Not reported

Ligaments

Costovertebral Ligaments

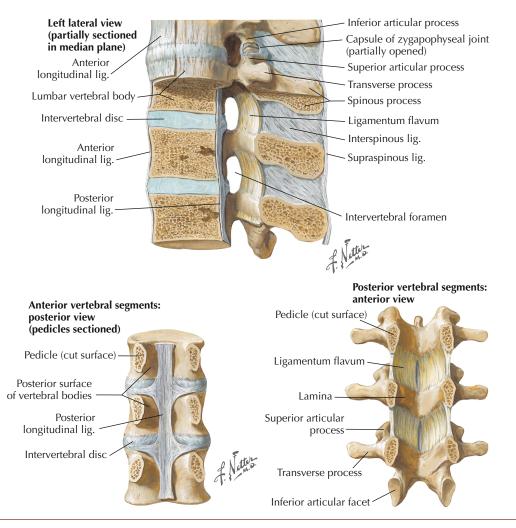


Figure 4-7Costovertebral ligaments.

Ligaments	Attachments	Function
Radiate sternocostal	Costal cartilage to the anterior and posterior aspect of the sternum	Reinforces joint capsule
Interchondral ligaments	Connect adjacent borders of articulations between 6th and 7th, 7th and 8th, and 8th and 9th costal cartilages	Reinforces joint capsule
Radiate of head of rib	Lateral vertebral body to head of rib	Prevents separation of rib head from vertebra
Costotransverse	Posterior aspect of rib to anterior aspect of transverse process of vertebra	Prevents separation of rib from transverse process
Intra-articular	Crest of the rib head to intervertebral disc	Divides joint into two cavities

Ligaments

Thoracolumbar Ligaments

Figure 4-8 Thoracolumbar ligaments.

Ligaments	Attachments	Function
Anterior longitudinal	Extends from anterior sacrum to anterior tubercle of C1. Connects anterolateral vertebral bodies and discs	Maintains stability and prevents excessive extension of spinal column
Posterior longitudinal	Extends from the sacrum to C2. Runs within the vertebral canal attaching the posterior vertebral bodies	Prevents excessive flexion of spinal column and posterior disc protrusion
Ligamenta flava	Binds the lamina above each vertebra to the lamina below	Prevents separation of the vertebral laminae
Supraspinous	Connect spinous processes C7-S1	Limits separation of spinous processes
Interspinous	Connect spinous processes C1-S1	Limits separation of spinous processes
Intertransverse	Connect adjacent transverse processes of vertebrae	Limits separation of transverse processes
Iliolumbar	Transverse processes of L5 to posterior aspect of iliac crest	Stabilizes L5 and prevents anterior shear

Muscles

Thoracolumbar Muscles: Superficial Layers

Muscles	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Latissimus dorsi	Spinous processes T6-T12, thoracolumbar fascia, iliac crest, inferior four ribs	Intertubercular groove of humerus	Thoracodorsal nerve (C6, C7, C8)	Humerus extension, adduction and inter- nal rotation
Trapezius				
Middle	Superior nuchal line, occip-	Lateral clavicle, acro-		Retracts scapula
Lower	ital protuberance, nuchal ligament, spinous pro- cesses T1-T12	mion, and spine of scapula	Accessory nerve (CN XI)	Depresses scapula
Rhomboids				
Major	Spinous processes T2-T5	Inferior medial border of scapula	Dorsal scapular nerve	Retracts scapula, inferiorly rotates glenoid
Minor	Spinous processes C7-T1 and nuchal ligament	Superior medial border of scapula	(C4, C5)	fossa, stabilizes scapula to thoracic wall
Serratus posterior superior	Spinous processes C7-T3, ligamentum nuchae	Superior surface of ribs 2-4	Intercostal nerves 2-5	Elevates ribs
Serratus posterior inferior	Spinous processes T11-L2	Inferior surface of ribs 8-12	Ventral rami of thoracic spinal nerves 9-12	Depresses ribs
CN, cranial nerve.				

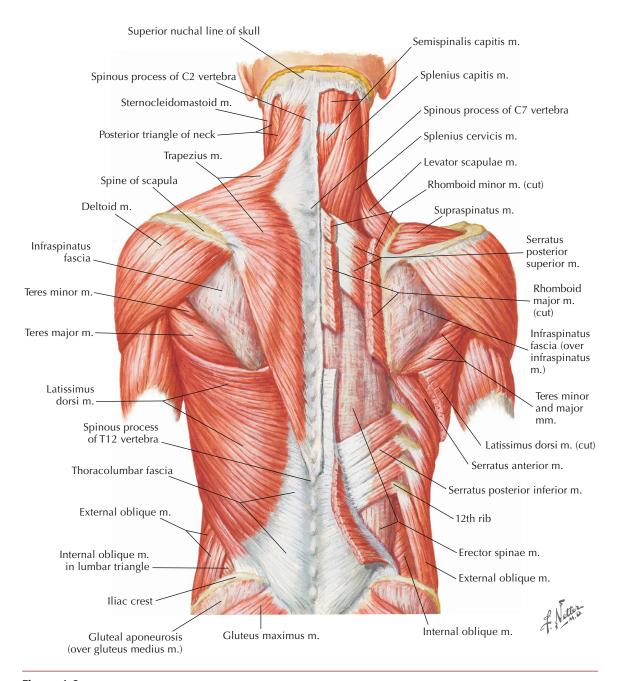
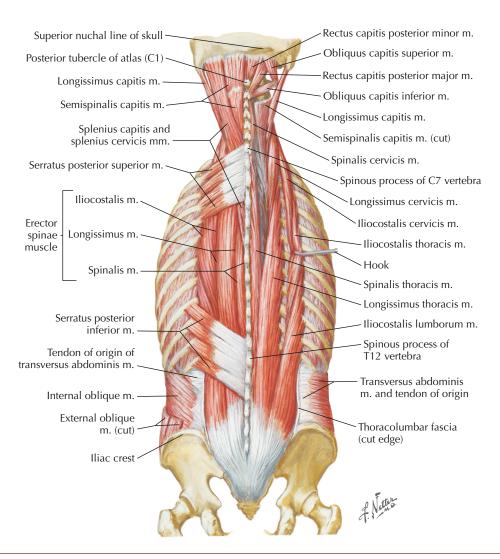



Figure 4-9 Muscles of back, superficial layers.

Figure 4-10Muscles of the back, intermediate layer.

Muscles	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Iliocostalis thoracis	Iliac crest, posterior sacrum, spinous pro- cesses of sacrum and inferior lumbar verte- brae, supraspinous ligament	Cervical transverse processes and superior angles of lower ribs	Dorsal rami of spinal nerves	Bilaterally: extend spinal column Unilaterally: side- bend spinal column
Iliocostalis lumborum		Inferior surface of ribs 4-12		
Longissimus thoracis		Thoracic transverse processes and superior surface of ribs		
Longissimus lumborum		Transverse process of lumbar vertebrae		
Spinalis thoracis		Upper thoracic spinous processes		

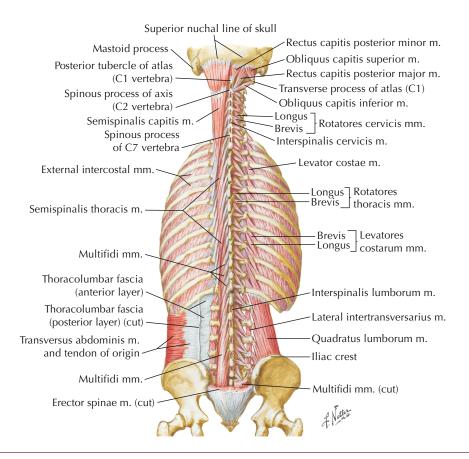


Figure 4-11 Muscles of the back, deep layer.

Muscles	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Rotatores	Transverse processes of vertebrae	Spinous process of vertebra 1-2 segments above origin	Dorsal rami of spinal nerves	Vertebral stabiliza- tion, assists with ro- tation and extension
Interspinalis	Superior aspect of cervical and lumbar spinous processes	Inferior aspect of spinous process superior to vertebrae of origin	Dorsal rami of spinal nerves	Extension and rotation of vertebral column
Intertransversarius	Cervical and lumbar transverse processes	Transverse process of adjacent vertebrae	Dorsal and ventral rami of spinal nerves	Bilaterally stabilizes vertebral column. Ipsilaterally side- bends vertebral column
Multifidi	Sacrum, ilium, trans- verse processes T1-T3, articular processes C4-C7	Spinous process of vertebra 2-4 segments above origin	Dorsal rami of spinal nerves	Stabilizes vertebrae

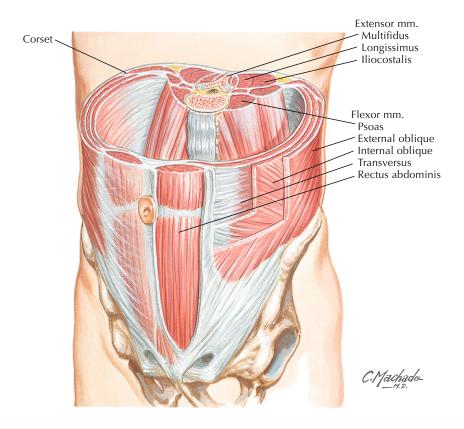


Figure 4-12 Dynamic "corset" concept of lumbar stability.

Muscles	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Rectus abdominis	Pubic symphysis and pubic crest	Costal cartilage 5-7 and xiphoid process	Ventral rami T6-T12	Flexes trunk
Internal oblique	Thoracolumbar fascia, anterior iliac crest, and lateral inguinal ligament	Inferior border of ribs 10-12, linea alba, and pectin pubis	Ventral rami T6-L1	Flexes and rotates trunk
External oblique	External aspect of ribs 5-12	Anterior iliac crest, linea alba, and pubic tubercle	Ventral rami T6-T12 and subcostal nerve	Flexes and rotates trunk
Transversus abdominis	Internal aspect of costal cartilage 7-12, thoracolumbar fascia, iliac crest, and lateral inguinal ligament	Linea alba, pectin pubis, and pubic crest	Ventral rami T6-L1	Supports abdomi- nal viscera and increases intra- abdominal pressure

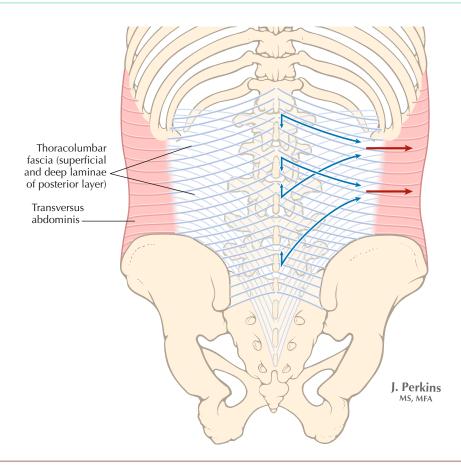
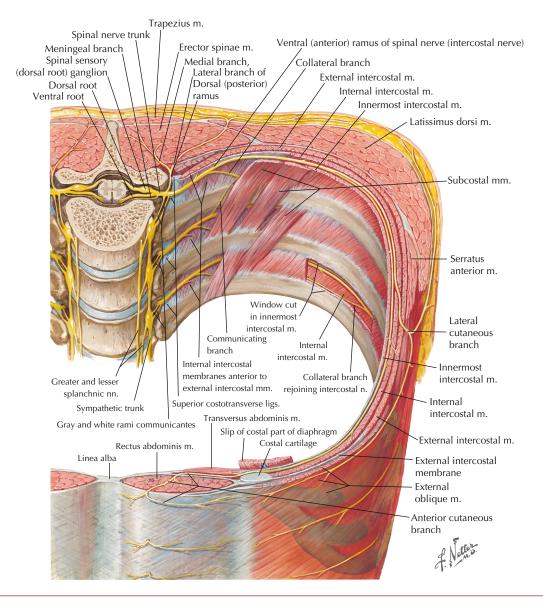



Figure 4-13 Transverse abdominis. The transverse abdominis exerts a force through the thoracolumbar fascia creating a stabilizing force through the lumbar spine.8

The thoracolumbar fascia is a dense layer of connective tissue running from the thoracic region to the sacrum.³ It is comprised of three separate and distinct layers: anterior, middle, and posterior. The middle and posterior layers blend together to form a dense fascia referred to as the lateral raphe. The posterior layer consists of two distinctly separate laminae. The superficial lamina fibers are angled downward and the deep lamina fibers are angled upward. Bergmark⁵ has reported that the thoracolumbar fascia serves three purposes: (1) to transfer forces from muscles to the spine, (2) to transfer forces between spinal segments, and (3) to transfer forces from the thoracolumbar spine to the retinaculum of the erector spinae. The transverse abdominis attaches to the middle layer of the thoracolumbar fascia and exerts a force through the lateral raphe resulting in a cephalad tension through the deep layer and a caudal tension through the superficial layer of the posterior lamina.^{3,4,6} The result is a stabilizing force exerted through the lumbar spine, which has been reported to provide stability and assist with controlling intersegmental motion of the lumbar spine.⁷⁻⁹

Figure 4-14Nerves of the thoracic spine.

Nerve	Segmental Level	Sensory	Motor
Ventral Rami			
Intercostals	T1-T11	Anterior and lateral aspect of the thorax and abdomen	Intercostals, serratus posterior, levator costarum, transversus thoracis
Subcostals	T12	LIIOIAX AIIU ADUOITIEII	Part of external oblique
Dorsal rami	T1- T12	Posterior thorax and back	Splenius, iliocostalis, longissimus, spinalis, interspinales, intertransversarii, multifidi, semispinalis, rotatores

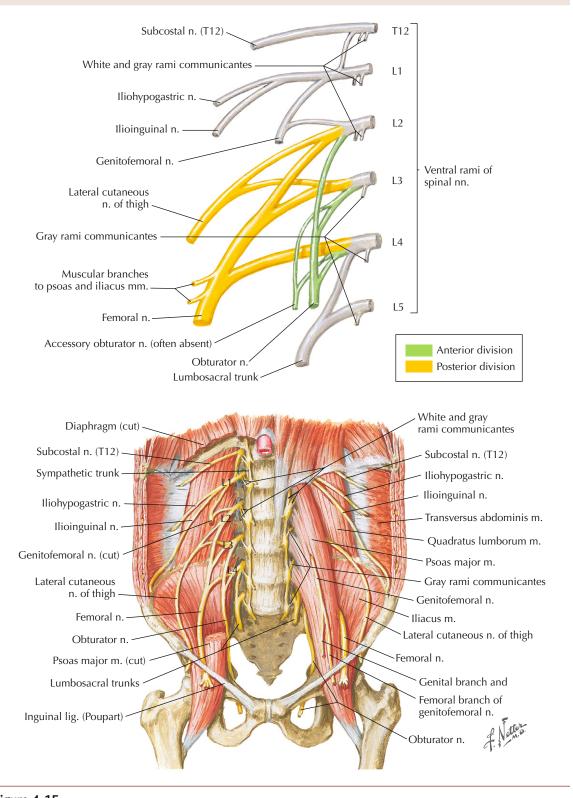


Figure 4-15 Nerves of the lumbar spine.

Nerves

Nerve	Segmental Level	Sensory	Motor
Subcostal nerve	T12	Lateral hip	External oblique
Iliohypogastric nerve	T12, L1	Posterolateral gluteal region	Internal oblique, transverse abdominis
Ilioinguinal	L1	Superior medial thigh	Internal oblique, transverse abdominis
Genitofemoral	L1, L2	Superior anterior thigh	No motor
Lateral cutaneous	L2, L3	Lateral thigh	No motor
Branch to iliacus		No sensory	Iliacus
Femoral nerve	L2, L3, L4	Thigh via cutaneus nerves	Iliacus, sartorius, quadriceps femoris, articularis genu, pectineus
Obturator nerve	L2, L3, L4	Medial thigh	Adductor longus, adductor brevis, adductor magnus (adductor part), gracilis, obturator externus
Sciatic	L4, L5, S1, S2, S3	Hip joint	Knee flexors and all muscles of the lower leg and foot

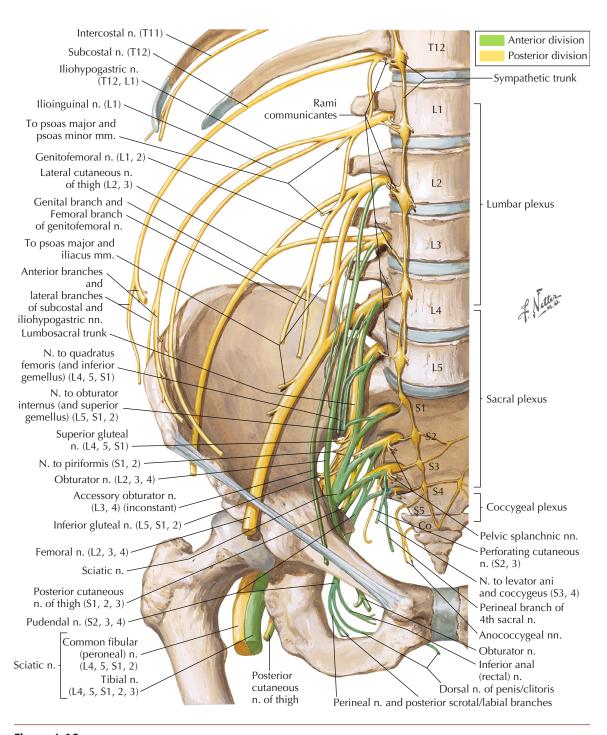
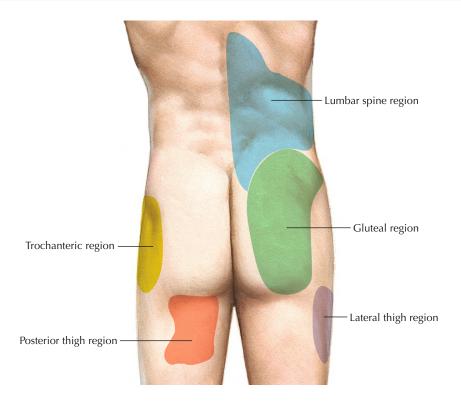


Figure 4-16
Nerves of the lumbar spine.

PATIENT HISTORY

Initial Hypotheses Based on Patient History

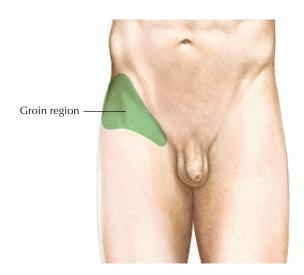
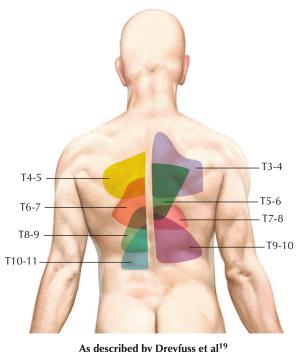

History	Initial Hypothesis
Reports of restricted motion of the lumbar spine associated with low back or buttock pain exacerbated by a pattern of movement that indicates possible opening or closing joint restriction (i.e., decreased extension, right sidebending, and right rotation)	Zygapophyseal joint pain syndromes ¹⁰⁻¹²
Reports of centralization or peripheralization of symptoms during repetitive movements or prolonged periods in certain positions	Possible discogenic pain ¹³
Reports of lower extremity pain/paresthesias, which is greater than the low back pain. May report experiencing episodes of lower extremity weakness	Possible sciatica or lumbar radiculopathy ¹⁴
Pain in the lower extremities that is exacerbated by extension and quickly relieved by flexion of the spine	Possible spinal stenosis ¹⁵
Patient reports of recurrent locking, catching, or giving way of the low back during active motion	Possible lumbar instability ^{16,17}
Reports of low back pain that is exacerbated by stretch of either ligament or muscles. Might also report pain with contraction of muscular tissues	Muscle/ligamentous sprain/strain

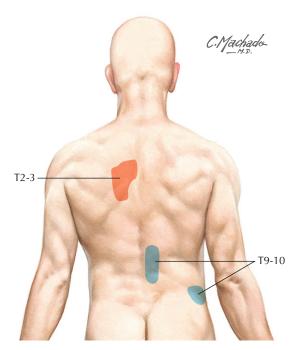
Lumbar Zygapophyseal Joint Referral Patterns

Area of Pain Referral	Percentage of Patients Presenting with Pain (n= 176 patients with low back pain)
Left groin	15%
Right groin	3%
Left buttock	42%
Right buttock	15%
Left thigh	38%
Right thigh	38%
Left calf	27%
Right calf	15%
Left foot	31%
Right foot	8%

Prevalence of pain referral patterns in patients with zygapophyseal joint pain syndromes as confirmed by diagnostic blocks.¹² In a subsequent study, ¹⁸ it was determined that in a cohort of 63 patients with chronic low back pain, the prevalence of zygapophyseal joint pain was 40%.

Lumbar Zygapophyseal Joint Referral Patterns (Continued)


Figure 4-17

Lumbar zygapophyseal joint pain referral patterns. Zygapophyseal pain patterns of the lumbar spine as described by Fukui and colleagues.⁹⁰ Lumbar zygapophyseal joints L1/2, L2/3, and L4/5 always referred pain to the lumbar spine region. Primary referral to the gluteal region was from L5/S1 (68% of the time). Levels L2/3, L3/4, L4/5, and L5/S1 occasionally referred pain to the trochanteric region (10% to 16% of the time). Primary referral to lateral thigh, posterior thigh, and groin regions were most often from L3/4, L4/5, and L5/S1 (5% to 30% of the time).

Thoracic Zygapophyseal Joint Referral Patterns

As described by Dreyfuss et al¹⁹

As described by Fukui et al⁹⁰

Figure 4-18 Zygapophyseal pain patterns of the thoracic spine.

Reliability of the Historical Examination

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Historical Question an	d Study	Population	Reliability
	Foot pain		Inter-examiner $\kappa = .1273$
	Leg pain		Inter-examiner $\kappa = .5396$
Patient report of ²¹ :	Thigh pain	2 separate groups of patients with low back pain $(n_1 = 50, n_2 = 33)$.	Inter-examiner $\kappa = .3978$
	Buttock pain	, · · · · · · · · · · · · · · · · · · ·	Inter-examiner $\kappa = .3344$
	Back pain		Inter-examiner $\kappa =19$ 16
	Sitting		Test-retest $\kappa = .46$
Increased pain with ²² :	th ²² : Standing 53 subjects with a primary complaint of low back pain		Test-retest $\kappa = .70$
	Walking		Test-retest $\kappa = .67$
	Sitting		Inter-examiner $\kappa = .49$
Increased pain with ²³ :	Standing	A random selection of 91 patients with low back	Inter-examiner $\kappa = 1.0$
increased pain with .	Walking	pain	Inter-examiner $\kappa = .56$
	Lying down		Inter-examiner $\kappa = .41$
Pain with sitting ²⁴		95 patients with low back pain	Inter-examiner $\kappa = .99 - 1.0$
Pain with bending ²⁴		93 patients with low back pain	Inter-examiner $\kappa = .9899$
Pain with bending ²²		53 subjects with a primary complaint of low back pain	Test-retest $\kappa = .65$
Pain with bending ²¹		2 separate groups of patients with low back pain $(n_1 = 50, n_2 = 33)$.	Inter-examiner $\kappa = .5156$
Increased pain with coughing/sneezing ²³		A random selection of 91 patients with low back pain	Inter-examiner $\kappa = .64$
Increased pain with cou	ghing ²²	53 subjects with a primary complaint of low back	Test-retest $\kappa = .75$
Pain with pushing/lifting	g/carrying ²²	pain	Test-retest $\kappa = .7789$

Diagnostic Utility of the Patient History for Identifying Lumbar Spinal Stenosis

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Historical Question	Patient Population	Reference Standard	Sens	Spec	+ LR	– LR
Age $> 65^{25}$.77 (.64, .90)	.69 (.53, .85)	2.5	.33
Pain below knees? ²⁵			.56 (.41, .71)	.63 (.46, .80)	1.5	.70
Pain below buttocks? ²⁵			.88 (.78, .98)	.34 (.18, .50)	1.3	.35
No pain when seated? ²⁵	93 patients with it low back pain ≥ 40 years old t	Lumbar spinal stenosis per attending physician's	.46 (.30, .62)	.93 (.84, 1.0)	6.6	.58
Severe lower extremity pain? ²⁵		impression; 88% also supported by computed tomography (CT) or	.65 (.51, .79)	.67 (.51, .83)	2.0	.52
Symptoms improved while seated? ²⁵		magnetic resonance imaging (MRI)	.52 (.37, .67)	.83 (.70, .96)	3.1	.58
Worse when walking? ²⁵			.71 (.57, .85)	.30 (.14, .46)	1.0	.97
Numbness ²⁵			.63 (.49, .74)	.59 (.42, .76)	1.5	.63
Poor balance ²⁵			.70 (.56, .84)	.53 (.36, .70)	1.5	.57
Do you get pain in your legs with walking that is relieved by sitting? ¹⁵		Lumbar spinal stenosis per MRI or CT imaging	.81 (.66, .96)	.16 (.00, .32)	.82 (.63, 1.1)	1.27
Are you able to walk better when holding onto a shopping cart? ¹⁵	45 patients with low back and leg pain and self-		.63 (.42, .85)	.67 (.40, .93)	1.9 (.8, 4.5)	.55
Sitting reported as best posture with regard to symptoms ¹⁵	reported limitations in walking tolerance		.89 (.76, 1.0)	.39 (.16, .61)	1.5 (.9, 2.4)	.28
Walk/stand reported as worst posture with regard to symptoms ¹⁵			.89 (.76, 1.0)	.33 (.12, .55)	1.3 (.8, 2.2)	.33

Diagnostic Utility of the Patient History for Identifying Lumbar Radiculopathy

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Patient Reports of	Patient Population	Reference Standard	Sens	Spec	+LR	-LR
Weakness ²⁶			.70	.41	1.19	.73
Numbness ²⁶	170 patients with low	Lumbosacral radiculopathy	.68	.34	1.03	.94
Tingling ²⁶	back and leg symptoms	per electrodiagnostics	.67	.31	.97	1.06
Burning ²⁶			.40	.60	1.0	1.0

Diagnostic Utility of the Patient History for Identifying Ankylosing Spondylitis

Clinical Symptom	Patient Population	Reference Standard	Sens	Spec	+LR	-LR
Pain not relieved by lying down ²⁷	449 randomly selected patients with low back pain	The New York criteria and radiographic confirmation of ankylosing spondylitis.	.80	.49	1.57	.41
Back pain at night ³³			.71	.53	1.51	.55
Morning stiffness > 1/2 hour ²⁷			.64	.59	1.56	.68
Pain or stiffness relieved by exercise ²⁷			.74	.43	1.30	.60
Age of onset 40 years or less ²⁷			1.0	.07	1.07	.00

Diagnostic Utility of the Patient History for Identifying Ankylosing Spondylitis (Continued)

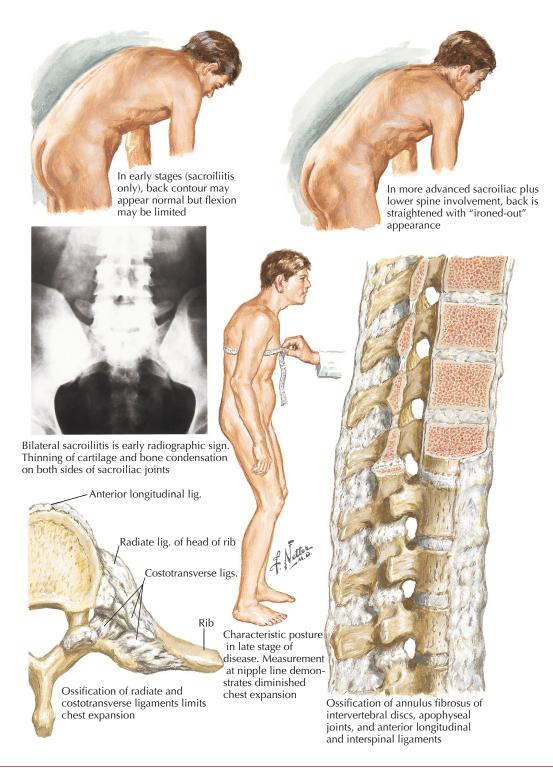
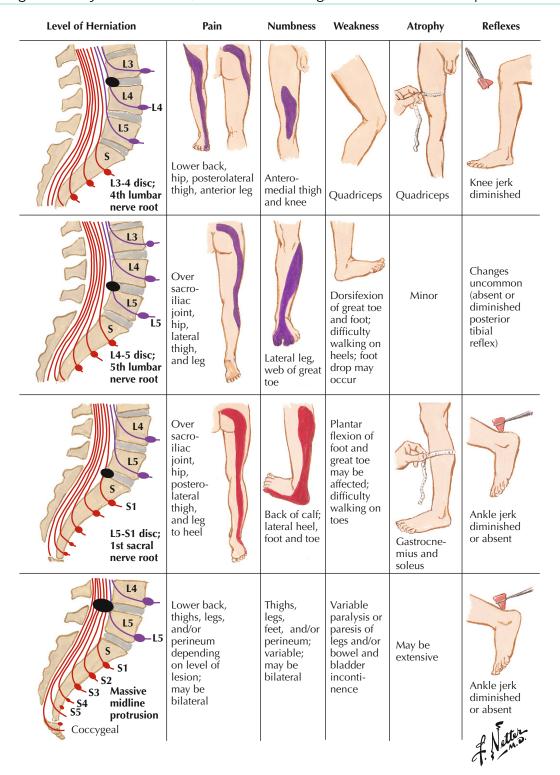


Figure 4-19 Ankylosing spondylitis.

PHYSICAL EXAMINATION TESTS

Neurological Examination


Diagnostic Utility of the Sensation, Manual Muscle Testing, and Reflexes for Lumbosacral Radiculopathy

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and St	udy Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Sensation (v	vibration and	Considered abnormal when either vibration or pin prick was reduced on the side of lesion			.50	.62	1.32	.81
	Gastroc- soleus			Electrodiagnostic	S1 = . 47	S1 = . 76	1.96	.70
Weak- ness ²⁶	Extensor hallucis longus	Weakness was defined as any grade less		testing. Radiculop- athy defined as the presence of positive sharp	L5 = . 61	L5 = . 55	1.36	.71
	Hip flexors	than 5/5		waves, fibrillation	L3-4 = .7	L3-4 = . 84	4.38	.36
	Quadriceps		170 pa-	potentials, complex repetitive discharges, high-	L3-4 = . 40	L3-4 = . 89	3.64	.67
	Achilles	Considered	tients with low back	amplitude, long- duration motor	S1 = . 47	S1 = .9	4.70	.59
Reflexes ²⁶	Patellar	abnormal when the reflex on the side of the lesion was reduced com- pared with the opposite side	low back and lower extremity symptoms	unit potentials, reduced recruit- ment, or increased polyphasic motor unit potentials (>30%) in two or more muscles in- nervated by the	L3-4 = .50	L3-4 = . 93	7.14	.54
Reflexes + Weakness + Sensory ²⁶	>	All 3 abnormal		same nerve root level but different peripheral nerves	.12	.97	4.00	.91
Reflexes	·	All 4 abnormal			.06	.99	6.00	.95
+ Weakness + Sensory + Straight-leg	raise ²⁶	Any of 4 abnormal			.87	.35	1.34	.37

Neurological Examination

Diagnostic Utility of the Sensation, Manual Muscle Testing, and Reflexes for Lumbar Spinal Stenosis

Figure 4-20Clinical features of herniated lumbar nucleus pulposus.

Neurological Examination (continued)

Diagnostic Utility of the Sensation, Manual Muscle Testing, and Reflexes for Lumbar Spinal Stenosis

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Strength testing of extensor hallucis longus muscle

Pin prick test

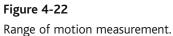
Figure 4-21 Lumbar spinal stenosis testing.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Vibration deficit ²⁵	Assessed at the first metatarsal head with a 128-Hz tuning fork. Considered abnormal if patient did not perceive any vibration			.53 (.38, .68)	.81 (.67, .95)	2.8	.58
Pin prick deficit ²⁵	Sensation tested at the dorsome- dial foot, dorsolateral foot, medial and lateral calf. Graded as "de- creased" or "normal"	93 patients with back pain with or without radi-	Diagnosis of spinal stenosis by retrospective	.47 (.32, .62)	.81 (.67, .95)	2.5	.65
Weakness ²⁵	Strength of knee flexors, knee extensors, and hallucis longus were tested. Graded from 0 (no movement) to 5 (normal)	ation to the lower extremities	chart review and confirmed by MRI or CT	.47 (.32, .62)	.78 (.64, .92)	2.1	.68
Absent Achilles reflex ²⁵	Reflex testing of the Achilles tendon. Graded from 0 (no re- sponse) to 4 (clonus)			.46 (.31, .61)	.78 (.64, .92)	2.1	.69

Range of Motion

Reliability of Range of Motion Measurements

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement


Measurement	Instrumentation	Population	Reliability		
and Study			Intra-examiner*	Inter-examiner	
Forward bending ²⁸	Measured distance from fingertips to floor		Intraclass correlation coefficient (ICC) = .95 (.89, .99)	ICC = .99 (.98, .10)	
Lateral bending ²⁸	Measured distance that fingertip slid down lateral thigh	30 patients with back pain and 20	ICC (right) = .99 (.95, 1.0) ICC (left) = .94 (.82, .98)	ICC (right) = .93 (.89, .96) ICC (left) = .95 (.91, .97)	
Trunk rotation ²⁸	Patients sit with horizontal bar on sternum. Plumb weight hung down to floor and angle was measured with a protractor	asymptomatic sub- jects (only asymp- tomatic subjects were used for intra-examiner comparisons)	ICC (right) = .92 (.76, .97) ICC (left) = .96 (.87, .99)	ICC (right) = .82 (.70, .89) ICC (left) = .85 (.75, .91)	
Modified Schober ²⁸	Distance between lumbosacral junction, 5 cm below, and 10 cm above, were measured in erect standing and while maximally bending forward	Compansons	ICC = .87 (.68, .96)	ICC = .79 (.67, .88)	
Flexion Extension Left rotation Right rotation Left sidebending Right sidebending ²⁹	Back range of motion instrument	47 asymptomatic students	ICC = .91 ICC = .63 ICC = .56 ICC = .57 ICC = .92 ICC = .89	ICC = .77 ICC = .35 ICC = .37 ICC = .35 ICC = .81 ICC = .89	
Active rotation in standing ³⁰	Patients stood with a hori- zontal bar resting on their shoulders. A plumb weight hung from the end of the bar to the floor	24 asymptomatic golfers	ICC (right) = .86 (.70, .94) ICC (left) = .80 (.58, .92)	ICC (right) = .74 (.49, .88) ICC (left) = .78 (.56, .90)	
Lumbar flexion ³¹		49 patients with low	Inter-examiner ICC = .60	(.33, .79)	
Lumbar extension ³¹	Single inclinometer	back pain referred for flexion-extension radiographs	Inter-examiner ICC = .61 (.37, .78)		
Lumbar flexion ³²		123 patients with	Inter-examiner ICC = .74	ł (.60, .84)	
Lumbar extension ³²		low back pain < 90 days	Inter-examiner ICC = .61 (.42, .75)		

Range of Motion (continued)

Reliability of Range of Motion Measurements

Inclinometer placement at the spinous process of the 12th thoracic vertebra

Measurement of thoracolumbar flexion

Measurement of thoracolumbar extension

Range of Motion

Reliability of Pain Provocation during Range of Motion

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 4-23 Pain provocation during active movements.

Flexion-sidebending-rotation

Extension-sidebending-rotation

Test and Study	Description and Positive Findings	Population	Reliability
Sidebending ³³	Patient stands with arms at sides. Patient slides hand down the outside of the thigh		к = .60 (.40, .79)
Rotation ³³	Patient stands with arms at sided. Patient rotates the trunk		к = .17 (08, .42)
Sidebend-rotation ³³	Patient stands with arms at sides. Patient moves the pelvis to one side, creating a sidebend rotation to the opposite side	35 patients with low back pain	к = .29 (.06, .51)
Flexion-sidebend-rotation ³³	Patient stands and the therapist guides the patient into lumbar flexion, then sidebending, then rotation	'	к = .39 (.18, .61)
Extension-sidebend-rotation ³³	Patient stands and the therapist guides the patient into lumbar extension, then sidebending, then rotation		к = .29 (.06, .52)
Thoracic rotation, right ³⁴	Patients places hands on the opposite shoul-		к =03 (11, .04)
Thoracic rotation, left ³⁴	ders and rotates the trunk as far as possible in each direction. Examiner then determines the effect of each movement on the patient's symptoms as "no effect," "increase symp- toms," or "decreases symptoms"	22 patients with mechanical neck pain	$\kappa = 0.7$ (.4, 1.0)

Thoracolumbar Strength and Endurance

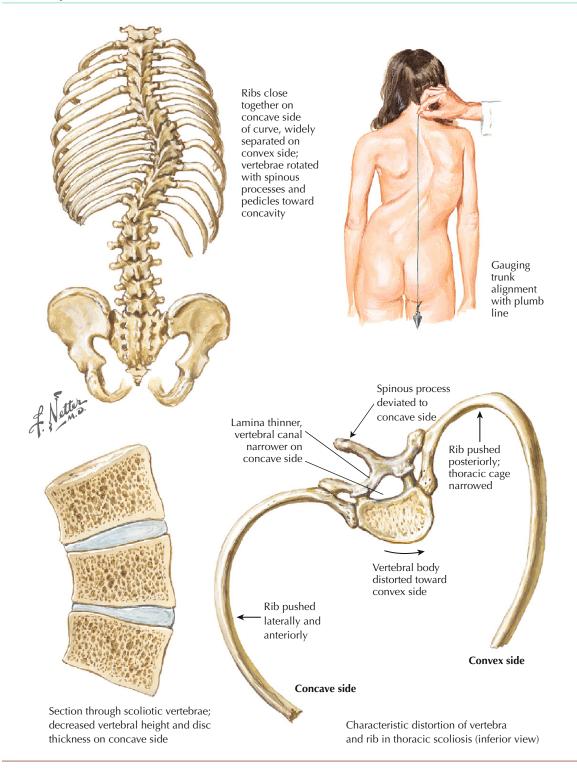
Reliability of Assessing Thoracolumbar Strength and Endurance

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 4-24 Modified Biering-Sorensen.

Measurement and Study	Description and Positive Findings	Population	Reliability	
Abdominal endurance ²⁸	From supine hook-lying, patient curls up to touch finger tips to superior patellae and holds position for as long as possible. Time in seconds was measured with a stopwatch	30 patients with back pain and 20 asymptomatic sub-	Intra-examiner ICC = .90 (.75, .97) Inter-examiner ICC = .92 (.87, .96)	
Modified Biering-Sorensen ²⁸	Patient starts prone with pelvis and legs supported on couch and trunk hanging off the edge supported by a chair. The patient then extends the trunk and holds a neutral position for as long as possible. Time in seconds was measured with a stopwatch	jects (only asymp- tomatic subjects used for intra- examiner comparisons)	Intra-examiner ICC = .92 (.75, .97) Inter-examiner ICC = .91 (.85, .95)	

Postural Assessment


Reliability of Postural Assessment

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Forward head ³⁴	"Yes" if the patient's external auditory meatus was anteriorly deviated (anterior to the lumbar spine)	eatus was anteriorly deviated (anterior	
Excessive shoulder protraction ³⁴	"Yes" if the patient's acromions were anteriorly deviated (anterior to the lumbar spine)	22	к = .83 (.51, 1.0)
C7-T2 excessive kyphosis ³⁴	Recorded as "normal" (no deviation),	22 patients with me- chanical neck pain	к = .79 (.51, 1.0)
T3-5 excessive kyphosis ³⁴	"excessive kyphosis," or "diminished ky- phosis." Excessive kyphosis was defined		к = .69 (.30, 1.0)
T3-5 decreased kyphosis ³⁴	as an increase in the convexity, and di- minished kyphosis was defined as a flat-		к = .58 (.22, .95)
T6-10 excessive kyphosis ³⁴	tening of the convexity of the thoracic		к = .90 (.74, 1.0)
T6-10 decreased kyphosis ³⁴	spine (at each segmental group)		к = .90 (.73, 1.0)
Kyphosis ³⁵	With patient standing, examiner inspects posture from the side. Graded as "present" or "absent"		κ = .21
Scoliosis ³⁵	With patient standing, examiner runs finger along spinous processes. Patient bends over and examiner assesses height of paraspinal musculature. Graded as "present" or "absent"	g spinous processes. Patient and examiner assesses araspinal musculature. 111 adults age ≥ 60 with chronic low back pain and 20 asymp-	
Functional leg length discrepancy ³⁵	Compare bilateral iliac crest height with patient standing. Graded as "symmetrical" or "asymmetrical"		κ = .00

Postural Assessment (continued)

Reliability of Postural Assessment

Figure 4-25 Pathologic anatomy of scoliosis.

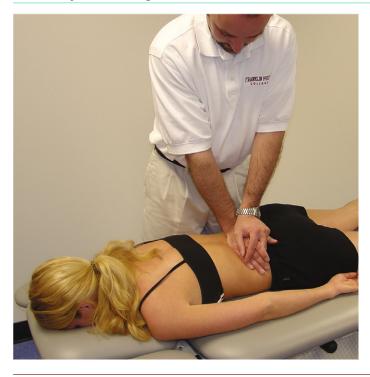
Passive Intervertevbral Motion

Reliability of Assessing Limited or Excessive Passive Intervertebral Motion

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Reliability
Upper lumbar segmental mobility ³⁶	With patient prone, examiner applies a posteroanterior force to the spinous process and lumbar	39 patients with low back pain	(Spinous) Inter-examiner $\kappa=.02$ (27, .32) (Left facet) Inter-examiner $\kappa=.17$ (14, .48) (Right facet) Inter-examiner $\kappa=01$ (33, .30)
Lower lumbar segmental mobility ³⁶	facets of each lumbar vertebra. Mobility of each segment is judged as "normal" or "restricted"		(Spinous) Inter-examiner $\kappa=05$ (36, .27) (Left facet) Inter-examiner $\kappa=17$ (41, .06) (Right facet) Inter-examiner $\kappa=12$ (41, .18)
Identifying the least mobile segment ³⁷	With patient prone, examiner applies a posteroanterior force to	29 patients with	Inter-examiner $\kappa = .71$ (.48, .94)
Identifying the most mobile segment ³⁷	the spinous process of each lumbar vertebra	central low back pain	Inter-examiner $\kappa = .29$ (13, .71)
Posterior to anterior (PA) stiffness ³⁸		60 patients with low back pain	Intra-examiner $\kappa=.54$ Intra-examiner (± 1 level) $\kappa=.64$ Inter-examiner $\kappa=.23$ Inter-examiner (± 1 level) $\kappa=.52$
Segmental side flexion ³⁸	Each level of the lumbar spine was evaluated for segmental dysfunction. With patient prone, examiner assessed PA stiffness and multifidus hypertonicity. With patient side lying, side flexion and ventral flexion were assessed by moving the patient's legs. After performing		Intra-examiner $\kappa=.57$ Intra-examiner (± 1 level) $\kappa=.69$ Inter-examiner $\kappa=.22$ Inter-examiner (± 1 level) $\kappa=.45$
Segmental ventral flexion ³⁸			Intra-examiner $\kappa=.31$ Intra-examiner (± 1 level) $\kappa=.45$ Inter-examiner $\kappa=.22$ Inter-examiner (± 1 level) $\kappa=.44$
Multifidus hypertonicity ³⁸	all four examination procedures, examiners identified the level of maximal dysfunction		Intra-examiner $\kappa=.51$ Intra-examiner (± 1 level) $\kappa=.60$ Inter-examiner $\kappa=.12$ Inter-examiner (± 1 level) $\kappa=.57$
Maximal level of seg- mental dysfunction ³⁸			Intra-examiner $\kappa=.60$ Intra-examiner (± 1 level) $\kappa=.70$ Inter-examiner $\kappa=.21$ Inter-examiner (± 1 level) $\kappa=.57$
Segmental mobility ³⁹	With patient side-lying, examiner palpates adjacent spinous processes while moving the patient's' legs to produce passive flexion and extension of the lumbar spine. Segmental mobility was graded on a 5-point scale	20 patients with low back pain	Inter-examiner κ ranged from 25 to .53 depending on examiners and vertebral level

Passive Intervertebral Motion (continued)


Reliability of Assessing Limited or Excessive Passive Intervertebral Motion

CC or ĸ	Interpretation
81-1.0	Substantial agreement
6180	Moderate agreement
4160	Fair agreement
1140	Slight agreement
010	No agreement

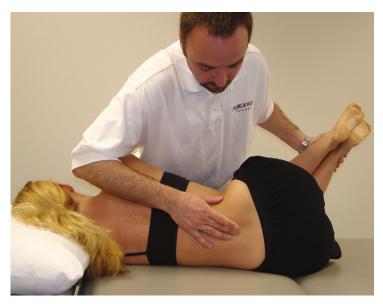
Test and Study	Description and Positive Findings	Population	Reliability
Determination of seg- mental fixations ⁴⁰	Passive motion palpation is performed and the segment is considered fixated if a hard end-	60 asymptom- atic volunteers	Intra-examiner κ ranged from09 to .39 Inter-examiner κ ranged from06 to .17
Passive motion palpation ⁴¹	feel is noted during the assessment	21 symptomatic and 25 asymp- tomatic subjects	Inter-examiner $\kappa = \text{ranged from}$ 03 to .23 with a mean of .07
Segmental mobility testing ⁴²	With patient side-lying with hips and knees flexed, examiner assesses mobility while passively moving the patient. Examiner determines whether mobility of the segment is "decreased," "normal," or "increased"	71 patients with low back pain	Inter-examiner $\kappa = .54$
Hypermobility at any level ³¹	With patient prone, examiner applies a posteroanterior force to the spinous process of	49 patients with low back pain re-	Inter-examiner $\kappa = .48$ (.35, .61)
Hypomobility at any level ³¹	each lumbar vertebra. Mobility of each segment is judged as "normal," "hypermobile," or "hypomobile"		
Determination of pos- teroanterior spinal stiffness ⁴³	Five raters tested lumbar spinal levels for posteroanterior mobility and graded each on an 11-point scale ranging from "markedly reduced stiffness" to "markedly increased stiffness"	40 asymptom- atic individuals	Inter-examiner ICC in the first study = .55 (.32, .79) Inter-examiner ICC in the second study = .77 (.57, .89)
Posteroanterior mo- bility testing ⁴⁴	With the patient prone, examiner evaluates posteroanterior motion mobility. Mobility is scored on a 9-point scale ranging from "severe excess motion" to "no motion," and the presence of pain is recorded	18 patients with low back pain	Inter-examiner ICC = .25 (.00, .39)
Segmental mobility testing ⁴⁵	With patient prone, examiner applies an anteriorly directed force over the spinous process of the segment to be tested. Examiner grades the mobility as "hypermobile," "normal," or "hypomobile"	63 patients with current low back pain	Inter-examiner κ ranged from 20 to .26 depending on level tested
Identification of a misaligned vertebra ⁴¹	Static palpation is used to determine the relationship of one vertebra to the vertebra below	21 symptomatic and 25 asymp- tomatic subjects	Inter-examiner κ ranged from —.04 to .03 with a mean of .00
Detection of a seg- mental lesion T11-L5/S1 ⁴⁶	Two clinicians used visual postural analysis, pain descriptions, leg length discrepancy, neurological examination, motion palpation, static palpation, and any special orthopaedic tests to determine the level of segmental lesion.	19 patients with chronic mechan- ical low back pain	Intra-examiner $\kappa =08$ to .43 Inter-examiner $\kappa =16$ to .25

Passive Intervertebral Motion

Reliability of Assessing Painful Passive Intervertebral Motion

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 4-26 Assessment of posteroanterior segmental mobility.


Test and Study Description and Positive Population Findings		Population	Reliability	
			Intra-examiner	Inter-examiner
Spring test T10-T7 ⁴⁷	With patients in the prone po-		к = .73 (.39-1.0)	κ = .12 (– .1841)
Spring test L2-T11 ⁴⁷	sition the therapist applies a posteroanterior force to the	nterior force to the processes of T7-L5. The of each force is held conds. Considered 12 months 84 subjects, or whom 53% reported experiencing low back symptoms within the last 12 months	к = .78 (.49-1.0)	$\kappa = .36$ (.0766)
Spring test L5-L3 ⁴⁷	spinous processes of T7-L5. The pressure of each force is held for 20 seconds. Considered positive if the force produces pain		κ = .56 (.1894)	κ = .41 (.1270)
Pain with upper lumbar mobility testing ³⁶	With patient prone, examiner applies a posteroanterior force to the spinous processes and	39 patients with low	(Spinous) Inter-examiner $\kappa=.21$ ($10,.53$) (Left facet) Inter-examiner $\kappa=.46$ (.17, .75) (Right facet) Inter-examiner $\kappa=.38$ (.06, .69)	
Pain with lower lumbar mobility testing ³⁶	lumbar facets of each lumbar vertebra. Response at each segment is judged as "painful" or "not painful"	ebra. Response at each ment is judged as "painful"	(Left facet) Inter-exan	ner $\kappa = .57$ (.32, .83) niner $\kappa = .73$ (.51, .95) nminer $\kappa = .52$ (.25, .79)
Pain provocation ⁴⁵	With patient prone, examiner applies an anteriorly directed	63 patients with current low back pain	Inter-examiner κ rang pending on the segme	ed from .25 to .55 de- ental level tested
Pain during mobility testing ³¹	force over the spinous pro- cesses of the segment to be tested. Considered positive if pain is reproduced	49 patients with low back pain referred for flexion-extension radiographs	Inter-examiner $\kappa = .5$	57 (.43, .71)

Passive Intervertebral Motion

Reliability of Assessing Limited and Painful Passive Intervertebral Motion

Motion palpation, seated

Motion palpation of sidebending, right

Figure 4-27 Segmental mobility examination.

Passive Intervertebral Motion

Diagnostic Utility of Assessing Limited and Painful Passive Intervertebral Motion

+LR	Interpretation	-LR		
>10	Large	<.1		
5.0-10.0	Moderate	.12		
2.0-5.0	Small	.25		
1.0-2.0	Rarely important	.5-1.0		

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Active range of motion (AROM) ⁴⁸	Quantity of forward bending AROM. Rated as "hypomobile," "normal," or "hypermobile"		3.	.75 (36, 94)	.60 (27, 86)	1.88 (.57, 6.8)	.42 (.07, 1.90)
Abnormality of segmental motion (AbnROM) ⁴⁸	Examiner judged presence of abnormal segmental motion during AROM. Rated as "hypomobile," "normal," or "hypermobile			.43 (19, 71)	.88 (70, 96)	3.60 (.84, 15.38)	.65 (.28, 1.06)
Passive accessory intervertebral motion (PAIVM) ⁴⁸	Examiner applies central posteroanterior pressure. Passive accessory intervertebral motion was rated as "hypomobile," "normal," or "hypermobile"	9 patients with low back pain		.75 (36, 94)	.35 (20, 55)	1.16 (.44, 3.03)	.71 (.12, 2.75)
Passive physiological interverte- bral motion (PPIVM) ⁴⁸	With patient side-lying, examiner palpates amount of PPIVM during forward bending. Rated as "hypo- mobile," "normal," or "hypermobile"			.42 (19, 71)	.89 (71, 96)	3.86 (.89, 16.31)	.64 (.28, 1.04)
Motion pal- pation ⁴⁹	Palpation of a motion segment during either	184 twins	Self-reported low back pain	.42	.57	.98	1.02
Pain reaction ⁴⁹	passive or active motion. Examiners evaluated for limited motion (i.e., "fixation"). Patient's pain reaction was noted after motion palpation of each segment			.54	.77	2.35	.60

Passive Intervertebral Motion

Association of Limited Passive Intervertebral Motion with Low Back Pain

As a part of a larger epidemiological study, Leboeuf-Yde and associates⁴⁹ evaluated 184 twins as to the prevalence of restricted intervertebral motion and its relation to low back pain. As can be seen in the figure, motion restrictions were no more prevalent in people with current or recent back pain than in those who had never experienced back pain.

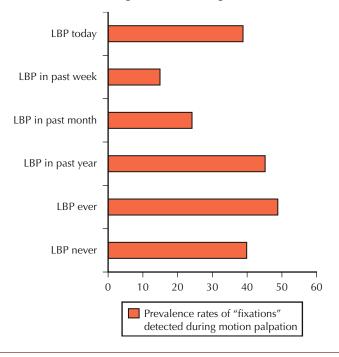


Figure 4-28 Prevalence rates of "fixations" detected during motion palpation. (From Leboeuf-Yde C, van Dijk J, Franz C, et al. Motion palpation findings and self-reported low back pain in a population-based study sample. J Manipulative Physiol Ther. 2002;25:80-87.)

Passive Intervertebral Motion

Diagnostic Utility of Assessing Excessive Passive Intervertebral Motion

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Lumbar flexion

Lumbar extension

Figure 4-29 Assessing lumbar passive physiological intervertebral motion (PPIVM).

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR	
Passive acces- sory interverte-	ory interverte- posteroanterior pressure. PAIVM was rated as "hypo-			Rotational Lumbar Segmental Instability				
(PAIVM) ⁵⁰				.33 (.12, .65)	.88 (.83, .92)	2.74 (1.01, 7.42)	.76 (.48, 1.21)	
				Translatio Instabilit		ar Segmen	tal	
Flexion passive physiological intervertebral	With patient side-lying, ex- aminer palpates amount of PPIVM during forward			.29 (.14, .50)	.89 (.83, .93)	2.52 (1.15, 5.53)	.81 (.61, 1.06)	
motion bending. Rated as "hypomobile," "normal," or "hypermobile"		Flexion and ex- tension lateral ra-	Rotational Lumbar Segmental Instability					
	пуренновие		diographs. Seg- ments were considered hyper-	.05 (.01, .36)	.99 (.96, 1.00)	.12 (.21, 80.3)	.96 (.83, 1.11)	
			or chronic low was more than 2 standard deviations from the	was more than 2	Translational Lumbar Segmental Instability			
				mean of a normal	.05 (.01, .22)	.995 (.97, 1.00)	8.73 (.57, 134.7)	.96 (.88, 1.05)
Extension PPIVM ⁵⁰	With patient side-lying, ex- aminer palpates amount of				Rotationa Instabilit		Segmental	
PPIVM during backward bending. Rated as "hypo- mobile," "normal," or "hypermobile"			.22 (.06, .55)	.97 (.94, .99)	8.40 (1.88, 37.55)	.80 (.56, 1.13)		
			Translation Instabilit		ar Segmen	tal		
					.16 (.06, .38)	.98 (.94, .99)	7.07 (1.71, 29.2)	.86 (.71, 1.05)

Palpation

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Reliability of Identifying Segmental Levels

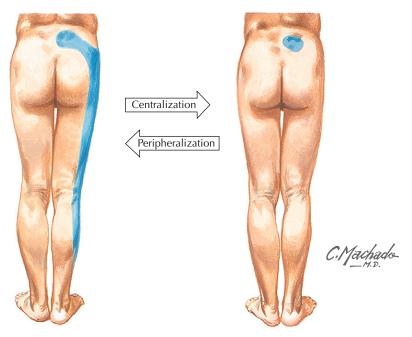
Procedure Performed	Description of Procedure	Patient Population	Inter-examiner Reliability
Detection of segmental levels in the lumbar spine ⁵¹	With patient prone, examiner identifies nominated levels of the lumbar spine. Examiner marks the specific level with a pen containing ink that can only be seen under ultraviolet light	20 patients with low back pain	κ = .69
Examiner judgment of marked segmental level ⁴⁴	With the patient prone, one spinous process is arbitrarily marked on each patient. Examiners identify the level of the marked segment	18 patients with low back pain	ICC = .69 (.53, .82)

Reliability of Identifying Tenderness to Palpation

Procedure Performed	Description of Procedure	Patient Population	Inter-examiner Reliability
Lumbar paravertebral myofascial pain ³⁵	Reports of pain with deep thumb pressure		к = .34
Piriformis myofascial pain ³⁵	(4 kg)		к = .66
Tensor fascia lata myofascial pain ³⁵			к = .75
Fibromyalgia tender points ³⁵	Reports of pain with enough pressure to blanch thumbnail at: 1. Occiput at suboccipital muscle insertions 2. Low cervical at the anterior aspects of the intertransverse spaces at C5-C7 3. Trapezius, midpoint of upper border 4. Supraspinatus at origin 5. 2nd rib at the 2nd costochondral junction 6. 2 cm distal to the epicondyle 7. Medial fat pad of the knee 8. Greater trochanter 9. Gluteal at upper outer quadrant of buttocks	111 adults age ≥ 60 with chronic low back pain and 20 asymptomatic subjects	κ = .87
Osseous pain of each joint T11/L1 - L5/S1 ⁴¹	With the subject prone, examiner applies pressure over the bony structures of each joint	21 symptomatic and 25 asymptomatic subjects	Mean κ for all levels = .48
Intersegmental tenderness ⁴²	With patient prone, examiner palpates the area between the spinous processes. Increased tenderness is considered positive	71 patients with low back pain	κ = .55

Centralization Phenomena

Reliability of Identifying the Centralization Phenomena


ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Centralization and directional preference ⁵²	Two examiners with greater than 5 years of training in the McKenzie method evaluated all patients and determined whether centralization occurred during repeated movements. If centralization occurred the clinician recorded the directional preference	39 patients with low back pain	κ if centralization occurred = .70 κ related to centralization and directional preference = .90
Judgments of centralization ⁵³	Therapists (without formal training in McKenzie methods) and students viewed videotapes of patients undergoing a thorough examination by one therapist. All therapists and students watching the videos were asked to make an assessment regarding the change in symptoms based on movement status	12 patients receiving physical therapy for low back pain	Between physical therapists $\kappa=.82$ (.81, .84) Between physical therapy students $\kappa=.76$ (.76, .77)
Status change with flexion in sitting ³²		123 patients with low back pain < 90	к = .55 (.28, .81)
Status change with repeated flexion in sitting 32	symptom change (centralization, peripheralization, or no change) with		к = .46 (.23, .69)
Status change with extension ³²			к = .51 (.29, .72)
Status change with repeated extension ³²		days	к = .15 (06, .36)
Status change with sustained prone extension ³²			к = .28 (.10, .47)

Centralization Phenomena

Diagnostic Utility of the Centralization Phenomena

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

During specific movements, range of motion and movement of pain noted. Movement of pain from peripheral to central location (centralization) predicts outcome and appropriateness of therapy.

Figure 4-30Centralization of pain.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Centralization ⁵⁴	Centralization present if pain in the furthermost region from midline was abolished or reduced with a McKenzie-styled repeated motion examination	69 patients with persistent low back pain with or without re- ferred leg pain	At least 1 painful disc adjacent to a nonpainful disc with discography	.40 (.28, .54)	.94 (.73, .99)	6.9 (1.0, 47.3)	.63 (.49, .82)

Straight-Leg Raise Test

Reliability of the Straight-Leg Raise Test

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Straight-leg raise

Straight-leg raise with sensitizing maneuver of cervical flexion

Figure 4-31 Straight-leg raise.

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Passive straight-leg raise (SLR) ²³	With patient supine, examiner passively flexes the hip and extends the knee. Examiner measures angle of SLR and determines if symptoms occurred in a dermatomal fashion	91 patients with low back pain randomly selected	For typical dermatomal pain, $\kappa = .68$ For any pain in the leg, $\kappa = .36$ For SLR $< 45^{\circ}$, $\kappa = .43$
Passive straight-leg raise ⁵⁵	With patient supine, examiner maintains the knee in extension while passively flexing the hip. The hip is flexed until examiner feels resistance. A range of motion measurement is recorded.	18 physiotherapy students	ICC Right = .86 , Left = .83
Passive straight-leg raise ⁵⁶	Passive elevation of the leg with knee extended. Considered positive if pain in the low back or buttock is experienced	27 patients with low back pain	κ = .32

Straight-Leg Raise Test

Diagnostic Utility of the Straight-Leg Raise for Detecting Disc Bulge or Herniation

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Deville and colleagues⁶⁸ compiled the results of 15 studies investigating the accuracy of the straight-leg raise (SLR) for detecting disc herniation. Eleven of the studies included information about both the sensitivity and specificity of the SLR and were used for statistical pooling of estimates. However, numerous variations of the SLR maneuver have been reported and no consistency was noted among the studies selected for the Deville and colleagues'68 review. The results of each study, as well as, the pooled estimates by Deville and colleagues⁶⁸ are listed here.

SLR Study	Description and Positive Findings	Reference Standard	Sens	Spec	+LR	-LR
Albeck et al ⁵⁷			.82 (.70, .90)	.21 (.07, .46)	1.0	.86
Charnley et al ⁵⁸	With the patient		.85 (.75, .92)	.57 (.30, .81)	1.98	.26
Gurdjian et al ⁵⁹	supine, the knee fully extended,		.81 (.78, .83)	.52 (.32, .72)	1.69	.37
Hakelius et al ⁶⁰	and the ankle in neutral dorsiflex-		.96 (.95, .97)	.14 (.11, .18)	1.12	.29
Hirsch et al ⁶¹	ion, examiner	Herniated lumbar disc observed during	.91 (.85, .94)	.32 (.20, .46)	1.34	2.8
Jonsson et al ⁶²	then passively flexes the hip	surgery. Hernia was	.87 (.81, .91)	.22 (.07, .48)	1.12	.59
Kerr et al ⁶³	while maintain-	defined as extruded, protruded, and bulging	.98 (.92, 1.00)	.44 (.28, .62)	1.75	.05
Kosteljanetz et al ⁶⁴	ing the knee in extension. Positive test defined by reproduction of sciatic pain between 30° and 60°-75°	disc, or sequestrated in most studies	.89 (.75, .96)	.14 (.01, .58)	1.03	.79
Kosteljanetz et al ⁶⁵			.78 (.64, .87)	.48 (.32, .63)	1.5	.49
Knutsson et al ⁶⁶			.95 (.91, .98)	.10 (.02, .33)	1.05	.50
Spangfort et al ⁶⁷			.97 (.96, .97)	.11 (.08, .15)	1.09	.27
Pooled estimate of the above listed 11 studies as calculated by Deville et al ⁶⁸	As above	As above	.91 (.82, .94)	.26 (.16, .38)	1.23	.35
Straight-leg raise	With patient supine, examiner slowly lifts the symptomatic straight leg until maximal hip flexion is reached or the patient asks to stop. The angle between the leg and the table is measured. Positive if reproduction of familiar radicular pain	MRI findings of disc bulges, herniations, and/or extrusions in 75 patients with complaints of acute or recurrent low back and/or leg pain of ≤ 12 weeks' duration	.52 (.42, .58)	.89 (.79, 95)	4.73	.54

Crossed Straight-Leg Raise Test

Diagnostic Utility of the Crossed Straight-Leg Raise for Detecting Disc Bulge or Herniation

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Deville and colleagues⁶⁸ also compiled the results of eight studies investigating the accuracy of the crossed straight-leg raise (CSLR) for detecting disc herniation. Six of the studies included information about both the sensitivity and specificity of the CSLR and were used for statistical pooling of estimates. The results of each study, as well as the pooled estimates by Deville and colleagues,68 are listed here.

CSLR Study	Description and Positive Findings	Reference Standard	Sens	Spec	+LR	-LR	
Hakelius et al ⁶⁰	Performed identically	Herniated lumbar	.28 (.25, .30)	.88 (.84, .90)	2.33	.82	
Jonsson et al ⁶²	to the SLR except the uninvolved lower ex-	disc observed during surgery.	.22 (.16, .30)	.93 (.64, 1.0)	3.14	.84	
Kerr et al ⁶³	tremity is lifted. A positive test is defined as reproduc- ing pain in the in- volved lower	Hernia was defined as ex-	.43 (.33, .53)	.93 (.80, .99)	6.14	.61	
Kosteljanetz et al ⁶⁴			truded, protruded,	.57 (.34, .79)	1.0 (.03, 1.0)	Undefined	.43
Knutsson et al ⁶⁶		and bulging disc, or sequestrated	.25 (.18, .32)	.93 (.73, 1.0)	3.57	.81	
Spangfort et al ⁶⁷	extremity	in most studies	.23 (.21, .25)	.88 (.84, .91)	1.92	.88	
Pooled estimate for the 6 studies listed above as calculated by Deville and colleagues ⁶⁸	As above	As above	.29 (.24, .34)	.88 (.86, .90)	2.42	.81	

Slump Test

Reliability of the Slump Test

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 4-32 Slump test.

Test and Study	Description and Positive Findings	Population	Intra-examiner Reliability
Knee extension range of motion during the slump test ⁷⁰	Subject sitting maximally slumped with 1 thigh flexed 25° to the horizontal plane. Starting with the knee at 90° and maximal ankle dorsiflexion, the knee was slowly extended to maximal discomfort and measured with an electrogoniometer	20 asymptom- atic subjects	With cervical flexion: ICC $=$.95 With cervical extension: ICC $=$.95

Diagnostic Utility of the Slump Test for Detecting Disc Bulge or Herniation

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Slump test ⁶⁹	Sitting with the back straight, the patient is encouraged to slump into lumbar and thoracic flexion while looking straight ahead. Then the patient fully flexes the neck and extends 1 knee. Last, the patient dorsiflexes the ipsilateral foot. Positive if reproduction of familiar radicular pain	75 patients with complaints of acute or re- current low back and/or leg pain of ≤ 12 weeks' duration	MRI findings of disc bulges, herni- ations, and/or extrusions	.84 (.74, .90)	.83 (.73, .90)	4.94	.19

Slump Test (continued)

Diagnostic Utility of the Slump Test for Detecting Disc Bulge/Herniation

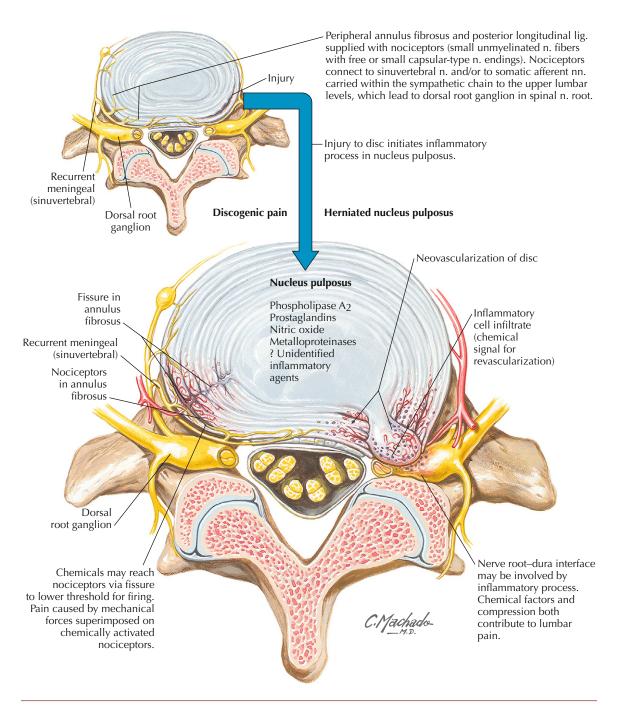


Figure 4-33 Role of inflammation in lumbar pain.

Tests for Lumbar Segmental Instability Reliability of Tests for Lumbar Segmental Instability		Interpretation
		Substantial agreement
		Moderate agreement
		Fair agreement
		Slight agreement
	0- 10	No agreement

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Hip extension test ⁷¹	Prone patient extends one hip at a time. Positive if lateral shift, rotation, or hyperextension of the lumbar spine	42 patients with chronic low back pain	$\kappa = .72$ (left) $\kappa = .76$ (right)
Painful arc in flexion ⁴⁵	Patient reports symptoms at a particular point in the movement but the symptoms are not present before or after the movement		к = .69 (.54, .84)
Painful arc on return from flexion ⁴⁵	Patient experiences symptoms when returning from the flexed position		к = .61 (.44, .78)
Instability catch ⁴⁵	Patient experiences a sudden acclimation of deceleration of trunk movements outside the primary plane of movement	63 patients with current	к = .25 (10, .60)
Gower's sign ⁴⁵	Patient pushes up from thighs with the hands when returning to upright from a flexed position	low back pain	к = .00 (-1.09, 1.09)
Reversal of lumbo- pelvic rhythm ⁴⁵	On attempting to return from the flexed position, the patient bends the knees and shifts the pelvis anteriorly		к = .16 (15, .46)
Aberrant movement pattern ⁴⁵			к = .60 (.47, .73)
Aberrant movement pattern ³²	If the patient demonstrates any of the above five possible movement patterns they are considered to be positive for an aberrant movement pattern.	123 patients with low back pain < 90 days	κ = .18 (07, .43)
Posterior shear test ⁴⁵	With patient standing with arms crossed over the abdomen, examiner places one hand over the patient's crossed arms while the other stabilizes the pelvis. Examiner uses the index finger to palpate the L5-S1 interspace. Examiner then applies a posterior force through the patient's crossed arms. This procedure is performed at each level. A positive test is indicated by provocation of symptoms.	63 patients with current low back pain	κ = .35 (.20, .51)
Prone instability test ⁴⁵	The patient is prone with the edge of the torso on the plinth		к = .87 (.80, .94)
Prone instability test ³²	while the legs are over the edge and feet are resting on the floor. Examiner performs a posteroanterior pressure maneuver and notes the provocation of any symptoms. The patient then lifts the feet off the floor, and examiner again performs the posteroanterior pressure maneuver. Provocation of symptoms	123 patients with low back pain < 90 days	κ = .28 (.10, .47)
Prone instability test ³⁶	is reported. Test is considered positive if the patient experiences symptoms while feet are on the floor, but symptoms disappear when the feet are lifted off the floor.	39 patients with low back pain	к = .46 (.15, .77)
Trendelenburg ⁷²	While standing, the patient flexes one hip to 30° and lifts the ipsilateral pelvis above the transiliac line. The test is positive if the patient cannot hold the position for 30 seconds or needs more than one finger for balance.	36 patients with chronic low back	$\kappa = .83 \text{ (left)}$ $\kappa = .75 \text{ (right)}$
Active straight-leg raise (ASLR) ⁷²	The patient is supine with straight legs and feet 20 cm apart. The patient is instructed to "try to raise your legs, one after the	pain	κ = .70 (left) $ κ = .71 (right)$
Active straight-leg raise (ASLR) ⁷³	other above the couch without bending the knee." The patient is asked to score the maneuver on a 6-point scale ranging from "not difficult at all" to "unable to do."	50 females with lumbo- pelvic pain	Test-retest ICC = .83

Tests for Lumbar Segmental Instability (continued)

Reliability of Tests for Lumbar Segmental Instability

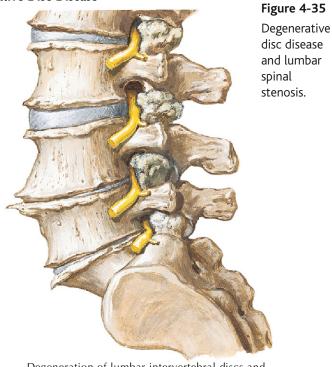
Figure 4-34 Prone instability test.

Tests for Lumbar Spinal Stenosis

Diagnostic Utility of Tests for Lumbar Spinal Stenosis

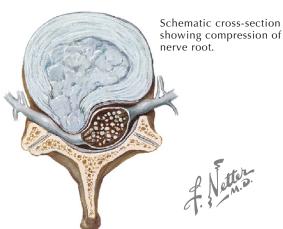
+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR	
Abnormal Rhomberg test ²⁵	Patient stands with feet together and eyes closed for 10 seconds. Considered abnormal if compensatory movements were required to keep feet planted.	93 patients with back pain with or without radiation to the lower extremities Diagnosis of spinal stenosis by retrospective chart review and confirmed by MRI or CT	.39 (.24, .54)	.91 (.81, 1.0)	4.3	.67		
Thigh pain with 30 seconds of extension ²⁵	Patient performs hip ex- tension for 30 seconds. Positive if patient has pain in the thigh follow- ing or during extension		.51 (.36, .66)	.69 (.53, .85)	1.6	.71		
Two-stage	Subjects ambulate on a	45 subjects with	Diagnosis of	Time to onset of symptoms		symptoms		
treadmill test ¹⁵	level and inclined (15°) treadmill for 10 minutes. The patient rests for 10 minutes while sitting	low back and lower extremity pain	spinal stenosis by MRI or CT scanning	.68 (.50, .86)	.83 (.66, 1.0)	(.66, (1.40,		
	upright in a chair after each treadmill test			Longer total walking time during inclined test			the	
				.50 (.38, .63)	.92 (.78, 1.0)	6.46 (3.1, 13.5)	.54	
				Prolonged recovery after level walking			lking	
		.82 (.6698)	.68 (.48, .90)	2.59 (1.3, 5.2)	.26			


Tests for Lumbar Spinal Stenosis (continued)

Diagnostic Utility of Tests for Lumbar Spinal Stenosis

Degenerative Disc Disease



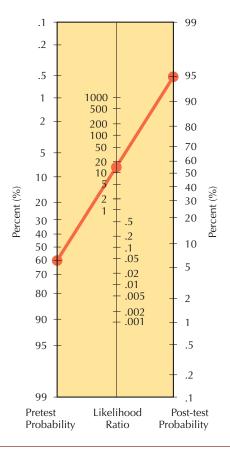
Radiograph of thoracic spine shows narrowing of intervertebral spaces and spur formation.

Degeneration of lumbar intervertebral discs and hypertrophic changes at vertebral margins with spur formation. Osteophytic encroachment on intervertebral foramina compresses spinal nerves.

Lumbar Disc Herniation

Tests for Radiographic Lumbar Instability

Diagnostic Utility of Tests for Radiographic Lumbar Instability


+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR	
Age < 37 years old ³¹	History collected prior to physical examination	49 patients with low back pain re- ferred for flexion-extension radiographs			.57 (.39, (.74)	.81 (.60, .92)	3.0 (1.2, 7.7)	.53 (.33, .85)
Lumbar flexion > 53° ³¹	Range of motion demonstrated by single inclinometer			.68 (.49, .82)	.86 (.65, .94)	4.8 (1.6, 14.0)	.38 (.21, .66)	
Total extension greater than 26°31	Range of motion demonstrated by single inclinometer		p	Radiological find-	.50 (.33, .67)	.76 (.55, .89)	2.1 (.90, 4.9)	.66 (.42, 1.0)
Lack of hypomobility during intervertebral testing ³¹	With patient prone, examiner applies a posteroanterior		ings revealed either 2 segments with rotational/transla-	.43 (.27, .61)	.95 (.77, .99)	9.0 (1.3, 63.9)	.60 (.43, .84)	
Any hypermobility during intervertebral motion testing ³¹	force to the spinous process of each lumbar vertebra. Mobility of each segment was judged as "normal," "hypermobile," or "hypomobile"		tional instability or one segment with both rotational and translational instability.	.46 (.30, .64)	.81 (.60, .92)	2.4 (.93, 6.4)	.66 (.44, .99)	
Lumbar flexion greater than 53° + Lack of hypomobility during intervertebral testing ³¹	Combination of both factors above			.29 (.13, .46)	.98 (.91, 1.0)	12.8 (.79, 211.6)	.72 (.55, .94)	

Tests for Radiographic Lumbar Instability (continued)

Diagnostic Utility of Tests for Radiographic Lumbar Instability

Fritz and colleagues⁷⁴ investigated the accuracy of the clinical examination in 49 patients with radiographically determined lumbar instability. Results revealed that two predictor variables, including lack of hypomobility of the lumbar spine and lumbar flexion greater than 53°, demonstrated a +LR of 12.8 (.79, 211.6). The nomogram below represents the change in pretest probability (57% in this study) to a post-test probability of 94.3%.

Figure 4-36Nomogram. Nomogram representing the post-test probability of lumbar instability given the presence of hypomobility in the lumbar spine and lumbar flexion greater than 53 degrees. (*Adapted with permission from Fagan TJ. Nomogram for Baye's theorem.* N Engl J Med. 1975;293-257. Copyright 2005, Massachusetts Medical Society. All rights reserved.)

Tests for Ankylosing Spondylitis

Diagnostic Utility of Tests for Ankylosing Spondylitis

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Measurements of chest expansion ²⁷	<7 cm (procedure not reported)			.63	.53	3 1.34	.70
•	<2.5 cm (procedure not reported)			.91	.99	91	.09
Schober test < 4 cm ²⁷	With patient standing, examiner marks a point 5 cm below and 10 cm above S2. This distance is then measured in the upright position and then in full flexion. The difference between the two measurements is calculated and recorded to the closest centimeter	449 randomly selected pa- tients with low back pain	The New York criteria and radio- graphic con- firmation of ankylosing spondylitis	.30	.86	2.14	.81
Decreased lumbar lor- dosis ²⁷	Visual observation individ- ually judged by each examiner			.36	.80	1.8	.80
Direct tenderness over sacroiliac joint ²⁷	Direct pressure over the joint with the patient in an upright position. Positive if patient reports pain			.27	.68	.84	1.07

Classification Methods

Reliability of Low Back Pain Classification Systems

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
McKenzie's classifi- cation for low back pain ⁷⁵	Therapists (of which only 32% had ever taken any form of McKenzie training) completed a McKenzie evaluation form and classified the patient as exhibiting a postural, dysfunction or derangement syndrome. Therapists also determined if the patient presented with a lateral shift	363 patients re- ferred to physi- cal therapists for the treat- ment of low back pain	κ for classification = 26 κ for lateral shift = .26
McKenzie's classification for low back pain ⁵²	Two examiners with greater than 5 years of training in the McKenzie method evaluated all patients. Therapists completed a McKenzie evaluation form and classified the patient as exhibiting a postural, dysfunction, or derangement syndrome. Therapists also determined if the patient presented with a lateral shift	39 patients with low back pain	κ for classification = .70 κ for lateral shift = .20
McKenzie's evaluation ⁷⁶	Examination consisted of history-taking, evaluation of spinal range of motion, and specified test movements	46 consecutive patients presenting with low back pain	Classification of syndrome $\kappa=.70$ Derangement subsyndrome $\kappa=.96$ Presence of lateral shift $\kappa=.52$ Deformity of sagittal plane $\kappa=1.0$
Movement impairment–based classification system for lumbar spine syndromes ⁷⁷	Examiners used a standardized history and physical examination to assess patients and classify them into one of five lumbar spine categories	24 patients with chronic low back pain	κ for classification = .61
Treatment-based classification ³²	Thirty examiners used a standardized history and physical examination to assess patients and classify them into one of three treatment-based categories	123 patients with low back pain < 90 days	κ for classification = .61 (.56, .64)
Treatment-based classification ⁷⁴	Examiners used a standardized history and physical examination to assess patients and classify them into one of four treatment-based categories	120 patients with low back pain	κ for classification = .56
Treatment-based classification ⁷⁸	Examiners used a standardized history and physical examination to assess patients and classify them into one of four treatment-based categories after a 1-day training session	45 patients with low back pain	κ for classification = .45

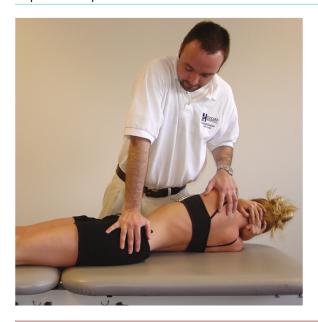
Classification Methods

Treatment-Based Classification Method⁷⁹

Subgroup Criteria	Treatment Approach
Specific Exercise Subgroup	
Extension Symptoms distal to the buttock Symptoms centralize with lumbar extension Symptoms peripheralize with lumbar flexion Directional preference for extension	 End-range extension exercises Mobilization to promote extension Avoidance of flexion activities
Flexion Older age (>50 years) Directional preference for flexion Imaging evidence of lumbar spine stenosis	 End-range flexion exercises Mobilization or manipulation of the spine and/or lower extremities Exercise to address impairments of strength or flexibility Body weight-supported ambulation
Stabilization Subgroup	
 Age (<40 years) Average SLR (>91°) Aberrant movement present Positive prone instability test 	Exercises to strengthen large spinal muscles (erector spinae, oblique abdominals) Exercises to promote contraction of deep spinal muscles (multifidus, transversus abdominis)
Manipulation Subgroup	
 No symptoms distal to knee Duration of symptoms < 16 days Lumbar hypomobility FABQW < 19 Hip internal rotation ROM > 35° 	 Manipulation techniques for the lumbopelvic region Active lumbar range of motion exercises
Traction Subgroup	
 Symptoms extend distal to the buttock(s) Signs of nerve root compression are present Peripheralization occurs with extension movement or positive contralateral SLR test is present 	 Prone mechanical traction Extension specific exercise activities

Rather than attempt to classify low back pain based on pathoanatomy, the Treatment-Based Classification (TBC) system identifies subgroups of patients thought to respond to specific conservative treatment interventions. Although its initial proposal was based on experience and clinical reasoning,80 researchers have since systematically identified many of the historical and clinical examination factors associated with each subgroup using clinical prediction rule research methodology.^{1,2,81}

Interventions


Diagnostic Utility of Single Factors for Identifying Patients Likely to Benefit from Spinal Manipulation

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Criteria	Population	Reference Standard	Sens	Spec	+LR	-LR	
Symptoms < 16 days ¹				.56 (.39, .72)	.87 (.73, .94)	4.39 (1.83, 10.51)		
FABQ work subscale score < 19 ¹	Self-report			.84 (.68, .93)	.49 (.34, .64)	1.65 (1.17, 2.31)		
No symptoms distal to the knee ¹			≥ 50% reduction	.88 (.72, .95)	.36 (.23, .52)	1.36 (1.04, 1.79)		
At least one hip with > 35° internal rotation ROM ¹	With patient prone, measured with standard goniometer	71 patients with low back pain	71 patients with low	in back pain patients related disability within 1 week as k pain measured by the	.50 (.34, .66)	.85 (.70, .93)	3.25 (1.44, 7.33)	Not reported
Hypomobility in the lumbar spine ¹	With patient prone, examiner applies a posteroanterior force to the spinous process of each lumbar vertebra. Mobility of each segment was judged as "normal," "hypermobile," or "hypomobile"		Oswestry questionnaire	.97 (.84, .99)	.23 (.13, .38)	1.26 (1.05, 1.51)		

Interventions

Diagnostic Utility of Combinations of Factors for Identifying Patients Likely to Benefit from Spinal Manipulation

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 4-37

Spinal manipulation. Spinal manipulation technique used by Flynn and colleagues.¹ The patient is passively sidebent toward the side to be manipulated (away from the therapist). The therapist then rotates the patient away from the side to be manipulated (toward the therapist) and delivers a quick thrust through the anterior superior iliac spine in a posteroinferior direction.

Test and Study Quality	Description and Criteria	Population	Reference Standard	Sens	Spec	+LR	-LR
Symptoms < 16 days positive + No symptoms distal to the knee All 5 tests positive ≥4 tests positive			.19 (.09, .35)	1.00 (.91, 1.00)	Undefined		
			.63 (.4577)	.97 (.87-1.0)	24.38 (4.63-139.41)		
+ Hypomobility in the lumbar spine	≥3 tests positive	71 patients with low	≥50% reduc- tion in back	.94 (.80, .98)	.64 (.48, .77)	2.61 (1.78, 4.15)	
scale score < 19 + At least one hip	≥2 tests positive	back pain	pain related disability within 1 week as mea- sured by the Oswestry questionnaire	1.00 (.89, 1.0)	.15 (.07, .30)	1.18 (1.09, 1.42)	Not reported
	≥1 test positive			1.00 (.89, 1.0)	.03 (.005, .13)	1.03 (1.01, 1.15)	
Symptoms < 16 days + No symptoms distal to the knee ⁸¹	Must meet both criteria	141 patients with low back pain		.56 (.43, .67)	.92 (.84, .96)	7.2 (3.2, 16.1)	

Interventions

Diagnostic Utility of Single and Combinations of Factors for Identifying Patients Likely to Benefit from Lumbar Stabilization Exercises

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Age < 40 years ²	Self-report	≥50% reduction in back pain related disability with low back pain with or of lumbar	.61 (.39, .80)	.83 (.68, .92)	3.7 (1.6, 8.3)	.47 (.26, .85)	
Average straight-leg raise >91°2	Measured with an inclinometer			.28 (.13, .51)	.92 (.78, .97)	3.3 (.90, 12.4)	.79 (.58, 1.1)
Aberrant movement present ²	Presence of any of the following during flexion ROM: Instability catch Painful arc of motion "Thigh climbing" (Gower's sign) Reversal of lumbopelvic rhythm		tion in back pain related disability	.78 (.55, .91)	.50 (.35, .66)	1.6 (1.0, 2.3)	.44 (.18, 1.1)
Positive prone instability test ²	See description under Tests for Lumbar Segmental Instability	without leg pain	ū	.72 (.49, .88)	.58 (.42, .73)	1.7 (1.1, 2.8)	.48 (.22, 1.1)
	≥3 tests positive		questionnaire	.56 (.34, .75)	.86 (.71, .94)	4.0 (1.6, 10.0)	.52 (.30, .88)
Combination of any 4 factors above ²	≥2 tests positive			.83 (.61, .94)	.56 (.40, .71)	1.9 (1.2, 2.9)	.30 (.10, .88)
	≥1 test positive			.94 (.74, .99)	.28 (.16, .44)	1.3 (1.0, 1.6)	.20 (.03, 1.4)

OUTCOME MEASURES

Outcome Measure	Scoring and Interpretation	Test-Retest Reliability	MCID
Oswestry Disability Index (ODI)	Users are asked to rate the difficulty of performing 10 functional tasks on a scale of 0 to 5 with different descriptors for each task. A total score out of 100 is calculated by summing each score and doubling the total. The answers provide a score between 0 and 100, with higher scores representing more disability	ICC = .91 ⁸²	11 ⁸³
Modified Oswestry Disability Index (modified ODI)	As above, except the modified ODI replaces the sex life question with an employment/homemaking question	ICC = .90 ⁸⁴	684
Roland-Morris Disability Questionnaire (R-M)	Users are asked to answer 23 or 24 (depending on the version) questions about their back pain and related disability. The RMDQ is scored by adding the number of items checked by the patient, with higher numbers indicating more disability	ICC = .91 ⁸⁵	5 ⁸³
Fear-Avoidance Beliefs Questionnaire (FABQ)	Users are asked to rate their level of agreement with statements concerning beliefs about the relationship between physical activity, work, and their back pain. Level of agreement is answered on a Likert-type scale ranging from 0 (completely disagree) to 7 (completely agree). The FABQ is made of two parts: a seven-item work subscale (FABQW) and a four-item physical activity subscale (FABQPA). Each scale is scored separately, with higher scores representing greater fear-avoidance	FABQW: ICC = .82 FABQPA: ICC = .66 ⁸⁶	Not Available
Numeric Pain Rating Scale (NPRS)	Users rate their level of pain on an 11-point scale ranging from 0 to 10, with high scores representing more pain. Often asked as "current pain" and "least," "worst," and "average" pain in the past 24 hours	ICC = . 72 ⁸⁷	2 ^{88,89}
MCID, Minimum clinically important	difference.		

APPENDIX

Quality Assessment of Diagnostic Studies Using QUADAS

	Russel 1981 ⁹¹	Blower 1984 ⁹²	Gran 1985	Kerr 1988	Katz 1995	Phillips 1996 ⁹³	Fritz 1997	Lauder 2000	Leboeuf-Yde 2002	Abbott 2003	Laslett 2005	Abbott 2005	Fritz 2005	Hicks 2005	Majlesi 2008
 Was the spectrum of patients repre- sentative of the patients who will receive the test in practice? 	U	Υ	Υ	U	Υ	Υ	Υ	Υ	N	Υ	Υ	Υ	Υ	Υ	Υ
Were selection criteria clearly described?	N	N	Υ	N	Υ	N	N	N	Υ	Υ	Υ	Υ	Υ	Υ	Y
Is the reference standard likely to cor- rectly classify the target condition?	Υ	Υ	Υ	U	N	U	Υ	Υ	U	U	Υ	Υ	Υ	Υ	Υ
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	U	U	U	U	U	N	U	U	Y	U	Y	U	Υ	N	U
5. Did the whole sample or a random selection of the sample, receive verifi- cation using a reference standard of diagnosis?	Υ	U	Y	N	Y	Y	Υ	Υ	Y	Y	Y	Y	Υ	Y	Y
6. Did patients receive the same reference standard regardless of the index test result?	U	U	Υ	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Υ	Υ	Υ	Y	Υ	Υ	Y	Y	Υ	Υ	Υ	Υ	Y	Υ	Y
Was the execution of the index test described in sufficient detail to permit replication of the test?	Y	N	Υ	N	Y	U	U	Υ	N	Y	Y	Υ	Y	Υ	U
9. Was the execution of the reference standard described in sufficient detail to permit its replication?	N	U	Υ	N	Υ	N	U	Υ	Υ	Y	Υ	Υ	Υ	Υ	U
10. Were the index test results inter- preted without knowledge of the results of the reference test?	U	N	Υ	U	Y	N	U	Υ	U	Y	Y	Υ	Υ	Υ	Y
11. Were the reference standard results interpreted without knowledge of the results of the index test?	U	U	Υ	U	Υ	Υ	Υ	U	U	Υ	Υ	Υ	Υ	Υ	Υ

APPENDIX (continued)

Quality Assessment of Diagnostic Studies Using QUADAS

	Russel 1981 ⁹¹	Blower 1984 ⁹²	Gran 1985	Kerr 1988	Katz 1995	Phillips 1996 ⁹³	Fritz 1997	Lauder 2000	Leboeuf-Yde 2002	Abbott 2003	Laslett 2005	Abbott 2005	Fritz 2005	Hicks 2005	Majlesi 2008
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	Y	Y	U	Y	U	U	Y	U	Y	Y	Y	Y	Y	Y
13. Were uninterpretable/ intermediate test results reported?	N	U	Y	U	Y	Υ	Y	Υ	Υ	Υ	Y	Υ	Υ	Y	U
14. Were withdrawals from the study explained?	U	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Y
Quality summary rating:			\Diamond		\rightarrow			\Diamond		\rightarrow	\langle	\rightarrow	\rightarrow	\langle	\rightarrow
$Y = yes, N = no, U = unclear.$ Good quality $(Y - N = 10 \text{ to } 14)$ Fair quality $(Y - N = 5 \text{ to } 9)$ Poor quality $(Y - N \le 4)$															

REFERENCES

- Flynn T, Fritz J, Whitman J, et al. A clinical prediction rule for classifying patients with low back pain who demonstrate short-term improvement with spinal manipulation. Spine. 2002;27:2835-2843.
- Hicks GE, Fritz JM, Delitto A, McGill SM. Preliminary development of a clinical prediction rule for determining which patients with low back pain will respond to a stabilization exercise program. *Arch Phys Med Rehabil.* 2005;86:1753-1762.
- Vleeming A, Pool-Goudzwaard AL, Stoeckart R, et al. The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. *Spine*. 1995;20:753-758.
- Bogduk N. The applied anatomy of the lumbar fascia. Spine. 1984;9:164-170.
- Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl. 1989;230:1-54.
- Bogduk N. Clinical Anatomy of the Lumbar Spine and Sacrum. London: Churchill Livingstone; 1997.
- Evans C, Oldreive W. A study to investigate whether golfers with a history of low back pain show a reduced endurance of transversus abdominis. *J Manual Ma*nipulative Ther. 2000;8:162-174.
- Kay AG. An extensive literature review of the lumbar multifidus: biomechanics. *J Manual Manipulative Therapy*. 2001;9:17-39.
- Norris CM. Spinal stabilisation; 1. Active lumbar stabilisation—concepts. *Physiotherapy*. 1995;81:61-78.
- 10. Bogduk N. Neck pain. *Aust Fam Physician*. 1984;13:26-30.
- 11. Schwarzer AC, Aprill CN, Derby R, et al. The relative contributions of the disc and zygapophyseal joint in chronic low back pain. *Spine*. 1994;19:801-806.
- Schwarzer AC, Aprill CN, Derby R, et al. Clinical features of patients with pain stemming from the lumbar zygapophysial joints. Is the lumbar facet syndrome a clinical entity? Spine. 1994;19:1132-1137.
- 13. McKenzie RA. Mechanical diagnosis and therapy for disorders of the low back. In: Twomay LT, Taylor JR, eds. 3rd ed. *Physical Therapy of the Low Back* (5). Philadelphia: Churchill Livingstone; 2000.141-165.
- Morris EW, Di Paola M, Vallance R, Waddell G. Diagnosis and decision making in lumbar disc prolapse and nerve entrapment. Spine. 1986;11:436-439.
- 15. Fritz JM, Erhard RE, Delitto A, et al. Preliminary results of the use of a two-stage treadmill test as a clinical diagnostic tool in the differential diagnosis of lumbar spinal stenosis. *J Spinal Disord*. 1997;10:410-416.
- 16. Fritz JM, Erhard RE, Hagen BF. Segmental instability of the lumbar spine. *Phys Ther*. 1998;78:889-896.
- 17. O'Sullivan PB. Lumbar segmental 'instability': clinical presentation and specific stabilizing exercise management. *Man Ther*. 2000;5:2-12.

- Schwarzer AC, Wang SC, Bogduk N, et al. Prevalence and clinical features of lumbar zygapophysial joint pain: a study in an Australian population with chronic low back pain. *Ann Rheum Dis.* 1995;54:100-106.
- Dreyfuss P, Tibiletti C, Dreyer SJ. Thoracic zygapophyseal joint pain patterns. A study in normal volunteers. Spine. 1994;19:807-811.
- Fukui S, Ohseto K, Shiotani M. Patterns of pain induced by distending the thoracic zygapophyseal joints. *Reg Anesth*. 1997;22:332-336.
- McCombe PF, Fairbank JC, Cockersole BC, Pynsent PB. 1989 Volvo Award in clinical sciences. Reproducibility of physical signs in low-back pain. *Spine*. 1989;14:908-918.
- 22. Roach KE, Brown MD, Dunigan KM, et al. Test-retest reliability of patient reports of low back pain. *J Orthop Sports Phys Ther.* 1997;26:253-259.
- Vroomen PC, de Krom MC, Knottnerus JA. Consistency of history taking and physical examination in patients with suspected lumbar nerve root involvement. Spine. 2000;25:91-97.
- Van Dillen LR, Sahrmann SA, Norton BJ, et al. Reliability of physical examination items used for classification of patients with low back pain. *Phys Ther*. 1998;78:979-988.
- Katz JN, Dalgas M, Stucki G, et al. Degenerative lumbar spinal stenosis. Diagnostic value of the history and physical examination. *Arthritis Rheum*. 1995;38:1236-1241.
- Lauder TD, Dillingham TR, Andary M, et al. Effect of history and exam in predicting electrodiagnostic outcome among patients with suspected lumbosacral radiculopathy. Am J Phys Med Rehabil. 2000;79:60-68; quiz 75-76.
- Gran JT. An epidemiological survey of the signs and symptoms of ankylosing spondylitis. *Clin Rheumatol*. 1985;4:161-169.
- 28. Lindell O, Eriksson L, Strender LE. The reliability of a 10-test package for patients with prolonged back and neck pain: could an examiner without formal medical education be used without loss of quality? A methodological study. BMC Musculoskelet Disord. 2007;8:31.
- Breum J, Wiberg J, Bolton JE. Reliability and concurrent validity of the BROM II for measuring lumbar mobility. *J Manipulative Physiol Ther*. 1995;18: 497-502
- Evans K, Refshauge KM, Adams R. Measurement of active rotation in standing: reliability of a simple test protocol. *Percept Mot Skills*. 2006;103:619-628.
- Fritz JM, Piva SR, Childs JD. Accuracy of the clinical examination to predict radiographic instability of the lumbar spine. *Eur Spine J.* 2005;14:743-750.
- Fritz JM, Brennan GP, Clifford SN, et al. An examination of the reliability of a classification algorithm for

- subgrouping patients with low back pain. Spine. 2006;31:77-82.
- 33. Haswell K, Williams M, Hing W. Interexaminer reliability of symptom-provoking active sidebend, rotation and combined movement assessments of patients with low back pain. J Manual Manipulative Ther. 2004;12:11-20.
- 34. Cleland JA, Childs JD, Fritz JM, Whitman JM. Interrater reliability of the history and physical examination in patients with mechanical neck pain. Arch Phys Med Rehabil. 2006;87:1388-1395.
- 35. Weiner DK, Sakamoto S, Perera S, Breuer P. Chronic low back pain in older adults: prevalence, reliability, and validity of physical examination findings. J Am Geriatr Soc. 2006;54:11-20.
- 36. Schneider M, Erhard R, Brach J, et al. Spinal palpation for lumbar segmental mobility and pain provocation: an interexaminer reliability study. J Manipulative Physiol Ther. 2008;31:465-473.
- 37. Landel R, Kulig K, Fredericson M, et al. Intertester reliability and validity of motion assessments during lumbar spine accessory motion testing. Phys Ther. 2008;88:43-49.
- 38. Qvistgaard E, Rasmussen J, Laetgaard J, et al. Intraobserver and inter-observer agreement of the manual examination of the lumbar spine in chronic low-back pain. Eur Spine J. 2007;16:277-282.
- 39. Johansson F. Interexaminer reliability of lumbar segmental mobility tests. Man Ther. 2006;11:331-336.
- 40. Mootz RD, Keating JCJ, Kontz HP, et al. Intra- and interobserver reliability of passive motion palpation of the lumbar spine. J Manipulative Physiol Ther. 1989;12:440-445.
- 41. Keating JCJ, Bergmann TF, Jacobs GE, et al. Interexaminer reliability of eight evaluative dimensions of lumbar segmental abnormality. J Manipulative Physiol Ther. 1990;13:463-470.
- 42. Strender LE, Sjoblom A, Sundell K, et al. Interexaminer reliability in physical examination of patients with low back pain. Spine. 1997;22:814-820.
- 43. Maher CG, Latimer J, Adams R. An investigation of the reliability and validity of posteroanterior spinal stiffness judgments made using a reference-based protocol. Phys Ther. 1998;78:829-837.
- 44. Binkley J, Stratford PW, Gill C. Interrater reliability of lumbar accessory motion mobility testing. Phys Ther. 1995;75:786-795.
- 45. Hicks GE, Fritz JM, Delitto A, Mishock J. The reliability of clinical examination measures used for patients with suspected lumbar segmental instability. Arch Phys Med Rehabil. 2003;84:1858-1864.
- 46. French SD, Green S, Forbes A. Reliability of chiropractic methods commonly used to detect manipulable lesions in patients with chronic low-back pain. J Manipulative Physiol Ther. 2000;23:231-238.
- 47. Horneij E, Hemborg B, Johnsson B, Ekdahl C. Clinical tests on impairment level related to low back pain: a study of test reliability. J Rehabil Med. 2002;34:176-182.

- 48. Abbot J, Mercer S. Lumbar segmental hypomobility: criterion-related validity of clinical examination items (a pilot study). NZ J Physiother. 2003;31:3-9.
- 49. Leboeuf-Yde C, van Dijk J, Franz C, et al. Motion palpation findings and self-reported low back pain in a population-based study sample. J Manipulative Physiol Ther. 2002;25:80-87.
- 50. Abbott JH, McCane B, Herbison P, et al. Lumbar segmental instability: a criterion-related validity study of manual therapy assessment. BMC Musculoskelet Disord. 2005;6:56.
- 51. Downey BJ, Taylor NF, Niere KR. Manipulative physiotherapists can reliably palpate nominated lumbar spinal levels. Man Ther. 1999;4:151-156.
- 52. Kilpikoski S, Airaksinen O, Kankaanpaa M, et al. Interexaminer reliability of low back pain assessment using the McKenzie method. Spine. 2002;27:E207-E214.
- 53. Fritz JM, Delitto A, Vignovic M, Busse RG. Interrater reliability of judgments of the centralization phenomenon and status change during movement testing in patients with low back pain. Arch Phys Med Rehabil. 2000;81:57-61.
- 54. Laslett M, Oberg B, Aprill CN, McDonald B. Centralization as a predictor of provocation discography results in chronic low back pain, and the influence of disability and distress on diagnostic power. Spine J. 2005;5:370-380.
- 55. Rose MJ. The statistical analysis of the intra-observer repeatability of four clinical measurement techniques. Physiotherapy. 1991;77:89-91.
- 56. Viikari-Juntura E, Takala EP, Riihimaki H, et al. Standardized physical examination protocol for low back disorders: feasibility of use and validity of symptoms and signs. J Clin Epidemiol. 1998;51:245-255.
- 57. Albeck MJ. A critical assessment of clinical diagnosis of disc herniation in patients with monoradicular sciatica. Acta Neurochir (Wien). 1996;138:40-44.
- 58. Charnley J. Orthopaedic signs in the diagnosis of disc protrusion. With special reference to the straightleg-raising test. Lancet. 1951;1:186-192.
- 59. Gurdjian ES, Webster Je, Ostrowski AZ, et al. Herniated lumbar intervertebral discs—an analysis of 1176 operated cases. J Trauma. 1961;1:158-176.
- 60. Hakelius A, Hindmarsh J. The significance of neurological signs and myelographic findings in the diagnosis of lumbar root compression. Acta Orthop Scand. 1972;43:239-246.
- 61. Hirsch C, Nachemson A. The reliability of lumbar disc surgery. Clin Orthop. 1963;29:189-195.
- 62. Jonsson B, Stromqvist B. The straight leg raising test and the severity of symptoms in lumbar disc herniation. A preoperative evaluation. Spine. 1995;20:27-30.
- 63. Kerr RS, Cadoux-Hudson TA, Adams CB. The value of accurate clinical assessment in the surgical management of the lumbar disc protrusion. J Neurol Neurosurg Psychiatry. 1988;51:169-173.
- 64. Kosteljanetz M, Bang F, Schmidt-Olsen S. The clinical significance of straight-leg raising (Lasegue's sign) in

- the diagnosis of prolapsed lumbar disc. Interobserver variation and correlation with surgical finding. *Spine*. 1988:13:393-395.
- Kosteljanetz M, Espersen JO, Halaburt H, Miletic T. Predictive value of clinical and surgical findings in patients with lumbago-sciatica. A prospective study (Part I). Acta Neurochir (Wien). 1984;73:67-76.
- 66. Knutsson B. Comparative value of electromyographic, myelographic and clinical-neurological examinations in diagnosis of lumbar root compression syndrome. *Acta Orthop Scand Suppl.* 1961;49:1-135.
- Spangfort EV. The lumbar disc herniation: a computer aided analysis of 2504 operations. *Acta Orthop Scand*. 1972;142:5-79.
- Deville WL, van der Windt DA, Dzaferagic A, et al. The test of Lasegue: systematic review of the accuracy in diagnosing herniated discs. Spine. 2000;25:1140-1147.
- Majlesi J, Togay H, Unalan H, Toprak S. The sensitivity and specificity of the slump and the straight leg raising tests in patients with lumbar disc herniation.
 J Clin Rheumatol. 2008;14:87-91.
- Tucker N, Reid D, McNair P. Reliability and measurement error of active knee extension range of motion in a modified slump test position: a pilot study. *J Man Manip Ther.* 2007;15:E85-E91.
- 71. Murphy DR, Byfield D, McCarthy P, et al. Interexaminer reliability of the hip extension test for suspected impaired motor control of the lumbar spine. *J Manipulative Physiol Ther*. 2006;29:374-377.
- 72. Roussel NA, Nijs J, Truijen S, et al. Low back pain: clinimetric properties of the Trendelenburg test, active straight leg raise test, and breathing pattern during active straight leg raising. *J Manipulative Physiol Ther*. 2007;30:270-278.
- Mens JM, Vleeming A, Snijders CJ, et al. Reliability and validity of the active straight leg raise test in posterior pelvic pain since pregnancy. *Spine*. 2001;26:1167-1171.
- 74. Fritz JM, George S. The use of a classification approach to identify subgroups of patients with acute low back pain. Interrater reliability and short-term treatment outcomes. *Spine*. 2000;25:106-114.
- Riddle DL, Rothstein JM. Intertester reliability of McKenzie's classifications of the syndrome types present in patients with low back pain. *Spine*. 1993;18:1333-1344.
- Razmjou H, Kramer JF, Yamada R. Intertester reliability of the McKenzie evaluation in assessing patients with mechanical low-back pain. *J Orthop Sports Phys Ther.* 2000;30:368-89.
- 77. Trudelle-Jackson E, Sarvaiya-Shah SA, Wang SS. Interrater reliability of a movement impairment-based classification system for lumbar spine syndromes in patients with chronic low back pain. *J Orthop Sports Phys Ther.* 2008;38:371-376.
- 78. Heiss DG, Fitch DS, Fritz JM, et al. The interrater reliability among physical therapists newly trained in a

- classification system for acute low back pain. *J Orthop Sports Phys Ther.* 2004;34:430-439.
- Hebert J, Koppenhaver S, Fritz J, Parent E. Clinical prediction for success of interventions for managing low back pain. *Clin Sports Med.* 2008;27:463-479.
- Delitto A, Erhard RE, Bowling RW. A treatmentbased classification approach to low back syndrome: identifying and staging patients for conservative management. *Phys Ther.* 1995;75:470-489.
- 81. Fritz JM, Childs JD, Flynn TW. Pragmatic application of a clinical prediction rule in primary care to identify patients with low back pain with a good prognosis following a brief spinal manipulation intervention. *BMC Fam Pract*. 2005;6:29.
- 82. Lauridsen HH, Hartvigsen J, Manniche C, et al. Danish version of the Oswestry Disability Index for patients with low back pain. Part 1: Cross-cultural adaptation, reliability and validity in two different populations. *Eur Spine J.* 2006;15:1705-1716.
- Lauridsen HH, Hartvigsen J, Manniche C, et al. Responsiveness and minimal clinically important difference for pain and disability instruments in low back pain patients. BMC Musculoskelet Disord. 2006;7:82.
- 84. Fritz JM, Irrgang JJ. A Comparison of a Modified Oswestry Disability Questionnaire and the Quebec Back Pain Disability Scale. *Phys Ther*. 2001;81:776-788.
- Brouwer S, Kuijer W, Dijkstra PU, et al. Reliability and stability of the Roland Morris Disability Questionnaire: intra class correlation and limits of agreement. *Disabil Rehabil*. 2004;26:162-165.
- 86. Grotle M, Brox JI, Vollestad NK. Reliability, validity and responsiveness of the fear-avoidance beliefs questionnaire: methodological aspects of the Norwegian version. *J Rehabil Med.* 2006;38:346-353.
- 87. Li L, Liu X, Herr K. Postoperative pain intensity assessment: a comparison of four scales in Chinese adults. *Pain Med.* 2007;8:223-234.
- 88. Farrar JT, Berlin JA, Strom BL. Clinically important changes in acute pain outcome measures: a validation study. *J Pain Symptom Manage*. 2003;25:406-411.
- 89. Farrar JT, Portenoy RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. *Pain*. 2000;88:287-294.
- 90. Fukui S, Ohseto K, Shiotani M, et al. Distribution of referred pain from the lumbar zygapophyseal joints and dorsal rami. *Clin J Pain*. 1997;13:303-307.
- Russel AS, Maksymowych W, LeClercq S. Clinical examination of the sacroiliac joints: a prospective study. Arthritis Rheum. 1981;24:1575-1577.
- 92. Blower PW, Griffin AJ. Clinical sacroiliac tests in ankylosing spondylitits and other causes of low back pain—2 studies. *Ann Rheum Dis.* 1984;43:192-195.
- 93. Phillips DR, Twomey LT. A comparison of manual diagnosis with a diagnosis established by a uni-level lumbar spinal block procedure. *Man Ther*. 1996;1:82-87.

CLINICAL SUMMARY AND RECOMMENDATIONS						
Anatomy	201					
Osteology	201					
Arthrology	205					
Ligaments	206					
Muscles	207					
Nerves	208					
Patient History	210					
Sacroiliac Pain and Sacroiliac Dysfunction	210					
Pain Location and Aggravating Factors	211					
Sacroiliac Joint Pain Referral Patterns	212					
Physical Examination Tests	213					
Palpation	213					
Pain Provocation	216					
Motion Assessment	226					
Combinations of Tests	233					
Interventions	236					
Outcome Measures	238					
Appendix	239					
Quality Assessment of Diagnostic Studies for the Sacroiliac Region						
Using QUADAS	239					
References	240					

CLINICAL SUMMARY AND RECOMMENDATIONS

Patient History	
Questions	"Pain relieved by standing" is the only question studied to demonstrate some diagnostic utility (+LR of 3.5) for sacroiliac joint pain.
Pain Location	Recent evidence suggests that patients with sacroiliac joint pain commonly experience the most intense pain around one or both sacroiliac joints with or without referral into the lateral thigh.
Physical Examination	
Pain Provocation Tests	Pain provocation tests generally demonstrate fair to moderate reliability and some exhibit moderate diagnostic utility for detecting sacroiliac joint pain.
	Clusters of pain provocation tests consistently demonstrate good diagnostic utility for detecting sacroiliac joint pain. Using a cluster of four to five tests including <i>distraction</i> , <i>thigh thrust</i> , <i>sacral thrust</i> , and <i>compression</i> after a McKenzie-type repeated motion examination seems to exhibit the best diagnostic utility (+LR of 6.97) and is recommended.
Motion Assessment and Static Palpation	Motion assessment and static palpation tests generally demonstrate very poor reliability and almost no diagnostic utility for either sacroiliac joint pain or innominate torsion and, therefore, are not recommended for use in clinical practice.
	Lumbar hypomobility is the one exception that, although exhibiting questionable reliability, demonstrates some diagnostic utility when used as part of a cluster to determine which patients will respond to spinal manipulation.
Interventions	Patients with low back pain of duration less than 16 days and no symptoms distal to the knees, and/or meet four out of five of the Flynn and colleagues ¹ criteria, should be treated with a lumbosacral manipulation.

Osteology

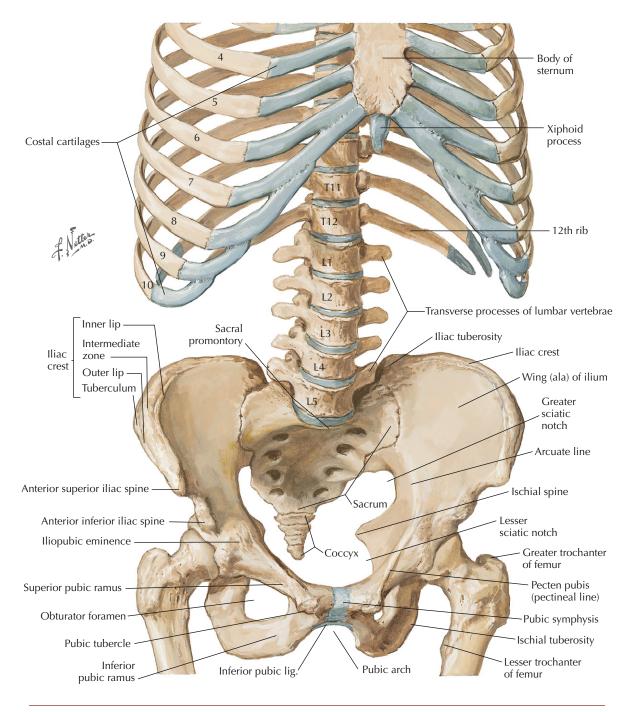


Figure 5-1 Bony framework of abdomen.

Osteology

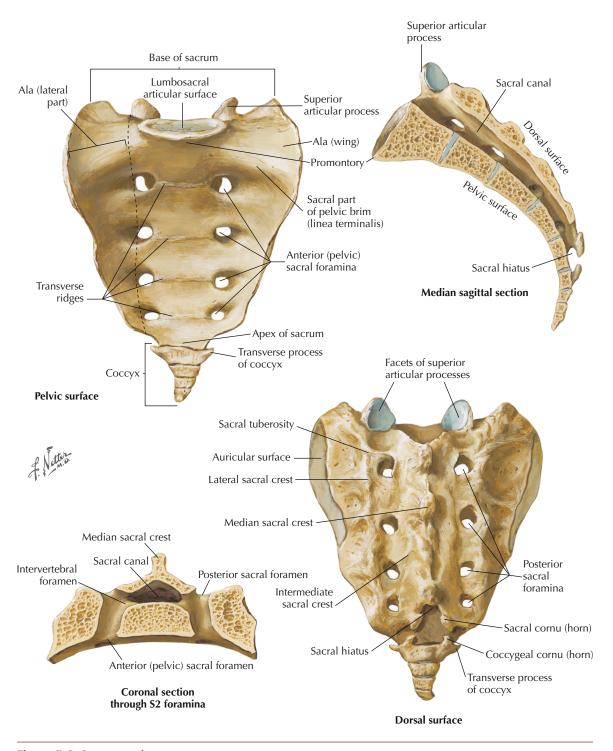


Figure 5-2 Sacrum and coccyx.

Osteology

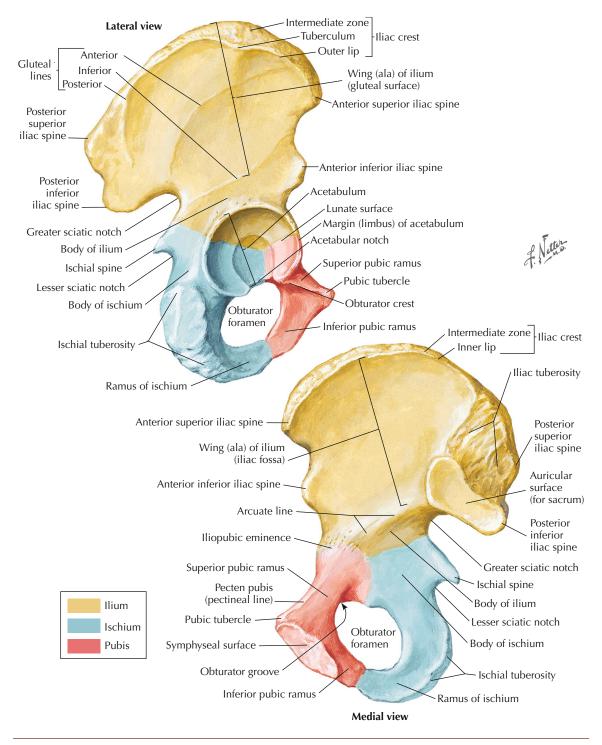


Figure 5-3 Hip (coxal) bone.

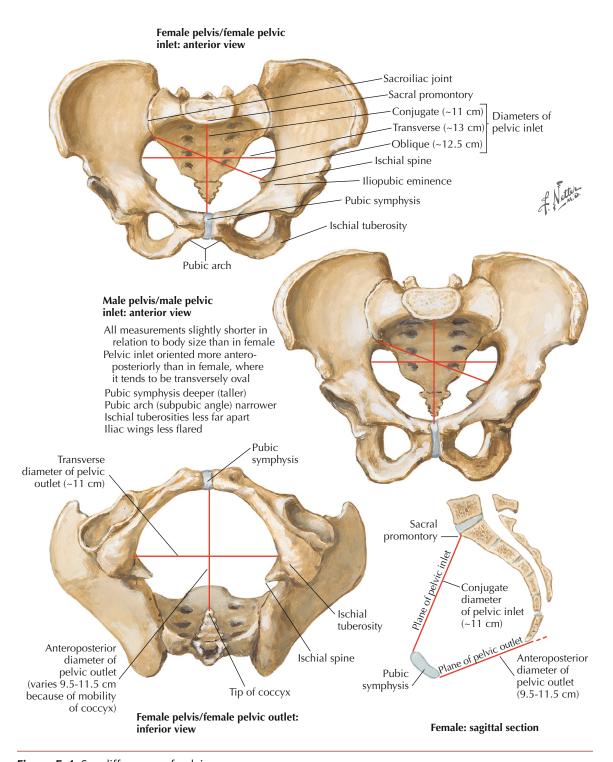


Figure 5-4 Sex differences of pelvis.

Arthrology

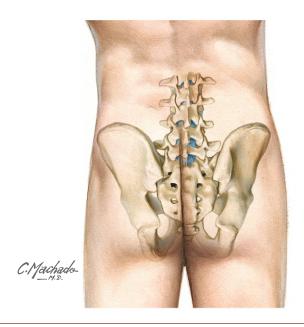


Figure 5-5 Sacroiliac joint.

Sacroiliac Region	Type and Classification	Closed Packed Position	Capsular Pattern
Sacroiliac joint	Plane synovial	Has not been described	Considered a capsular pattern if pain is provoked when joints are stressed
Lumbosacral			
Apophyseal joints	Plane synovial	Extension	Equal limitations of sidebending, flexion, and extension
Intervertebral joint	Amphiarthrodial	Not applicable	Not applicable

Ligaments

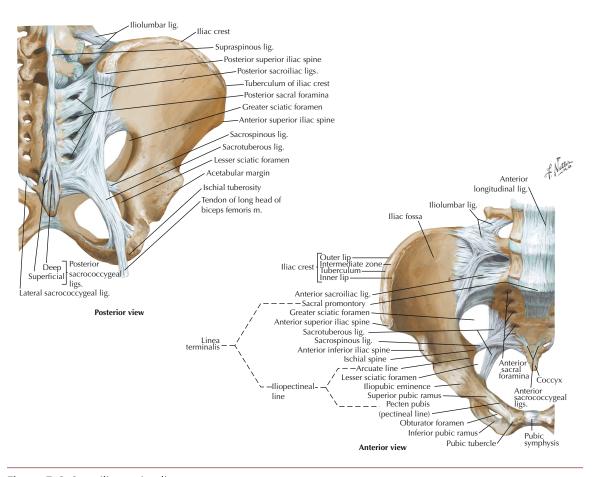
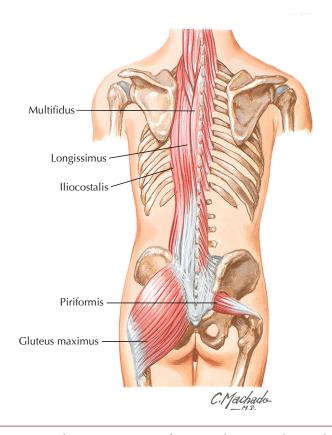
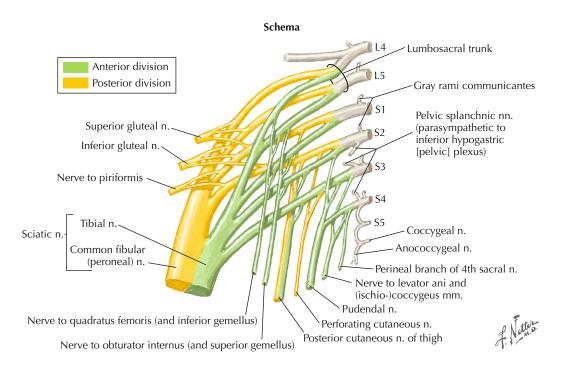
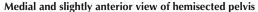


Figure 5-6 Sacroiliac region ligaments.

Sacroiliac Region Ligaments	Attachment	Function
Posterior sacroiliac	Iliac crest to tubercles of S1-S4	Limits movement of sacrum on iliac bones
Anterior sacroiliac	Anterosuperior aspect of sacrum to anterior ala of ilium	Limits movement of sacrum on iliac bones
Sacrospinous	Inferior lateral border of sacrum to ischial spine	Limits gliding and rotary movement of sacrum on iliac bones
Sacrotuberous	Middle lateral border of sacrum to ischial tuberosity	Limits gliding and rotary movement of sacrum on iliac bones
Posterior sacrococcygeal	Posterior aspect of inferior sacrum to posterior aspect of coccyx	Reinforces sacrococcygeal joint
Anterior sacrococcygeal	Anterior aspect of inferior sacrum to anterior aspect of coccyx	Reinforces sacrococcygeal joint
Lateral sacrococcygeal	Lateral aspect of inferior sacrum to lateral aspect of coccyx	Reinforces sacrococcygeal joint
Anterior longitudinal	Extends from anterior sacrum to anterior tubercle of C1. Connects anterolateral vertebral bodies and discs	Maintains stability of vertebral body joints and prevents hyperextension of vertebral column


Figure 5-7 Sacroiliac region muscles. Posterior view of spine and associated musculature.

Sacroiliac Region Muscles	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action	
Gluteus maximus	Posterior border of ilium, dorsal aspect of sacrum and coccyx, and sacrotuberous ligament	Iliotibial tract of fascia lata and gluteal tuber- osity of femur	Inferior gluteal nerve (L5, S1, S1)	Extension, external ro- tation and some ab- duction of the hip joint	
Piriformis	Anterior aspect of sacrum and sacrotuberous ligament	Superior greater tro- chanter of femur	Ventral rami S1, S2	External rotation of extended hip, abduction of flexed hip	
Multifidi	Sacrum, ilium, transverse pro- cesses T1-T3, articular pro- cesses C4-C7	Spinous processes of vertebrae two to four segments above origin	Dorsal rami of spinal nerves	Stabilizes vertebrae	
Longissimus	Iliac crest, posterior sacrum, spinous processes of sacrum	Transverse processes of lumbar vertebrae	Dorsal rami of	Bilaterally extends ver- tebral column	
Iliocostalis	and inferior lumbar vertebrae, supraspinous ligament	Inferior surface of ribs 4-12	spinal nerves	Unilaterally sidebends spinal column	

Nerves

Nerve	Segmental Level	Sensory	Motor
Superior gluteal	L4, L5, S1	No sensory	Tensor fascia latae, gluteus medius, gluteus minimus
Inferior gluteal	L5, S1, S2	No sensory	Gluteus maximus
Nerve to piriformis	S1, S2	No sensory	Piriformis
Sciatic	L4, L5, S1, S2, S3	Hip joint	Knee flexors and all muscles of leg and foot
Nerve to quadratus femoris	L5, S1, S2	No sensory	Quadratus femoris, inferior gemellus
Nerve to obturator internus	L5, S1, S2	No sensory	Obturator internus, superior gemellus
Posterior cutaneous	S2, S3	Posterior thigh	No motor
Perforating cutaneous	S2, S3	Inferior gluteal region	No motor
Pudendal	S2, S3, S4	Genitals	Perineal muscles, external urethral sphincter, external anal sphincter
Nerve to levator ani	S3, S4	No sensory	Levator ani
Perineal branch	S1, S2, S3	Genitals	No motor
Anococcygeal	S4, S5, C0	Skin in the coccygeal region	No motor
Coccygeal	S3, S4	No sensory	Coccygeus
Pelvic splanchnic	S2, S3, S4	No sensory	Pelvic viscera

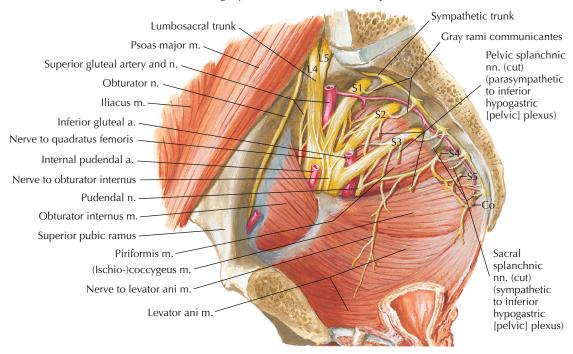


Figure 5-8 Sacroiliac region nerves.

PATIENT HISTORY

Sacroiliac Pain and Sacroiliac Dysfunction

There has been considerable controversy surrounding the contribution of the sacroiliac joint in low back pain syndromes. Recent research suggests that the sacroiliac joint can be a contributor to low back pain and disability and can certainly be a primary source of pain.²⁻⁷ The concept of "sacroiliac joint dysfunction" is distinct from "sacroiliac joint pain" and is hypothetical at best.³ Sacroiliac joint dysfunction is usually defined as altered joint mobility and/or malalignment,8-10 neither of which have been consistently linked to low back or sacroiliac joint pain.

Figure 5-9 Common cause of sacroiliac injury. Falling and landing on the buttock.

Pain Location and Aggravating Factors

Dreyfuss and colleagues² performed a prospective study to determine the diagnostic utility of both the history and physical examination in determining pain of sacroiliac origin. The diagnostic properties for the aggravating and easing factors and patient-reported location of pain are below.

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Question and Study Quality	Population	Reference Standard	Sens	Spec	+LR	-LR
Pain relieved by standing? ²		90% pain relief with injection of local anesthetics into sacroiliac joint	.07	.98	3.5	.95
Pain relieved by walking? ²			.13	.77	.57	1.13
Pain relieved by sitting?2			.07	.8	.35	1.16
Pain relieved by lying down? ²	85 consecutive patients with low back pain re- ferred for sacroiliac joint blocks		.53	.49	1.04	.96
Coughing/sneezing aggravates symptoms? ²			.45	.47	.85	1.17
Bowel movements aggravate symptoms? ²			.38	.63	1.03	.98
Wearing heels/boots aggravates symptoms? ²			.26	.56	.59	1.32
Job activities aggravate symptoms? ²			.20	.74	.77	1.08

Patient Report of Pain Location and Study Quality	Population	Reference Standard	Sens	Spec	+LR	-LR
Sacroilliac joint pain ²	85 consecutive pa- tients with low back pain referred for sacro- iliac joint blocks	90% pain relief with injection of local anesthetics into sacroiliac joint	.82*	.12*	.93	1.5
Groin pain ²			.26*	.63*	.70	1.17
Buttock pain ²			.78*	.18*	.95	1.22
Points to of posterior-superior iliac spine (PSIS) as main area of pain ²	100.0		.71*	.47*	1.34	.62
*Mean of chiropractor and physician sensitivity and specificity scores.						

Sacroiliac Joint Pain Referral Patterns

Figure 5-10 Jung and associates¹¹ determined the most common pain distribution patterns in patients with sacroiliac joint pain. They then prospectively tested the ability of the pain distribution patterns to diagnose the response to sacroiliac joint radiofrequency neurotomies in 160 patients with presumed sacroiliac joint pain. The pain distribution patterns with the best diagnostic utility are depicted in Figure 5-10.

Figure 5-11 In a similar study, van der Wurff and colleagues¹² compared compiled pain distribution maps from patients that responded to double-block sacroiliac joint injections to those that didn't respond. They found no difference in the location of pain distribution, but found differences in the pain intensity locations. Patients with sacroiliac joint pain reported the highest intensity pain overlying the sacroiliac joint as depicted in Figure 5-11.

PHYSICAL EXAMINATION TESTS

Palpation

Pain Provocation and Patient Identification of Location of Pain

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

		.89*	.14	1.03*	.79*
85 consecutive patients with low back pain referred for sacroiliac joint blocks	90% pain relief with	.63*	.50*	1.26*	.74*
	injection of local an- esthetics into sacroil- iac joint	.25*	.68*	.78*	1.10*
		.16	.85	1.07	.99
		.13	.86	.93	1.01
	tients with low back pain referred for sacroiliac joint	tients with low back pain referred for sacroiliac joint 90% pain refer with injection of local anesthetics into sacroiliac joint	85 consecutive patients with low back pain referred for sacroiliac joint blocks 90% pain relief with injection of local anesthetics into sacroiliac joint 25* .16	85 consecutive patients with low back pain referred for sacroiliac joint blocks 90% pain relief with injection of local anesthetics into sacroiliac joint 25* .68* .16 .85	85 consecutive patients with low back pain referred for sacroiliac joint blocks 90% pain relief with injection of local anesthetics into sacroiliac joint 25* .68* .78* .16 .85 1.07

^{*}Mean of chiropractor and physician sensitivity and specificity scores

Palpation

Assessment of Symmetry of Bony Landmarks

ICC or ĸ	Interpretation	
.81-1.0	Substantial agreement	
.6180	Moderate agreement	
.4160	Fair agreement	
.1140	Slight agreement	
.010	No agreement	

Landmark	Description and Positive Findings	Population	Reliability
Sitting PSIS ¹³	With patient sitting, examiner palpates right and left PSIS. Positive if one PSIS is higher	62 women recruited from obstetrics; 42 pregnant with pelvic girdle pain, and 20 who were not pregnant and were asymptomatic	Inter-examiner $\kappa = .26$
Sitting PSIS ⁹	than the other	65 patients with low back pain	Inter-examiner $\kappa = .37$
Sitting PSIS ¹			Inter-examiner $\kappa = .23$
Standing PSIS ¹	Same as above with patient standing	71 patients with low back	Inter-examiner $\kappa = .13$
lliac crest symmetry ¹	With patient standing, examiner palpates right and left iliac crest. Positive if one crest is higher than the other	pain	Inter-examiner $\kappa = .23$
Prone PSIS ¹⁴	With patient prone and examiner's fingers or thumbs on landmark and dominant eye over		Intra-examiner $\kappa = .33$ Inter-examiner $\kappa = .04$
Sacral inferior lateral angle ¹⁴	the patient's mid-sagittal plane, examiner determines if the landmarks are: Right higher than left Left higher than right Equal right to left	10 asymptomatic female volunteers	Intra-examiner $\kappa = .69$ Inter-examiner $\kappa = .08$
Sacral sulcus ¹⁴	As above, determining if the landmarks are: Right deeper than left		Intra-examiner $\kappa = .24$ Inter-examiner $\kappa = .07$
Sacral sulcus ¹⁵	Left deeper than rightEqual right to left		Inter-examiner $\kappa = .11$ (14, .36)
Sacral inferior lateral angle ¹⁵	As above, determining if the landmarks are: • Right more posterior than left	25 patients with low back or	Inter-examiner $\kappa = .11$ (12, .34)
L5 transverse process ¹⁵	Left more posterior than rightEqual right to left	sacroiliac pain	Inter-examiner $\kappa = .17$ (03, .37)
Medial malleoli ¹⁵	As above, determining if the landmarks are: Right more superior than left		Inter-examiner $\kappa = .28$ (01, .57)
Medial malleoli ¹⁶	Left more superior than rightEqual right to left		Inter-examiner $\kappa = .21$
Anterior-superior iliac spine (ASIS) ¹⁶	With patient supine, evaluator palpates inferior slope ASIS. Recorded as above		Inter-examiner $\kappa = .15$
Sacral base ¹⁶	With patient sitting, evaluator palpates the sacral base with the patient's trunk flexed and extended. Recorded as symmetrical, left-base anterior or posterior, or right-base anterior or posterior	24 patients with low back pain	Inter-examiner $\kappa =$ [Trunk flexion] .37 [Trunk extension] .05

Figure 5-12 Assessment of iliac crest symmetry in standing.

Patrick Test (FABER Test)

ICC or ĸ	Interpretation	
.81-1.0	Substantial agreement	
.6180	Moderate agreement	
.4160	Fair agreement	
.1140	Slight agreement	
.010	No agreement	

See Figure 5-13, page 221

Description and Positive Findings	Population	Reliability
With patient supine, examiner brings ipsi-	15 patients with ankylosing spondylitis, 30 women with postpartum pelvic pain, and 16 asymptomatic subjects	Inter-examiner $\kappa = [Right]$.60 (.39, .81) [Left] .48 (.27, .69)
flexion with lateral malleolus placed over the contralat- eral knee, fixates the	25 patients with asymmetrical low back pain	Intra-examiner* $\kappa = [\text{Right}] .41 \text{ (.07, .78)}$ [Left] .40 (.03, .78) Inter-examiner $\kappa = [\text{Right}] .44 \text{ (.06, .83)}$ [Left] .49 (.09, .89)
contralateral ASIS, and applies a light pressure over the ip-	40 patients with chronic low back pain	Inter-examiner $\kappa = [\text{Right}]$.60 (.35, .85) [Left] .43 (.15, .71)
silateral knee. Posi-	71 patients with low back pain	Inter-examiner $\kappa = .60$
increased or reproduced	59 patients with low back pain	Inter-examiner $\kappa = .61$ (.31, 91)
	See diagnostic table	Inter-examiner $\kappa = .62$
	Positive Findings With patient supine, examiner brings ipsilateral knee into flexion with lateral malleolus placed over the contralateral knee, fixates the contralateral ASIS, and applies a light pressure over the ipsilateral knee. Positive if familiar pain is increased or	With patient supine, examiner brings ipsilateral knee into flexion with lateral malleolus placed over the contralateral ASIS, and applies a light pressure over the ipsilateral knee. Positive if familiar pain is increased or

^{*}Intra-examiner reliability reported for examiner #1 only.

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR	
Patrick test ²⁰	Patrick test ²⁰ With patient supine, examiner brings ipsilateral knee into flexion with lateral	40 patients with chronic low back pain	Sacroiliitis apparent on magnetic resonance imaging (MRI)	Right side				
\Diamond				.66 (.30, .90)	.51 (.33, .69)	1.37 (.76, 2.48)	.64 (.24, 1.72)	
	malleolus placed over			Left side				
	the contralateral knee, fixates the con- tralateral ASIS, apply-			.54 (.24, .81)	.62 (.42, .78)	1.43 (.70, 2.93)	.73 (.36, 1.45)	
Patrick test ²	ing a light pressure over the ipsilateral knee. Positive if fa- miliar pain is in- creased or reproduced	85 consecutive patients with low back pain referred for sacroiliac joint blocks	90% pain relief with injection of local anes- thetics into sacroiliac joint	.68*	.29*	.96*	1.1*	

^{*}Mean of chiropractor and physician sensitivity and specificity scores.

Broadhurst and Bond²² also investigated this test, but the study was excluded because results for all participants were positive on the test (making sensitivity = 1, and specificity = 0).

Pain Provocation		Interpretation
		Substantial agreement
Thigh Thrust (or Posterior Shear Test or Posterior Pelvic	.6180	Moderate agreement
Provocation Test)		Fair agreement
		Slight agreement
See Figure 5-14, page 221	.010	No agreement

Test and Study	Description and Positive Findings	Population	Reliability			
Thigh thrust ²⁰	Patient supine with hip flexed	See diagnostic table	Inter-examiner $\kappa = [Right]$.46 (.15, .76)			
Thigh thrust ¹⁸	to 90°. The examiner applies posteriorly directed force through the femur. Positive if familiar pain is increased or reproduced	15 patients with ankylosing spondylitis, 30 women with postpartum pelvic pain, and 16 asymptomatic subjects	Inter-examiner $\kappa = [Right]$.76 (.48, .86) [Left] .74 (.57, .91)			
Thigh thrust ¹⁹	Patient supine with hip flexed to 90° and slightly adducted. One of the examiner's hands	25 patients with asymmetrical low back pain	Intra-examiner* $\kappa = [Right]$.44 (.06, .83) [Left] .40 (.00, .82) Inter-examiner $\kappa = [Right]$.60 (.24, .96) [Left] .40 (.00, .82)			
Thigh thrust ¹	cups the sacrum and the other applies posteriorly directed	71 patients with low back pain	Inter-examiner $\kappa = .70$			
Thigh thrust ²³	force through the femur. Posi-	51 patients with low back pain	Inter-examiner $\kappa = .88$			
Thigh thrust ²¹	tive test is the production or increase of familiar symptoms	59 patients with low back pain	Inter-examiner $\kappa = .67$ (.46, .88)			
Thigh thrust ²		See diagnostic table	Inter-examiner $\kappa = .64$			
*Intra-examiner reliability reported for examiner #1 only.						

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR	
				Right side				
hip flexed to	With patient supine with hip flexed to 90°, examiner applies posteriorly directed	40 patients with chronic low back	Sacroiliitis appar- ent on MRI	.55 (.22, .84)	.70 (.51, .85)	1.91 (.85, 4.27)	.62 (.29, 1.33)	
\Diamond	force through the femur. Positive if familiar pain is	pain		Left sid	e			
	increased or reproduced			.45 (.18, .75)	.86 (.67, .95)	3.29 (1.07, 10.06)	.63 (.36, 1.09)	
Thigh thrust ⁴	With patient supine with hip flexed to 90° and slightly adducted, one of the examiner's hands cups the sacrum and the other	48 patients with chronic lumbopelvic pain referred for sacroiliac joint injection	80% pain relief with injection of local anesthetics into sacroiliac joint	.88 (.64, .97)	.69 (NR, .82)	2.8 (1.66, 4.98)	.18 (.05, 1.09)	
Thigh thrust ²	applies posteriorly directed force through the femur. Positive if familiar symptoms are produced or increased	85 consecutive patients with low back pain referred for sacroiliac joint blocks	90% pain relief with injection of local anesthetics into sacroiliac joint	.39*	.50*	.78*	1.22*	

*Mean of chiropractor and physician sensitivity and specificity scores.

Broadhurst and Bond²² also investigated this test, but the study was excluded because results for all participants were positive on the test (making sensitivity = 1, and specificity = 0).

Compression Test

See Figure 5-15, page 221

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Reliability
Compression test ¹⁸	With patient side-lying, affected side up, with hips flexed approximately 45° and knees flexed approximately 90°, examiner applies a force vertically downward on the anterior-superior iliac crest. Positive test is the production or increase of familiar symptoms	15 patients with ankylosing spondylitis, 30 women with postpartum pelvic pain, and 16 asymptomatic subjects	Inter-examiner $\kappa = [\text{Right}]$.48 (.18, .78) [Left] .67 (.43, .91)
Compression test ²⁰		40 patients with chronic low back pain	Inter-examiner $\kappa = [\text{Right}]$.48 (.14, .81) [Left] .44 (.08, .79)
Compression test ²³		51 patients with low back pain	Inter-examiner $\kappa = .73$
Compression test ²¹		59 patients with low back pain	Inter-examiner $\kappa = .57$ (.21, .93)
Compression test ¹		71 patients with low back pain	Inter-examiner $\kappa = .26$

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Compression				Right sid	e		
test ²⁰	With patient side-lying, affected side up, with hips flexed approximately 45° and knees flexed approximately 90°, examiner applies a force vertically downward on the anterior-superior iliac crest. Positive test is the	40 patients with chronic low back pain	Sacroiliitis apparent on MRI	.22 (.03, .59)	.83 (.65, .93)	1.37 (.31, 5.94)	.92 (.64, 1.33)
				Left side			
				.27 (.07, .60)	.93 (.75, .98)	3.95 (.76, 20.57)	.78 (.54, 1.12)
Compression test ⁴		48 patients with chronic lumbopelvic pain referred for sacroiliac joint injection	80% pain relief with injection of local anesthetics into sacroiliac joint	.69 (.44, .86)	.69 (.51, NR)	2.20 (1.18, 4.09)	.46 (.20, .87)

Sacral Thrust Test

See Figure 5-16, page 222

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Reliability
Sacral thrust test ²⁰	With patient prone, examiner applies a force vertically downward to the center of the sacrum. Positive test is the production or increase of familiar symptoms	40 patients with chronic low back pain	Inter-examiner κ = [Right] .87 (.70, 1.0) [Left] .69 (.40, .97)
Sacral thrust test ⁶		71 patients with low back pain	Inter-examiner $\kappa = .41$
Sacral thrust test ²³		51 patients with low back pain	Inter-examiner $\kappa = .56$
Sacral thrust test ²		85 patients with low back pain referred for sacroiliac joint blocks	Inter-examiner $\kappa = .30$

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
		40 patients with	Sacroiliitis apparent on	Right side			
Sacral thrust				.33 (.09, .69)	.74 (.55, .87)	1.29 (.42, 3.88)	.89 (.55, 1.45)
test ²⁰		chronic low back pain	MRI	Left side			
	With patient prone, examiner applies a force vertically downward to the	er applies a ertically		.45 (.18, .75)	.89 (.71, .97)	4.39 (1.25, 15.36)	.60 (.35, 1.05)
Sacral thrust test ⁴	center of the sacrum. Positive test is the produc- tion or increase of familiar symptoms	48 patients with chronic lumbopel- vic pain referred for sacroiliac joint injection	80% pain relief with injection of local anesthetics into sacroiliac joint	.63 (.39, .82)	.75 (.58, .87)	2.5 (1.23, 5.09)	.5 (.24, .87)
Sacral thrust test ²		85 consecutive patients with low back pain referred for sacroiliac joint blocks	90% pain relief with injection of local anesthetics into sacroiliac joint	.52*	.38*	.84*	1.26*
*Mean of chiropracto	or and physician sensitivity	and specificity scores.					

Pain Provocation Gaenslen Test		Interpretation
		Substantial agreement
		Moderate agreement
	.4160	Fair agreement
See Figure 5-17, page 222	.1140	Slight agreement
0 1 0	.010	No agreement

Test and Study	Description and Positive Findings	Population	Reliability
Gaenslen test ²⁰	With patient supine near the edge of the table and one leg hanging over the edge of the table and the other flexed toward the patient's chest, examiner applies firm pressure to both the hanging leg and the leg flexed toward the chest. Positive test is the production or increase of familiar symptoms	40 patients with chronic low back pain	Inter-examiner $\kappa = [\text{Right}]$.37 (.05, .68) [Left] .28 (0.0, .60)
Gaenslen test ¹		71 patients referred to physical therapy with a diagnosis related to the lumbosacral spine	Inter-examiner $\kappa = .54$
Gaenslen test ²³		51 patients with low back pain with or without radiation into the lower limb	Inter-examiner $\kappa = .76$
Gaenslen test ²¹		59 patients with low back pain	Inter-examiner $\kappa = .60$ (.33, .88)

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

With patient supine near the edge of the table and one leg hanging over the edge of the table	40 patients with chronic low back pain	Sacroiliitis ap- parent on MRI	Right side .44 (.15, .77) Left side	.80 (.61, .91)	2.29 (.82, 6.39)	.68 (.37, 1.25)
near the edge of the table and one leg hanging over the	with chronic	'	(.15, .77) Left side	(.61,	(.82,	(.37,
near the edge of the table and one leg hanging over the		parent on MRI				
near the edge of the table and one leg hanging over the						
			.36 (.12, .68)	.75 (.56, .88)	1.5 (.54, 4.15)	.83 (.52, 1.33)
len test ⁴ and the other flexed	48 patients 8 with chronic r lumbopelvic j pain referred a for sacroiliac ii joint injection j	80% pain relief with in- jection of local anesthetics into sacroiliac joint	Right side			
toward the patient's chest, examiner applies firm pressure			.53 (.30, .75)	.71 (.53, .84)	1.84 (.87, 3.74)	.66 (.34, 1.09)
leg and the leg flexed toward the chest. Positive test is the production or in- crease of familiar			Left side			
			.50 (.27, .73)	.77 (.60, .89)	2.21 (.95, 5.0)	.65 (.34, 1.03)
symptoms	85 consecutive patients with low back pain referred for sacroiliac joint blocks	90% pain relief with in- jection of local anesthetics into sacroiliac joint	.68*	.29*	.96*	1.1*
ar tc ch tc tc tc tr cr sy	nd the other flexed oward the patient's nest, examiner oplies firm pressure to both the hanging g and the leg exed toward the nest. Positive test is ne production or in- ease of familiar comptoms	nd the other flexed oward the patient's nest, examiner oplies firm pressure to both the hanging g and the leg exed toward the nest. Positive test is ne production or inease of familiar remptoms 48 patients with chronic lumbopelvic pain referred for sacroiliac joint injection 85 consecutive patients with low back pain referred for sacroiliac joint	and the other flexed oward the patient's nest, examiner oplies firm pressure to both the hanging g and the leg exed toward the nest. Positive test is ne production or intease of familiar remptoms 85 consecutive patients with low back pain relief with injection of local anesthetics into sacroiliac joint relief with injection of local anesthetics into sacroiliac joint relief with injection of local anesthetics into sacroiliac joint blocks	As patients with chronic lumbopelvic pain referred for sacroiliac joint injection of local anesthetics into sacroiliac patients with chronic lumbopelvic pain referred for sacroiliac joint injection of local anesthetics into sacroiliac joint inj	As patients with chronic lumbopelvic pain referred for sacroiliar ymptoms 80% pain relief with injection of local anesthetics into sacroiliac joint injection of local anesthetics into sacroiliac joint of local anesthetics into sacroiliac j	As patients with chronic lumbopelvic pain referred for sacroiliar ymptoms 80% pain relief with injection of local anesthetics into sacroiliac joint injection of local anesthetics into sacroiliac joint of local anesthetics into sacroiliac joint injection of local anesthetics into sacroiliac joint

Figure 5-13 Patrick test.

Figure 5-14 Thigh thrust.

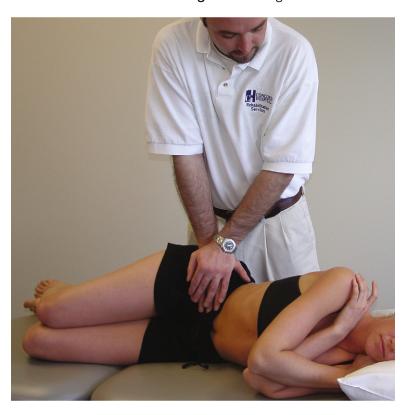


Figure 5-15 Compression test.

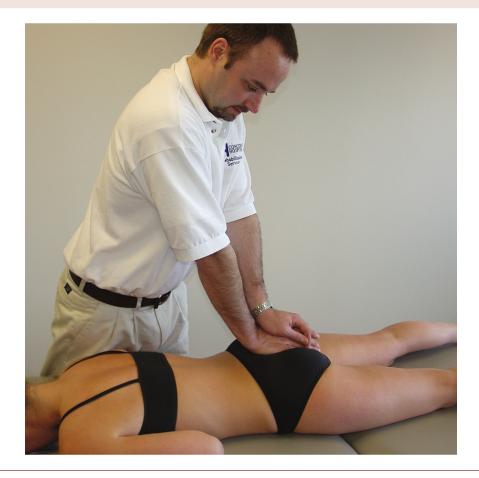


Figure 5-16 Sacral thrust test.

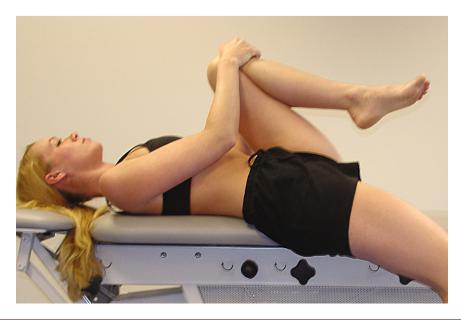


Figure 5-17 Gaenslen test.

ICC or ĸ Interpretation **Pain Provocation** .81-1.0 Substantial agreement **Distraction Test** .61-.80 Moderate agreement .41-.60 Fair agreement .11-.40 Slight agreement .0-.10 No agreement

Figure 5-18 Distraction test.

Test and Study	Description and Positive Findings	Population	Reliability
Distraction test ²⁰	With patient supine, examiner applies cross- arm pressure to both anterior superior iliac spines. Positive test is the production or in- crease of familiar symptoms	40 patients with chronic low back pain	Inter-examiner $\kappa = .50$
Distraction test ²³		51 patients with low back pain, with or without radia- tion into the lower limb	Inter-examiner $\kappa = .69$
Distraction test ²¹	With patient supine, examiner applies a posteriorly directed force to both anterior superior iliac spines. Positive test is the production or increase of familiar symptoms	59 patients with low back pain	Inter-examiner $\kappa = .45$ (.10, .78)
Distraction test ¹		71 patients referred to physical therapy with a diagnosis related to the lumbosacral spine	Inter-examiner $\kappa = .26$

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Distraction test ²⁰	With patient supine, ex- aminer applies cross-arm pressure to both anterior superior iliac spines. Posi- tive test is the produc- tion or increase of famil- iar symptoms	40 patients with chronic low back pain	Sacroiliitis ap- parent on MRI	.23 (.06, .54)	.81 (.61, .92)	1.24 (.35, 4.4)	.94 (.68, 1.29)
Distraction test ⁴	With patient supine, examiner applies a posteriorly directed force to both anterior superior iliac spines. Positive test is the production or increase of familiar symptoms	48 patients with chronic lumbopelvic pain referred for sacroiliac joint injection	80% pain relief with in- jection of local anes- thetics into sacroiliac joint	.60 (.36, .80)	.81 (.65, .91)	3.20 (1.42, 7.31)	.49 (.24, .83)

Pain Provocation	ICC or к	Interpretation Substantial agreement
Mennell's Test	.6180	Moderate agreement
	.4160	Fair agreement
	.1140	Slight agreement
	.010	No agreement

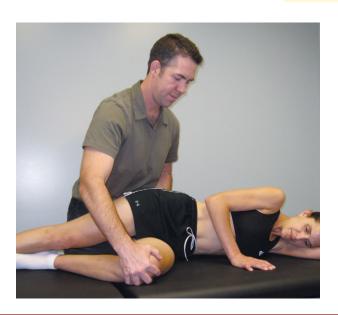


Figure 5-19 Mennell's test.

Test and Study	Description and Positive Findings	Population	Reliability
Mennell's test ²⁰	With patient side-lying, affected side down, with affected side hip and knee flexed toward the abdomen, examiner puts one hand over the ipsilateral buttock and iliac crest and the other hand grasps the semiflexed ipsilateral knee and lightly forces the leg into extension. Positive test is the production or increase of familiar symptoms	40 patients with chronic low back pain	Inter-examiner κ = [Right] .54 (.26, .82) [Left] .50 (.20, .80)

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR	
Mennell's	As above	40 patients with chronic low back pain	Sacroiliitis apparent on MRI	Right side				
				.66 (.30, .90)	.80 (.61, .91)	3.44 (1.49, 8.09)	.41 (.16, 1.05)	
test ²⁰				Left side				
•				.45 (.18, .75)	.86 (.67, .95)	3.29 (1.07, 10.06)	.63 (.36, 1.09)	

Other Pain Provocations Tests

Figure 5-20 Resisted abduction of the hip.

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Reliability
Resisted abduction test ¹⁹	With patient supine with legs extended and abducted 30°, examiner holds the ankle and pushes medially while the patient pushes laterally. Positive test is the production or	25 patients with asymmetrical low back pain	Intra-examiner* $\kappa = [\text{Right}]$.48 (.07, .88) [Left] .50 (.06, .95) Inter-examiner $\kappa = [\text{Right}]$.78 (.49, 1.07) [Left] .50 ($-$.02, 1.03)
Resisted abduction test ¹	increase of familiar symptoms	71 patients with low back pain	Inter-examiner $\kappa = .41$
Internal rotation of the hip ¹⁸	With patient prone, examiner maximally internally rotates one or both femurs. Positive test is the production or increase of familiar symptoms	15 patients with ankylosing spondylitis, 30 women with	Inter-examiner $\kappa = [\text{Right}] .78 \text{ (.60, .94)}$ [Left] .88 (.75, 1.01) [Bilateral] .56 (.33, .79)
Drop-test ¹⁸	With patient standing on one foot, patient lifts the heel from the floor and drops down on the heel again. Positive test is the production or increase of familiar symptoms	postpartum pelvic pain, and 16 asymptom- atic subjects	Inter-examiner $\kappa = [\text{Right}]$.84 (.61, 1.06) [Left] .47 (.11, .83)

^{*}Intra-examiner reliability reported for examiner #1 only.

Broadhurst and Bond²² investigated the diagnostic properties of the resisted abduction test, but the study was excluded because all participants were positive on the test (making sensitivity = 1, and specificity = 0).

Motion Assessment

Gillet Test (Stork Test)

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Reliability
Gillet test ²⁶	With patient standing, examiner palpates the following landmarks: L5 spinous process and PSIS S1 tubercle and PSIS S3 tubercle and PSIS Sacral apex and posteromedial margin of the ischium Patient is instructed to raise the ipsilateral leg of the side of palpation. Positive if the lateral landmark fails to move posteroinferiorly with respect to medial landmark	54 asymptomatic college students	Intra-examiner mean value for all tests $\kappa=.31$ Inter-examiner mean value for all tests $\kappa=.02$
Gillet test ²⁷	As above except using the following landmarks: L5 spinous process and PSIS S1 spinous process and PSIS S3 spinous process and PSIS Sacral hiatus and caudolateral just below the ischial spine	38 male students; 9 during the first testing procedure and 12 during the second had low back pain	Intra-examiner* $\kappa = .08$ (.01, .14) Inter-examiner $\kappa =05$ (06,12)
Gillet test ¹⁹	With patient standing, examiner palpates the PSIS and asks patient to flex the hip and knee on the side being tested. Positive if the PSIS fails to move posteroinferiorly	25 patients with asymmetrical low back pain	Intra-examiner* $\kappa = [Right]$.42 (01, .87) [Left] .49 (.09, .89) Inter-examiner $\kappa = [Right]$.41 (.03, .87) [Left] .34 (06, .70)
Gillet test ²⁸	With patient standing, examiner palpates the S2 spinous process with one thumb and the PSIS with the other and asks patient to flex the hip and knee on the side being tested. Rated intrapelvic motion as "cephalad," "neutral," or "caudad"	33 volunteers; 15 had pelvic-girdle pain	Inter-examiner $\kappa = [Right]$.59 [Left] .59
Gillet test ¹⁶	With patient standing, examiner palpates the S2	24 patients with low back pain	Inter-examiner $\kappa = .27$
Gillet test²	spinous process with one thumb and the PSIS with the other and asks patient to flex the hip and knee	See diagnostic table	Inter-examiner $\kappa = .22$
Gillet test ⁶	on the side being tested. Positive if the PSIS fails to move posteroinferiorly with respect to S2	71 patients with low back pain	Inter-examiner $\kappa = .59$

Potter and Rothstein¹⁷ and Herzog and colleagues²⁹ also studied this test, but were excluded because they only reported percent agreement.

Motion Assessment

Gillet Test (Stork Test) (Continued)

Figure 5-21 Gillet test.

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Gillet test ²	With patient standing with feet spread 12 inches apart, exam- iner palpates the S2 spinous process with one thumb and the posterior superior iliac	85 consecutive patients with low back pain re- ferred for sacroil- iac joint blocks	90% pain relief with injection of local anesthetics into sacroiliac joint	.47*	.64*	1.31*	.83*
Gillet test ³⁰	spine with the other. The patient then flexes the hip and knee on the side being tested. The test is considered positive if the PSIS fails to move in a posteroinferior direction relative to S2	274 patients being treated for low back pain or another condi- tion not related to the low back	Innominate torsion calculated by mea- sured differences in pelvic landmarks	.08	.93	1.14	.99

Motion Assessment

Spring Test (Joint Play Assessment)

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 5-22 Spring test.

Test and Study	Description and Positive Findings	Population	Reliability
Spring test ¹⁸	With patient prone, examiner uses one hand to lift the ilium while using the other hand to stabilize the sacrum and palpate the movement between the sacrum and ilium with the index finger	15 patients with ankylosing spondylitis, 30 women with postpartum pelvic pain, and 16 asymptomatic subjects	Inter-examiner $\kappa =06$

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Spring test ²	Therapist's hands are placed over the superior sacrum and a posteroanterior thrust is applied while the therapist monitors the spring at the end range of motion. The asymptomatic side is compared with the symptomatic	85 consecu- tive patients with low back pain referred for sacroiliac joint blocks	90% pain relief with injection of local anesthetics into sacroiliac joint	.66*	.42*	1.14*	.81*
*Mean of chirop	ractor and physician sensitivity and s	pecificity scores.					

Motion Assessment Long-Sit Test (Supine to Sit Test)		Interpretation
		Substantial agreement
		Moderate agreement
	.4160	Fair agreement
	.1140	Slight agreement
	.010	No agreement

Figure 5-23 Long-sit test.

Test and Study	Description and Positive Findings	Population	Reliability
Long-sit test ¹	With patient supine, lengths of medial malleoli are compared. Patient is asked to long-sit and lengths of	71 patients with low back pain	Inter-examiner $\kappa = .21$
Long-sit test ⁹	medial malleoli are again compared. Positive if one leg appears shorter in supine and then lengthens when the patient comes into long-sitting position	65 patients with low back pain	Inter-examiner $\kappa = .19$

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Long-sit test ³⁰	With patient supine, lengths of medial malleoli are compared. Patient is asked to long-sit and lengths of medial malleoli are again compared. Positive if one leg appears shorter in supine and then lengthens when the patient comes into long-sitting position	274 patients being treated for low back pain or another con- dition not related to the low back	Innominate torsion calcu- lated by mea- sured differ- ences in pelvic landmarks	.44	.64	1,22	.88

ICC or κ Interpretation **Motion Assessment** .81-1.0 Substantial agreement Standing Flexion Test .61-.80 Moderate agreement .41-.60 Fair agreement Slight agreement .11-.40

.0-.10

No agreement

Figure 5-24 Standing flexion test.

Test and Study	Description and Positive Findings	Population	Reliability
Standing flexion test ¹⁹	With patient stand- ing, examiner pal- pates inferior slope	25 patients with asymmetrical low back pain	Intra-examiner* $\kappa = [\text{Right}]$.68 (.35, 1.01) [Left] .61 (.27, .96) Inter-examiner $\kappa = [\text{Right}]$.51 (.08, .95) [Left] .55 (.20, .90)
Standing flexion test ¹⁶	of PSIS. Patient is	24 patients with low back pain	Inter-examiner $\kappa = .06$
Standing flexion test ⁹	asked to forward bend completely. Positive for sacroiliac	65 patients currently receiving treat- ment for low back pain	Inter-examiner $\kappa = .32$
Standing flexion test ³¹	hypomobility if one	14 asymptomatic graduate students	Inter-examiner $\kappa = .52$
Standing flexion test ^{.10,32}	PSIS moves more cranially than the contralateral side	480 male construction workers; 50 had low back pain the day of the examination; 236 reported experiencing low back pain within the past 12 months	Inter-examiner κ values ranged from .3167
Standing flexion test ¹		71 patients with low back pain	Inter-examiner $\kappa = .08$
*Intra-examiner reliability rea	ported for examiner #1 only.		

Potter and Rothstein¹⁷ also studied this test, but were excluded because they only reported percent agreement.

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Standing flexion test ³⁰	with patient standing, examiner palpates inferior slope of PSIS. Patient is asked to forward bend completely. Positive for sacroiliac hypomobility if one PSIS moves more cranially than the contralateral side	274 patients being treated for low back pain or another condition not related to the low back	Innominate torsion calculated by mea- sured differences in pelvic landmarks	.17	.79	.81	1.05

Motion Assessment	ICC or ĸ	Interpretation
Flotion Assessment		Substantial agreement
Sitting Flexion Test	.6180	Moderate agreement
-		Fair agreement
	.1140	Slight agreement
	.010	No agreement

Figure 5-25 Sitting flexion test.

Test and Study	Description and Positive Findings	Population	Reliability
Sitting flexion test ¹⁹	With patient sitting, examiner palpates inferior slope of PSIS. Patient is asked to forward bend completely. Positive for sacroiliac hypomobility if one	25 patients with asymmetrical low back pain	Intra-examiner* $\kappa = [Right]$.73 (.45, 1.01) [Left] .65 (.34, .96) Inter-examiner $\kappa = [Right]$.75 (.42, 1.08) [Left] .64 (.32, .96)
Sitting flexion test ¹	PSIS moves more cranially than the contralateral side	71 patients with low back pain	Inter-examiner $\kappa = .21$
Sitting flexion test ¹⁶	than the contraduction side	24 patients with low back pain	Inter-examiner $\kappa = .06$
*Intra-examiner reliability rep	oorted for examiner #1 only.		

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Sitting flexion test ³⁰	With patient seated, examiner palpates inferior aspect of each PSIS. Positive for sacroiliac joint dysfunction if inequality of PSIS is found	274 patients being treated for low back pain or another condition not related to the low back	Innominate torsion calculated by mea- sured differences in pelvic landmarks	.09	.93	1.29	.98

Motion Assessment		Interpretation
		Substantial agreement
Prone Knee Bend Test	.6180	Moderate agreement
		Fair agreement
		Slight agreement
	0-10	No agreement

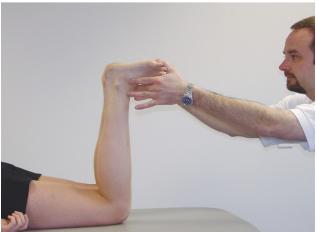
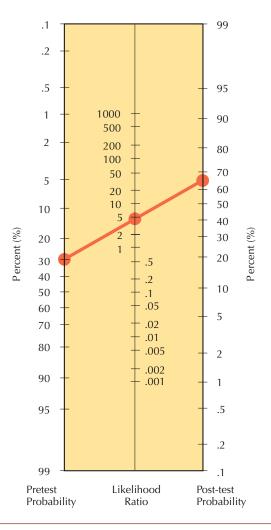


Figure 5-26 Prone knee bend test.

Test and Study	Description and Positive Findings	Population	Reliability		
Prone knee bend ¹⁹	With patient prone, examiner, looking at heels, assesses leg lengths. Knees are passively flexed	25 patients with asymmetrical low back pain	Intra-examiner* $\kappa = [Right] .41 (.07, .78)$ [Left] .27 (22, .78) Inter-examiner $\kappa = [Right] .58 (.25, .91)$ [Left] .33 (18, .85)		
Prone knee bend ¹	to 90° and leg lengths are again as- sessed. Considered positive if a change in leg lengths occurs	71 patients with low back pain	Inter-examiner $\kappa = .21$		
Prone knee bend ⁹	between positions	65 patients with low back pain	Inter-examiner $\kappa = .26$		
*Intra-examiner reliability reported for examiner #1 only.					


Potter and Rothstein¹⁷ also studied this test, but were excluded because they only reported percent agreement.

Other Motion Assessment Tests

Test and Study	Description and Positive Findings	Population	Reliability
Click-clack test ¹³	With patient sitting and examiner's thumbs on caudal PSIS, the patient rocks pelvis forward and backward. Test is positive if one PSIS moves slower from cranial to caudal than the other		Inter-examiner $\kappa = .03$
Heel-bank test ¹³	With patient sitting and examiner's thumbs on caudal PSIS, the patient raises one leg at a time and places the heel on the bench without using hands. Considered positive if the test required any effort	62 women recruited from obstetrics: 42 pregnant with pelvic girdle pain and 20 who were not pregnant and were asymptomatic	Inter-examiner $\kappa = [Right]$.32 [Left] .16
Abduction test ¹³	With patient side-lying with hips flexed 70° and knees flexed 90°, the patient is asked to lift the top leg about 20 cm. Considered positive if the test required any effort	were asymptomatic	Inter-examiner $\kappa = [Right]$.61 [Left] .41

Combinations of Tests

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR		
Mennell's test	Procedures all	40 patients		Right side					
+ Gaenslen's test + Thigh thrust ²⁰	previously de- scribed in this chapter. At least 2 of	with chronic low back pain	Sacroiliitis apparent on MRI	.55 (.22, .84)	.83 (.65, .93)	3.44 (1.27, 9.29)	.52 (.25, 1.11)		
	3 tests need			Left side					
	to be positive to indicate sacroiliitis			.45 (.18, .75)	.86 (.67, .95)	3.29 (1.07, 10.0)	.63 (.36, 1.09)		
Distraction + Thigh thrust + Gaenslen's test + Patrick sign + Compression ³³	Procedures all previously described in this chapter. At least 3 of 5 tests need to be positive to indicate sacroiliac joint pain	60 patients with chronic low back pain re- ferred to pain clinic	50% pain relief with injection of local anesthetics into sacroiliac joint	.85 (.72, .99)	.79 (.65, .93)	4.02 (2.04, 7.89)	.19 (.07, .47)		
Distraction + Thigh thrust + Sacral thrust + Compression ⁴	Procedures all previously described in this chapter. At least 2 of 4 tests need to be positive to indicate sacroiliac joint pain	48 patients with chronic lumbopelvic pain re- ferred for sacroiliac joint injection	80% pain relief with injection of local anesthetics into sacroiliac joint	.88 (.64, .97)	.78 (.61, .89)	4.0 (2.13, 8.08)	.16 (.04, .47)		
Distraction + Thigh thrust + Gaenslen's test + Sacral thrust + Compression ⁵	Procedures all previously described in this chapter. At least 3 of 5 tests need to be positive to indicate sacroiliac joint pain	48 patients with chronic lumbopelvic pain re- ferred for diagnostic spinal injection	80% pain relief with injection of local anesthetics into sacroiliac joint	.91 (.62, 98)	.78 (.61, .89)	4.16 (2.16, 8.39)	.12 (.02, .49)		

Figure 5-27 Nomogram representing the changes from pretest to post-test probability using the cluster of tests for detecting sacroiliac dysfunction. Considering a 33% pretest probability and a +LR of 4.16, the post-test probability that the patient presents with sacroiliac dysfunction is 67%. (*Adapted with permission from Fagan TJ. Nomogram for Bayes' theorem.* N Engl J Med. 1975;293-257. Massachusetts Medical Society, 2005.)

Combinations of Tests

Following the McKenzie Evaluation to Rule out Discogenic Pain

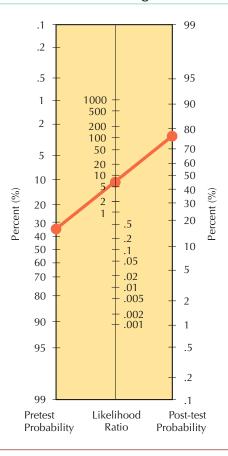


Figure 5-28 Nomogram representing the changes from pretest to post-test probability using the above cluster of tests for detecting sacroiliac pain following the exclusion of patients determined to have pain of discogenic origin as determined by a McKenzie assessment. Considering a 33% pretest probability and a +LR of 6.97, the post-test probability that the patient presents with sacroiliac pain is 77%. (Adapted with permission from Faqan TJ. Nomogram for Bayes' theorem. N Engl | Med. 1975;293-257. Massachusetts Medical Society, 2005.)

Laslett and associates⁵ assessed the diagnostic utility of the McKenzie method of mechanical assessment combined with the following sacroiliac tests: distraction, thigh thrust, Gaenslen, sacral thrust, and compression. The McKenzie assessment consisted of flexion in standing, extension in standing, right and left side gliding, flexion in lying, and extension in lying. The movements were repeated in sets of 10, and centralization and peripheralization were recorded. If it was determined that repeated movements resulted in centralization, the patient was considered to have pain of discogenic origin. Following the use of the McKenzie method to rule out individuals presenting with discogenic pain, in terms of diagnostic utility, the cluster of these tests exhibited a sensitivity of .91 (95% CI .62, .98), specificity .87 (95% CI .68, .96), +LR of 6.97 (95% CI 2.16, 8.39), -LR .11 (95% CI .02, .44).

Interventions

Identifying Patients Likely to Benefit from Spinal Manipulation

Figure 5-29 Spinal manipulation technique used by Flynn and colleagues. The patient is passively sidebent toward the side to be manipulated (away from the therapist). The therapist then rotates the patient away from the side to be manipulated (toward the therapist) and delivers a quick thrust through the anterior superior iliac spine in a postero-inferior direction.

Flynn and colleagues¹ investigated the effects of spinal manipulation technique in a heterogeneous population of patients with low back pain. They identified a number of variables that were associated with a successful outcome following the manipulation. A logistics regression equation was used to identify a cluster of signs and symptoms leading to a clinical prediction rule that could significantly enhance the likelihood of identifying patients who will achieve a successful outcome with spinal manipulation. Five variables formed the clinical prediction rule (below).

Childs and colleagues³⁴ tested the validity of the clinical prediction rule when applied in a separate patient population and by a variety of clinicians with varying levels of clinical experience and practicing in different settings. Consecutive patients with low back pain were randomized to receive either spinal manipulation or a lumbar stabilization program. The results of the study demonstrated that patients who satisfied the clinical prediction rule and received spinal manipulation had significantly better outcomes than patients who did not meet the clinical prediction rule but still received spinal manipulation and the group who met the clinical prediction rule but received lumbar stabilization exercises.

To make use of the clinical prediction rule more practical in a primary care environment, Fritz and colleagues³⁵ tested an abbreviated version consisting of only the acuity and symptom location factors. Ninety-two percent of patients with low back pain that met both criteria had successful outcomes. The results of the Childs and colleagues³⁴ and Fritz and associates³⁵ studies support the findings of Flynn and colleagues¹ and significantly increase clinician confidence in using the clinical prediction rule in decision-making regarding individual patients with low back pain.

Interventions	+LR	Interpretation	-LR
THE VEHENIS	>10	Large	<.1
	5.0-10	0.0 Moderate	.12
	2.0-5.0	0 Small	.25
	1.0-2.0	0 Rarely important	.5-1.0

Test and Study Quality	Description and Criteria	Population	Reference Standard	Sens	Spec	+LR
Symptoms < 16 days + No symptoms distal to the knee + Hypomobility in the lumbar spine + FABQ work subscale score < 19 + At least 1 hip with > 35° internal rota- tion ROM¹	At least 4 of 5 tests needed to be positive	71 patients with low back pain	≥ 50% reduction in back pain related disability within 1 week as measured by the Oswestry questionnaire	.63 (.4577)	.97 (.87-1.0)	24.38 (4.63-139.41)
Symptoms < 16 days + No symptoms distal to the knee ³⁵	Must meet both criteria	141 patients with low back pain		.56 (.43, .67)	.92 (.84, .96)	7.2 (3.2, 16.1)

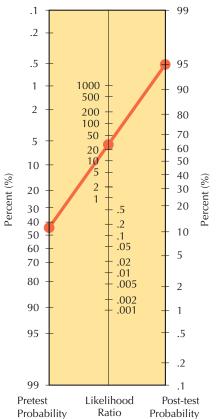


Figure 5-30 Nomogram representing the changes from pretest to post-test likelihood that a patient with low back pain, who satisfies four of five criteria for the rule, will have a successful outcome following spinal manipulation. The pretest likelihood that any patient with low back pain would respond favorably to sacroiliac manipulation was determined to be 45%. However, if the patient presents with four of the five predictor variables identified by Flynn and colleagues¹ (+LR 24), then the post-test probability that the patient will respond positively to spinal manipulation increases dramatically to 95%. (Adapted with permission from Fagan TJ. Nomogram for Bayes' theorem. N Engl J Med. 1975;293-257. Massachusetts Medical Society, 2005.)

OUTCOME MEASURES

Outcome Measure	Scoring and Interpretation	Test-Retest Reliability	MCID
Oswestry Disability Index (ODI)	Users are asked to rate the difficulty of performing 10 functional tasks on a scale of 0 to 5 with different descriptors for each task. A total score out of 100 is calculated by summing each score and doubling the total. The answers provide a score between 0 and 100, with higher scores representing more disability	ICC = .91 ³⁶	11 ³⁷
Modified Oswestry Dis- ability Index (modified ODI)	As above except replaces the sex life question with an employment/homemaking question	$ICC = .90^{38}$	6 ³⁸
Roland-Morris Disability Questionnaire (R-M)	Users are asked to answer 23 or 24 (depending on the version) questions about their back pain and related disability. The RMDQ is scored by adding up the number of items checked by the patient, with higher numbers indicating more disability	ICC = .91 ³⁹	5 ³⁷
Fear-Avoidance Beliefs Questionnaire (FABQ)	Users are asked to rate their level of agreement with statements concerning beliefs about the relationship between physical activity, work, and their back pain. Level of agreement is answered on a Likert-type scale ranging from 0 (completely disagree) to 7 (completely agree). The FABQ is made of 2 parts: a 7-item work subscale (FABQW), and a 4-item physical activity subscale (FABQPA). Each scale is scored separately, with higher scores representing higher fear-avoidance	FABQW: ICC = .82 FABQPA: ICC = .66 ⁴⁰	Not Available
Numeric Pain Rating Scale (NPRS)	Users rate their level of pain on an 11-point scale ranging from 0 to 10, with high scores representing more pain. Often asked as current pain and least, worst, and average pain in the past 24 hours	ICCs = .72 ⁴¹	2 ^{42,43}
MCID, Minimum clinically impo	rtant difference.		

Quality Assessment of Diagnostic Studies for the Sacroiliac Region Using QUADAS

	Russel 1981	Blower 1984	Dreyfuss 1996	Broadhurst 1998	Levangie 1999	Laslett 2003	Laslett 2005	van der Wurff 2006	Jung 2007	Ozgocmen 2008	Flynn 2002	Fritz 2005
Was the spectrum of patients representative of the patients who will receive the test in practice?	U	Y	Y	Y	Υ	Υ	Υ	Υ	N	Y	Y	Y
2. Were selection criteria clearly described?	N	N	N	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	Υ
3. Is the reference standard likely to correctly classify the target condition?	Y	Y	Y	Y	Υ	Y	Υ	Υ	U	Y	Υ	Y
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	U	U	U	Y	U	Υ	Υ	Υ	U	Y	Y	Y
5. Did the whole sample or a random selection of the sample, receive verification using a refer- ence standard of diagnosis?	Y	U	Y	Y	Υ	Y	Y	Υ	Y	Y	Y	Y
6. Did patients receive the same reference stan- dard regardless of the index test result?	U	U	Y	N	Υ	Y	Υ	Υ	Y	Y	Y	Y
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
8. Was the execution of the index test described in sufficient detail to permit replication of the test?	Y	N	Y	Y	Υ	Υ	Υ	Υ	N	Y	Y	Y
9. Was the execution of the reference standard described in sufficient detail to permit its replication?	N	U	Y	Y	Υ	Υ	Υ	Υ	Υ	Y	Y	Y
10. Were the index test results interpreted without knowledge of the results of the reference test?	U	N	Y	Y	N	Υ	Υ	Υ	U	Y	Y	Y
11. Were the reference standard results interpreted without knowledge of the results fo the index test?	U	U	U	N	Υ	Υ	Υ	Υ	U	U	Υ	U
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	Y	U	N	N	Y	Y	N	U	N	Y	Y
13. Were uninterpretable/intermediate test results reported?	N	U	Y	Y	Υ	Υ	Υ	Υ	N	Y	Y	Y
14. Were withdrawals from the study explained?	U	Y	Y	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ	U
Quality summary rating:			<u> </u>			\langle	\langle	\langle		\langle	\langle	\langle
Y = yes, $N = no$, $U = unclear$. Good quality $(Y - N = yes)$	= 10 to	14).	F.	air qual	ity (Y -	N = 5	to 9).		Poor qu	ıality (Y	′ - N ≤	4).

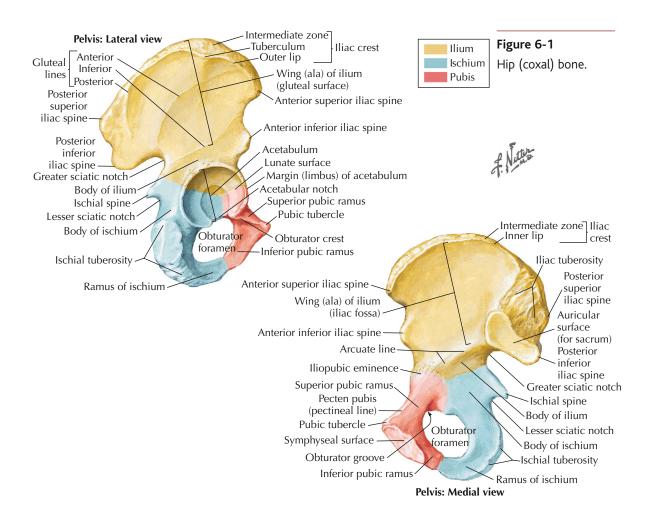
REFERENCES

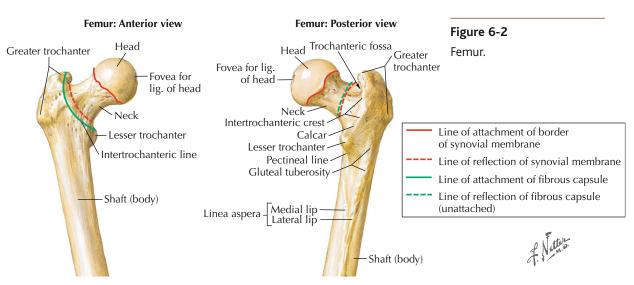
- Flynn T, Fritz J, Whitman J, et al. A clinical prediction rule for classifying patients with low back pain who demonstrate short-term improvement with spinal manipulation. Spine. 2002;27:2835-2843.
- Dreyfuss P, Michaelsen M, Pauza K, et al. The value of medical history and physical examination in diagnosing sacroiliac joint pain. *Spine*. 1996;21:2594-2602.
- 3. Laslett M. Pain provocation tests for diagnosis of sacroiliac joint pain. *Aust J Physiother*. 2006;52:229.
- Laslett M, Aprill CN, McDonald B, Young SB. Diagnosis of sacroiliac joint pain: validity of individual provocation tests and composites of tests. *Man Ther*. 2005;10:207-218.
- Laslett M, Young SB, Aprill CN, McDonald B. Diagnosing painful sacroiliac joints: a validity study of a McKenzie evaluation and sacroiliac provocation tests. Aust J Physiother. 2003;49:89-97.
- Maigne JY, Aivaliklis A, Pfefer F. Results of sacroiliac joint double block and value of sacroiliac pain provocation tests in 54 patients with low back pain. Spine. 1996;21:1889-1892.
- Schwarzer AC, Aprill CN, Bogduk N. The sacroiliac joint in chronic low back pain. Spine. 1995;20:31-37.
- Cibulka MT, Delitto A, Koldehoff RM. Changes in innominate tilt after manipulation of the sacroiliac joint in patients with low back pain. An experimental study. *Phys Ther.* 1988;68:1359-1363.
- Riddle DL, Freburger JK. Evaluation of the presence of sacroiliac joint region dysfunction using a combination of tests: a multicenter intertester reliability study. *Phys Ther.* 2002;82:772-781.
- Toussaint R, Gawlik CS, Rehder U, Ruther W. Sacroiliac dysfunction in construction workers. *J Manipula*tive Physiol Ther. 1999;22:134-138.
- Jung JH, Kim HI, Shin DA, et al. Usefulness of pain distribution pattern assessment in decision-making for the patients with lumbar zygapophyseal and sacroiliac joint arthropathy. J Korean Med Sci. 2007;22: 1048-1054.
- van der Wurff P, Buijs EJ, Groen GJ. Intensity mapping of pain referral areas in sacroiliac joint pain patients. J Manipulative Physiol Ther. 2006;29:190-195.
- van Kessel-Cobelens AM, Verhagen AP, Mens JM, et al. Pregnancy-related pelvic girdle pain: intertester reliability of 3 tests to determine asymmetric mobility of the sacroiliac joints. *J Manipulative Physiol Ther*. 2008;31:130-136.
- 14. O'Haire C, Gibbons P. Inter-examiner and intraexaminer agreement for assessing sacroiliac anatomical landmarks using palpation and observation: pilot study. *Man Ther*. 2000;5:13-20.
- Holmgren U, Waling K. Inter-examiner reliability of four static palpation tests used for assessing pelvic dysfunction. *Man Ther*. 2008;13:50-56.
- Tong HC, Heyman OG, Lado DA, Isser MM. Interexaminer reliability of three methods of combining test

- results to determine side of sacral restriction, sacral base position, and innominate bone position. *J Am Osteopath Assoc.* 2006;106:464-468.
- Potter NA, Rothstein JM. Intertester reliability for selected clinical tests of the sacroiliac joint. *Phys Ther*. 1985;65:1671-1675.
- Robinson HS, Brox JI, Robinson R, et al. The reliability of selected motion- and pain provocation tests for the sacroiliac joint. *Man Ther*. 2007;12:72-79.
- Arab AM, Abdollahi I, Joghataei MT, et al. Inter- and intra-examiner reliability of single and composites of selected motion palpation and pain provocation tests for sacroiliac joint. *Man Ther*. 2009;14:213-221.
- Ozgocmen S, Bozgeyik Z, Kalcik M, Yildirim A. The value of sacroiliac pain provocation tests in early active sacroiliitis. Clin Rheumatol. 2008;10:1275-1282.
- 21. Kokmeyer DJ, van der Wurff P, Aufdemkampe G, Fickenscher TC. The reliability of multitest regimens with sacroiliac pain provocation tests. *J Manipulative Physiol Ther*. 2002;25:42-48.
- Broadhurst NA, Bond MJ. Pain provocation tests for the assessment of sacroiliac joint dysfunction. *J Spinal Disord*. 1998;11:341-345.
- Laslett M, Williams M. The reliability of selected pain provocation tests for sacroiliac joint pathology. Spine. 1994;19:1243-1249.
- Russel AS, Maksymowych W, LeClercq S. Clinical examination of the sacroiliac joints: a prospective study. Arthritis Rheum. 1981;24:1575-1577.
- Blower PW, Griffin AJ. Clinical sacroiliac tests in ankylosing spondylitis and other causes of low back pain—2 studies. *Ann Rheum Dis.* 1984;43:192-195.
- Carmichael JP. Inter- and intra-examiner reliability of palpation for sacroiliac joint dysfunction. *J Manipula*tive Physiol Ther. 1987;10:164-171.
- 27. Meijne W, van Neerbos K, Aufdemkampe G, van der Wurff P. Intraexaminer and interexaminer reliability of the Gillet test. *J Manipulative Physiol Ther*. 1999; 22:4-9.
- Hungerford BA, Gilleard W, Moran M, Emmerson C. Evaluation of the ability of physical therapists to palpate intrapelvic motion with the Stork test on the support side. *Phys Ther*. 2007;87:879-887.
- 29. Herzog W, Read LJ, Conway PJ, et al. Reliability of motion palpation procedures to detect sacroiliac joint fixations. *J Manipulative Physiol Ther*. 1989;12:86-92.
- Levangie PK. Four clinical tests of sacroiliac joint dysfunction: the association of test results with innominate torsion among patients with and without low back pain. *Phys Ther*. 1999;79:1043-1057.
- Vincent-Smith B, Gibbons P. Inter-examiner and intra-examiner reliability of the standing flexion test. *Man Ther.* 1999;4:87-93.
- Toussaint R, Gawlik CS, Rehder U, Ruther W. Sacroiliac joint diagnostics in the Hamburg Construction

- Workers Study. J Manipulative Physiol Ther. 1999; 22:139-143.
- 33. van der Wurff P, Buijs EJ, Groen GJ. A multitest regimen of pain provocation tests as an aid to reduce unnecessary minimally invasive sacroiliac joint procedures. Arch Phys Med Rehabil. 2006;87:10-14.
- 34. Childs JD, Fritz JM, Flynn TW, et al. A clinical prediction rule to identify patients with low back pain most likely to benefit from spinal manipulation: a validation study. Ann Intern Med. 2004;141:920-928.
- 35. Fritz JM, Childs JD, Flynn TW. Pragmatic application of a clinical prediction rule in primary care to identify patients with low back pain with a good prognosis following a brief spinal manipulation intervention. BMC Fam Pract. 2005;6:29.
- 36. Lauridsen HH, Hartvigsen J, Manniche C, et al. Danish version of the Oswestry Disability Index for patients with low back pain. Part 1: Cross-cultural adaptation, reliability and validity in two different populations. Eur Spine J. 2006;15:1705-1716.
- 37. Lauridsen HH, Hartvigsen J, Manniche C, et al. Responsiveness and minimal clinically important differ-

- ence for pain and disability instruments in low back pain patients. BMC Musculoskelet Disord. 2006;7:82.
- 38. Fritz JM, Irrgang JJ. A Comparison of a Modified Oswestry Disability Questionnaire and the Quebec Back Pain Disability Scale. Phys Ther. 2001;81:776-788.
- 39. Brouwer S, Kuijer W, Dijkstra PU, et al. Reliability and stability of the Roland Morris Disability Questionnaire: intra class correlation and limits of agreement. Disabil Rehabil. 2004;26:162-165.
- 40. Grotle M, Brox JI, Vollestad NK. Reliability, validity and responsiveness of the fear-avoidance beliefs questionnaire: methodological aspects of the Norwegian version. J Rehabil Med. 2006;38:346-353.
- 41. Li L, Liu X, Herr K. Postoperative pain intensity assessment: a comparison of four scales in Chinese adults. Pain Med. 2007;8:223-234.
- 42. Farrar JT, Berlin JA, Strom BL. Clinically important changes in acute pain outcome measures: a validation study. J Pain Symptom Manage. 2003;25:406-411.
- 43. Farrar JT, Portenov RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. Pain. 2000;88:287-294.


CLINICAL SUMMARY AND RECOMMENDATIONS	244
Anatomy	245
Osteology	245
Arthrology	246
Ligaments	247
Muscles	248
Nerves	252
Patient History	254
Initial Hypotheses Based on Historical Findings	254
Diagnostic Utility of the Patient History for Identifying Intra-articular	
Hip Pain, Osteoarthritis, and Acetabular Labral Tears	255
Physical Examination Tests	256
Range of Motion	256
Assessing Muscle Strength	264
Assessing Muscle Length	268
Functional Movements	272
Palpation	273
Special Tests	274
Combinations of Tests	278
Outcome Measures	279
Appendix	280
Quality Assessment of Diagnostic Studies Using QUADAS	280
References	281


CLINICAL SUMMARY AND RECOMMENDATIONS

Patient History	
Complaints	Several complaints appear to be useful in identifying specific hip pathologies. A subjective complaint of "clicking in the hip" is strongly associated with acetabular labral tears.
	Reports of "constant low back/buttock pain" and "ipsilateral groin pain" are moderately helpful in diagnosing osteoarthritis (OA) of the hip.
Physical Examination	
Range of Motion	Measuring hip range of motion (ROM) has consistently been shown to be highly reliable and when limited in three planes can be fairly useful in identifying hip OA ($+LR=4.5$ to 4.7).
	Assessing pain during ROM can be helpful in identifying both OA and lateral tendon pathology. Lateral hip pain during passive abduction is strongly suggestive of lateral tendon pathology ($+LR=8.3$), whereas groin pain during active hip abduction or adduction is moderately suggestive of OA ($+LR=5.7$).
	Limited hip abduction in infants can also be very helpful in identifying hip dysplasia or instability.
Strength Assessment	Assessment of hip muscle strength has been shown to be fairly reliable, but appears to be less helpful in identifying lateral tendon pathologies than reports of pain during resisted tests, especially of the gluteus minimus and medius ($+LR=3.27$).
	Similarly, a report of posterior pain with a squat is also fairly useful in identifying hip OA ($+LR=6.1$).
	Although less reliable than strength tests, the Trendelenburg test is also moderately useful in identifying both lateral tendon pathologies and gluteus medius tears $(+LR = 3.2 \text{ to } 3.6)$.
Special Tests	Generally special tests of the hip have not been demonstrated to be especially helpful in identifying specific hip pathologies. Not the Patrick's test (FABER), the flexion-internal rotation-adduction (FADIR) test, or the scour test appear to have much diagnostic utility.
	One exception is the patellar-pubic-percussion test, which is very good at detecting and ruling out hip fractures ($+LR=6.7$ to 21.6, $-LR=.07$ to .14).
Combinations of Findings	Patients with at least four of five signs and symptoms (squatting aggravates symptoms, lateral pain with active hip flexion, scour test with adduction causes lateral hip or groin pain, pain with active hip extension, and passive internal rotation $\leq 25^{\circ}$) are highly likely to have hip OA.

ANATOMY

Osteology

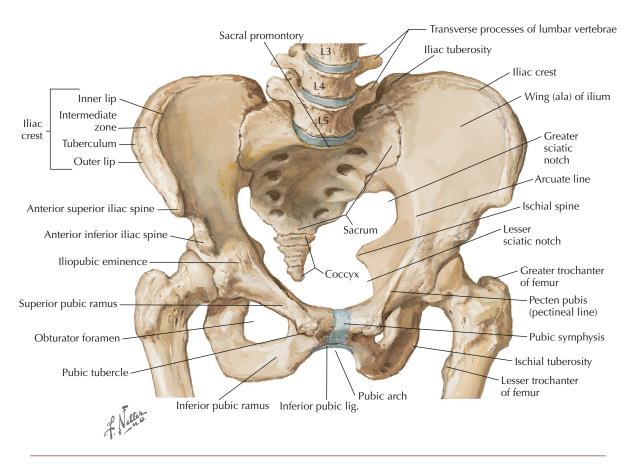


Figure 6-3 Hip and pelvis joints.

Joint	Type and Classification	Closed Packed Position	Capsular Pattern
Femoroacetabular	Synovial: Spheroidal	Full extension, some internal rotation, and abduction	Internal rotation and abduction > flexion and extension
Pubic symphysis	Amphiarthrodial	Not applicable	Not applicable
Sacroiliac	Synovial: Plane	Not documented	Not documented

Ligaments

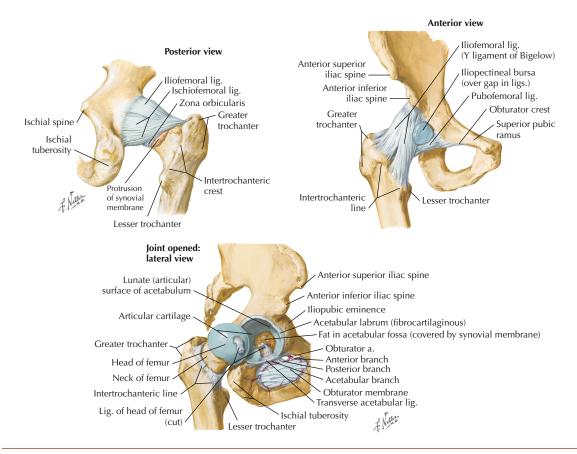


Figure 6-4 Ligaments of the hip and pelvis.

Hip Ligaments	Attachments	Function
Iliofemoral	Anterior inferior iliac spine to intertrochanteric line of femur	Limits hip extension
Ischiofemoral	Posterior inferior acetabulum to apex of greater tubercle	Limits internal rotation, external rotation, and extension
Pubofemoral	Obturator crest of pubic bone to blend with capsule of hip and iliofemoral ligament	Limits hip hyperabduction
Ligament of head of femur	Margin of acetabular notch and transverse acetabular ligament to head of femur	Carries blood supply to head of femur
Pubic Symphysis Ligaments	Attachments	Function
Superior pubic ligament	Connects superior aspect of right and left pubic crests	Reinforces superior aspect of joint
Inferior pubic ligament	Connects inferior aspect of right and left pubic crests	Reinforces inferior aspect of joint
Posterior pubic ligament	Connects posterior aspect of right and left pubic crests	Reinforces inferior aspect of joint

Muscles

Posterior Muscles of Hip and Thigh

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action	
Gluteus maximus	Posterior border of ilium, dorsal aspect of sacrum and coccyx, and sacrotu- berous ligament	Iliotibial tract of fascia lata and gluteal tuber- osity of femur	Inferior gluteal nerve (L5, S1, S2)	Extension, external ro- tation, and some ab- duction of the hip joint	
Gluteus medius	External superior border of ilium and gluteal aponeurosis	Lateral aspect of greater trochanter of femur	Superior gluteal nerve	Hip abduction and in- ternal rotation; main- tains level pelvis in	
Gluteus minimus	External surface of ilium and margin of greater sciatic notch	Anterior aspect of greater trochanter of femur	(L5, S1)	single limb stance	
Piriformis	Anterior aspect of sacrum and sacrotuber- ous ligament	Superior greater tro- chanter of femur	Ventral rami S1, S2		
Superior gemellus	Ischial spine		Nerve to obturator in- ternus (L5, S1)	External rotation of extended hip, abduc-	
Inferior gemellus	Ischial tuberosity	Trochanteric fossa of femur	Nerve to quadratus femoris (L5, S1)	tion of flexed hip, steady femoral head in acetabulum	
Obturator internus	Internal surface of obtu- rator membrane, border of obturator foramen		Nerve to obturator in- ternus (L5, S1)		
Quadratus femoris	Lateral border of ischial tuberosity	Quadrate tubercle of femur	Nerve to quadratus femoris (L5, S1)	Lateral rotation of hip; steadies femoral head in acetabulum	
Hamstrings					
Semitendinosus	- Ischial tuberosity	Superomedial aspect of tibia	Tibial division of sciatic	Hip extension, knee flexion, medial rotation of knee in knee flexion	
Semimembranosus	iscribat tuberosity	Posterior aspect of medial condyle of tibia	nerve (L5, S1, S2)		
Biceps femoris	Long head: ischial tuberosity Short head: linea aspera and lateral supracondylar line of femur	Lateral aspect of head of fibula, lateral condyle of tibia	Long head: tibial division of sciatic nerve (L5, S1, S2) Short head: common fibular division of sciatic nerve (L5, S1, S2)	Knee flexion, hip ex- tension, and knee ex- ternal rotation when knee is flexed	

Muscles (continued)

Posterior Muscles of Hip and Thigh

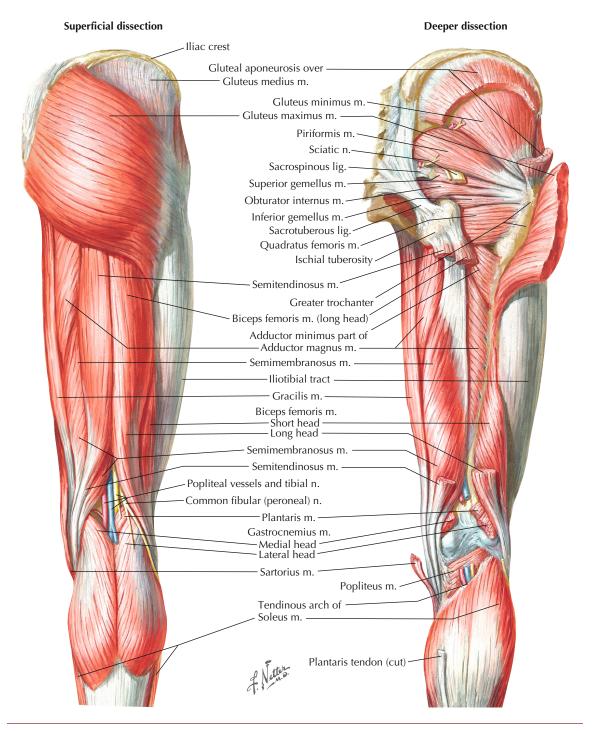


Figure 6-5 Muscles of hip and thigh: posterior views.

Muscles

Anterior Muscles of Hip and Thigh

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Psoas				
Major	Lumbar transverse processes	Lesser trochanter of femur	L1-4	Flexes the hip, assists with external rota- tion and abduction
Minor	Lateral bodies of T12-L1	Iliopectineal eminence, and arcuate line of ileum	L1-2	Flexion of pelvis on lumbar spine
Iliacus	Superior iliac fossa, iliac crest and ala of sacrum	Lateral tendon of psoas major and distal to lesser trochanter	Femoral nerve (L1-4)	Flexes the hip, assists with external rota- tion and abduction
Adductors				
Longus	Inferior to pubic crest	Middle third of linea aspera of femur	Obturator nerve (L2, L3, L4)	Hip adduction
Brevis	Inferior ramus of pubis	Pectineal line and prox- imal linea aspera of femur	Obturator nerve (L2, L3, L4)	Hip adduction and assists with hip extension
Magnus	Adductor part: inferior pubic ramus, ramus of ischium Hamstring part: ischial tuberosity	Adductor part: gluteal tuberosity, linea aspera, medial supracondylar line Hamstring part: adduc- tor tubercle of femur	Adductor part: obturator nerve (L2, L3, L4) Hamstring part: tibial part of sciatic nerve (L4)	Hip adduction Adductor part: hip flexion Hamstring part: hip extension
Gracilis	Inferior ramus of pubis	Superomedial aspect of tibia	Obturator nerve (L2, L3)	Hip adduction and flexion; assists with hip internal rotation
Pectineus	Superior ramus of pubis	Pectineal line of femur	Femoral nerve and obturator nerve (L2, L3, L4)	Hip adduction and flexion; assists with hip internal rotation
Tensor fasciae latae	Anterior superior iliac spine and anterior aspect of iliac crest	Iliotibial tract that at- taches to lateral condyle of tibia	Superior gluteal nerve (L4, L5)	Hip abduction, inter- nal rotation and flexion; aids in main- taining knee extension
Rectus femoris	Anterior inferior iliac spine	Base of patella and through patellar liga- ment to tibial tuberosity	Femoral nerve (L2, L3, L4)	Hip flexion and knee extension
Sartorius	Anterior superior iliac spine and notch just inferior	Superomedial aspect of tibia	Femoral nerve (L2, L3)	Flexes, abducts, and externally rotates hip, flexes knee
Obturator externus	Margin of obturator foramen and obturator membrane	Trochanteric fossa of femur	Obturator nerve (L3, L4)	Hip external rotation, steadies head of femur in acetabulum

Muscles (continued)

Anterior Muscles of Hip and Thigh

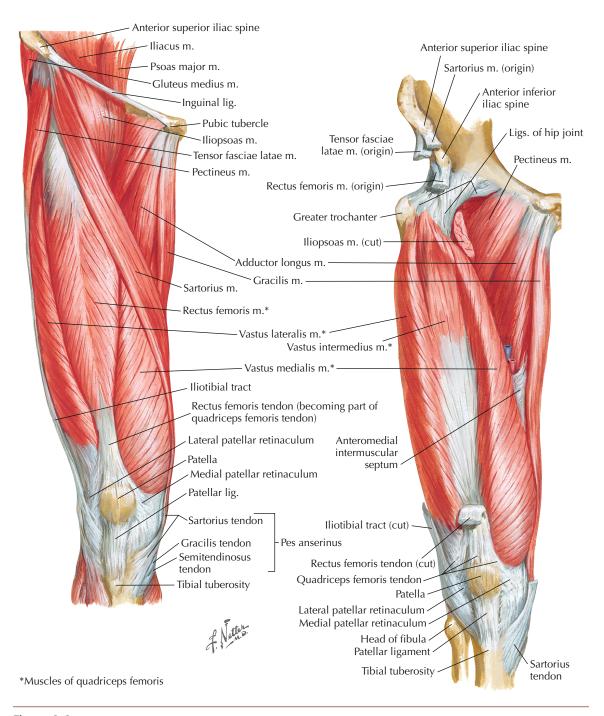
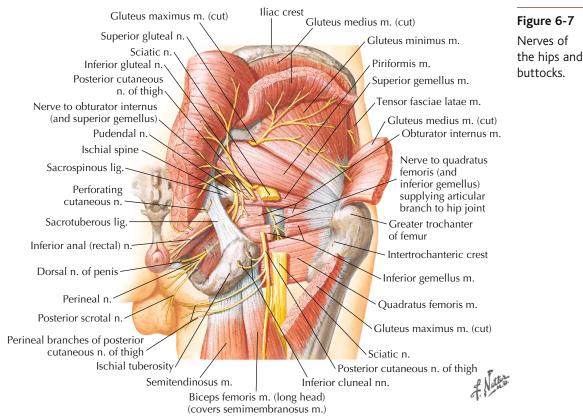



Figure 6-6 Muscles of thigh: anterior view.

Nerves

Nerve Motor Segmental Level Sensory Obturator L2, L3, L4 Medial thigh Adductor longus, adductor brevis, adductor magnus (adductor part), gracilis, obturator externus Saphenous Femoral nerve Medial leg and foot No motor Femoral L2, L3, L4 Thigh via cutaneous nerves Iliacus, sartorius, quadriceps femoris, articularis genu, pectineus Lateral cutaneous of L2, L3 Lateral thigh No motor thigh Posterior cutaneous of S2, S3 Posterior thigh No motor thigh Inferior cluneal Dorsal rami L1, L2, L3 Buttock region No motor Sciatic L4, L5, S1, S2, S3 Hip joint Knee flexors and all muscles of lower leg and foot Superior gluteal L4, L5, S1 No sensory Tensor fascia latae, gluteus medius, gluteus minimus Inferior gluteal L5, S1, S2 No sensory Gluteus maximus Nerve to quadratus L5, S1, S2 No sensory Quadratus femoris, inferior gemellus femoris **Pudendal** S2, S3, S4 Genitals Perineal muscles, external urethral sphincter, external anal sphincter

Nerves (continued)

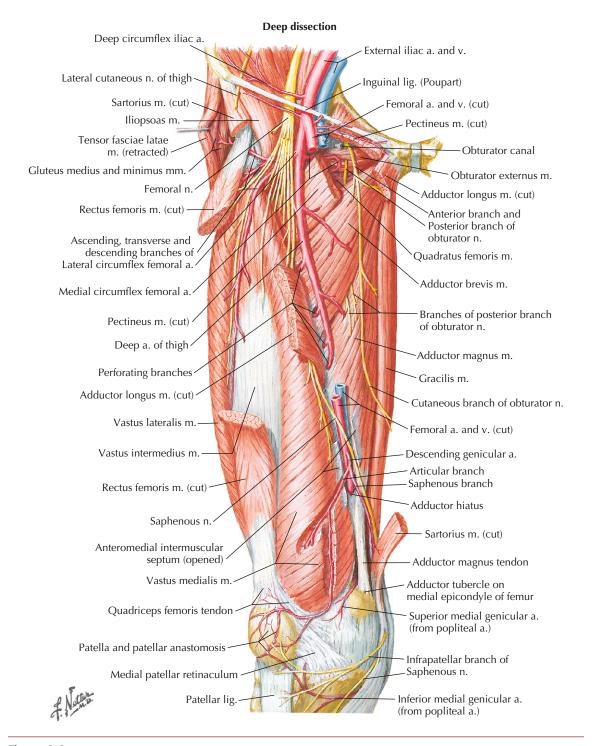


Figure 6-8 Nerves and arteries of thigh: anterior views.

PATIENT HISTORY

Initial Hypotheses Based on Historical Findings

History	Initial Hypothesis
Reports of pain at the lateral thigh. Pain exacerbated when transferring from sitting to standing	Greater trochanteric bursitis ¹⁹ Muscle strain ²
$\mbox{\rm Age} > \mbox{\rm 60.}$ Reports of pain and stiffness in the hip with possible radiation into the groin	OA ³
Reports of clicking or catching in the hip joint. Pain exacerbated by full flexion or extension	Labral tear ⁴
Reports of a repetitive or overuse injury	Muscle sprain/strain ²
Deep aching throb in the hip or groin. Possible history of prolonged steroid use	Avascular necrosis ⁴
Sharp pain in groin. Often misdiagnosed by multiple providers	Femoroacetabular (anterior) impingement ⁵
Pain in the gluteal region with occasional radiation into the posterior thigh and calf	Piriformis syndrome ⁶ Hamstring strain ^{2,4} Ischial bursitis ²

Diagnostic Utility of the Patient History for Identifying Intra-articular Hip Pain, Osteoarthritis, and Acetabular Labral Tears


+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Patient Complaint	Population	Reference Standard	Sens	Spec	+LR	-LR
Groin pain ⁷		Intra-articular hip pain as defined by > 50% relief with intra-articular anes- thetic-steroid injection	.59 (.41, .75)	.14 (.05, .33)	.67 (.48, .98)	3.0 (.95, 9.4)
Catching ⁷	49 potential surgical pa-		.63 (.44, .78)	.54 (.35, .73)	1.39 (.81, 2.4)	.68 (.36, 1.3)
Pinching pain when sitting ⁷	tients with hip pain		.48 (.31, .66)	.54 (.35, .73)	1.1 (.58, 1.9)	.95 (.56, 1.6)
No lateral thigh pain ⁷			.78 (.59, .89)	.36 (.2, .57)	1.2 (.84, 1.8)	.61 (.25, 1.5)
Constant low back/ buttock pain ⁸	78 patients with unilat-	Hip OA on radio- graphs using the Kellgren and Law- rence grading scale	.52 (.30, .74)	.92 (.80, .97)	6.4 (2.4, 17.4)	.52 (.33, .81)
Ipsilateral groin pain ⁸	eral pain in the buttock,		.29 (.12, .52)	.92 (.80, .97)	3.6 (1.2, 11.0)	.78 (.59, 1.00)
Squatting aggravates symptoms ⁸	groin, or an- terior thigh		.76 (.52, .91)	.57 (.42, .70)	1.8 (1.2, 2.6)	.42 (.19, .93)
Patient complains of clicking in the hip ⁹	18 patients with hip pain	Acetabular labral tear as determined by magnetic reso- nance arthrography	1.0 (.48, 1.0)	.85 (.55, .98)	6.7	.00

PHYSICAL EXAMINATION TESTS

Range of Motion

Reliability of Range of Motion Measurements

Figure 6-9Measurement of passive range of motion.

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Measurements	Instrumentation	Population	Inter-examiner Reliability
External rotation (sitting) Internal rotation (sitting) External rotation (supine) Internal rotation (supine) Flexion Abduction Adduction Extension ¹⁰	Goniometer	6 patients with hip OA	Pre/post standardization: ICC = .55/.80 ICC = .95/.94 ICC = .87/.80 ICC = .87/.94 ICC = .91/.91 ICC = .91/.88 ICC = .72/.56 ICC = NA/.66
Internal rotation External rotation Flexion Abduction Extension (knee flexed) Extension (knee unconstrained) ¹¹	Goniometer (except rotation with inclinometer)	22 patients with hip OA	ICC = .93 (.83, .97) ICC = .96 (.91, .99) ICC = .97 (.93, .99) ICC = .94 (.86, .98) ICC = .86 (.67, .94) ICC = .89 (.72, .95)

Range of Motion (continued)

Reliability of Range of Motion Measurements

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Measurements	Instrumentation	Population	Intra-examiner Reliability
Flexion Abduction Adduction External rotation Internal rotation Extension ⁸	Inclinometer	78 patients with unilateral pain in the buttock, groin, or anterior thigh	ICC = .85 (.64 to .93) ICC = .85 (.68 to .93) ICC = .54 (19 to .81) ICC = .77 (.53 to .89) ICC = .88 (.74 to .94) ICC = .68 (.32 to .85)
Passive hip flexion ¹²	Gravity inclinometer	22 patients with knee OA and 17 asymptom- atic subjects	ICC = .94 (.8997)
Flexion Extension Abduction Adduction External Rotation Internal rotation Total hip motion ¹³	Goniometer	25 subjects with radiologically verified OA of the hip	ICC = .82 ICC = .94 ICC = .86 ICC = .50 ICC = .90 ICC = .90 ICC = .85
Flexion Internal rotation External rotation Abduction Extension Adduction ¹⁴	Goniometer	168 patients, 50 with no hip OA, 77 with unilateral hip OA, 40 with bilateral hip OA based on radiological reports	ICC = .92 ICC = .90 ICC = .58 ICC = .78 ICC = .56 ICC = .62
Hip flexion, right Hip flexion, left ¹⁵	Goniometer	106 patients with OA of the hip or knee confirmed by a rheumatologist or orthopaedic surgeon	ICC = .82 (.26, .95) ICC = .83 (.33, .96)

Range of Motion

Reliability of Determining Capsular and Noncapsular End-Feels

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Measurements	Description and Positive Finding	Population	Intra-examiner Reliability
Flexion ⁸	Maximal passive ROM (PROM) was assessed. End-feels were dichotomized into "capsular" (early capsular, spasm, bone-to-bone) and "noncapsular" (soft tissue approximation, springy block, and empty) as defined by Cyriax	78 patients with unilateral pain in the buttock, groin, or anterior thigh	κ = .21 (22, .64)
Internal rotation ⁸			$\kappa = .51$ (.19, .83)
Scour test ⁸			$\kappa = .52$ (.08, .96)
FABER test ⁸			κ = .47 (.12, .81)
Hip flexion test ⁸			к = .52 (.09, .96)

Diagnostic Utility of Cyriax's Capsular Pattern for Detecting Osteoarthritis

A few studies^{14,16} have investigated the diagnostic utility of Cyriax's capsular pattern (greater limitation of flexion and internal rotation than of abduction, little if any limitation of adduction and external rotation) in detecting the presence of OA of the hip. Bijl and associates¹⁶ demonstrated that hip joints with OA had significantly lower ROM values in all planes when compared with hip joints without OA. However, the magnitude of the range limitations did not follow Cyriax's capsular pattern. Similarly, Klässbo and colleagues¹⁴ did not detect a correlation between hip OA and Cyriax's capsular pattern. In fact, they identified 138 patterns of PROM restrictions depending on the established norms used (either the mean for symptom-free hips or Kaltenborn's published norms).

Range of Motion (continued)

Diagnostic Utility of Cyriax's Capsular Pattern for Detecting Osteoarthritis

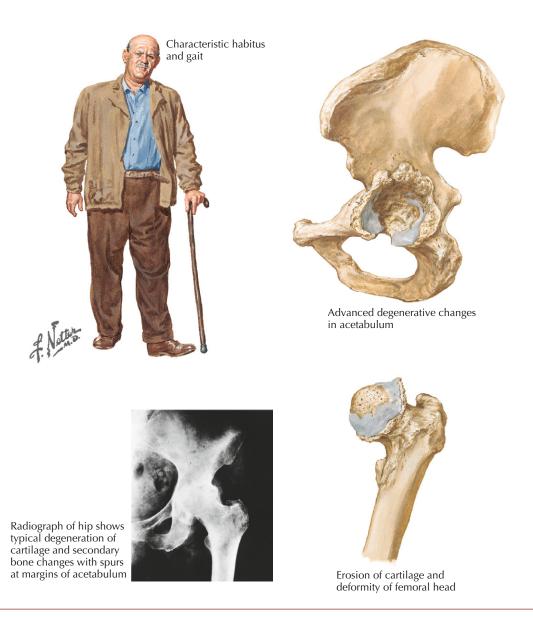


Figure 6-10 Hip joint involvement in ostearthritis.

Range of Motion	+LR >10	Interpretation Large	−LR <.1
Diagnostic Utility of Pain and Limited Range of Motion	5.0-10.0	Moderate	.12
	2.0-5.0	Small	.25
	10-20	Rarely important	5-10

Test and Stud	y Quality	Population	Reference Standard	Sens	Spec	+LR	-LR
Lateral pain wi hip flexion ⁸	th active			.43 (.23, .66)	.88 (.75, .95)	3.6 (1.5, 8.7)	.65 (.44, .94)
Passive interna ≤ 25°8	l rotation	78 patients with unilateral pain in the buttock,	Hip OA on radiographs using the Kellgren and	.76 (.52, .91)	.61 (.46, .74)	1.9 (1.3, 3.0)	.39 (.18, .86)
Pain with activ tension ⁸	e hip ex-	groin, or ante- rior thigh	Lawrence grading scale	.52 (.30, .74)	.80 (.66, .90)	2.7 (1.3, 5.3)	.59 (.37, .94)
Groin pain wit duction or add	h active ab- uction ⁸			.33 (.15, .57)	.94 (.83, .98)	5.7 (1.7, 18.6)	.71 (.52, .96)
Decreased pass ternal rotation				.43 (.19, .70)	.86 (.42, .99)	3.00 (.44, 20.31)	.67 (.40, 1.10)
Pain with activ		40 patients with	Lateral hip tendon pathol-	.31 (.10, .61)	.86 (.42, .99)	2.15 (.29, 15.75)	.81 (.54, 1.22)
Pain with passi duction ¹⁷	ive hip ab-	hip pain ogy via	ogy via MRI	.59 (.33, .82)	.93 (.49, 1.00)	8.31 (.56, 123.88)	.44 (.24, .81)
Pain with passi ternal rotation				.53 (.27, .78)	.86 (.42, .99)	3.73 (.57, 24.35)	.54 (.30, .98)
Number of	0			1.0	.00	1.0	NA
planes with restricted	1		Radiographic evidence of mild-to-moderate OA	.86	.54	1.87	.26
movement ¹⁸	2	195 patients		.57	.77	2.48	.56
\Diamond	3	presenting with		.33	.93	4.71	.72
Number of	0	first time epi- sodes of hip		1.0	.00	1.0	NA
planes with restricted	1	pain	Radiographic evidence of	1.0	.42	1.72	NA
movement ¹⁸	2		severe OA	.81	.69	2.61	.28
	3			.54	.88	4.5	.52
Pain with hip F	PROM ¹⁹	21 women diag- nosed with pelvic girdle pain (PGP)	PGP as defined by: Current or recent pregnancy Daily pain Points to the pelvic girdle joints as the painful area Pain during one or more of the 6 selected clinical tests (active straight leg raise [ASLR], Gaenslen, sacroiliac compression, sacroiliac distraction, thigh thrust)	.55	1.0	Undefined	.45

Range of Motion (continued)

Diagnostic Utility of Pain and Limited Range of Motion

Hip flexion

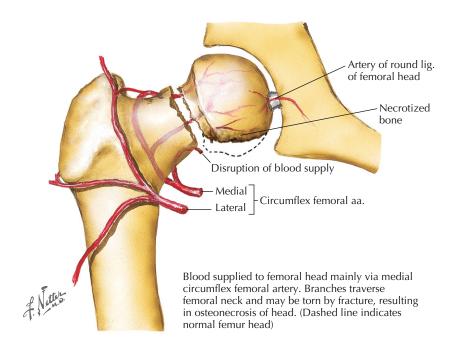

Hip extension

Figure 6-11 Passive range of motion measurement.

Range of Motion

Diagnostic Utility of Limited Range of Motion for Detecting Avascular Necrosis

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 6-12 Osteonecrosis.

Motion and Finding	Population	Reference Standard	Sens	Spec	+LR	-LR
PROM extension < 15° ²⁰	176 asymptomatic HIV-infected patients		.19 (.00, .38)	.92 (.89, .95)	2.38	.88
PROM abduction < 45° ²⁰		· .	.31 (.09, .54)	.85 (.82, .89)	2.07	.81
PROM internal rotation < 15°20			.50 (.26, .75)	.67 (.62, .72)	1.52	.75
PROM external rotation < 60°20			.38 (.14, .61)	.73 (.68, .77)	.48	.85
Pain with Internal rotation ²⁰			.13 (.00, .29)	.86 (.83, .89)	.93	1.01
HIV, human immunodeficiency virus; MRI: magnetic resonance imaging.						

Range of Motion

Diagnostic Utility of Limited Hip Abduction for Detecting Developmental Dysplasia in Infants

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 6-13 Recognition of congenital dislocation of the hip.

Test		Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Limited hip abduction test ²¹	Unilateral limitation	Passive abduction of the hips performed with both hips flexed 90°. Considered	1107	Ultrasound verification of clinical in-	.70 (.60, .69)	.90 (.88, .92)	7.0	.33
v	Bilateral limitation	positive if abduction is more than 20° greater than the contralateral side	infants	stability of the hip	.43 (.50, .64)	.90 (.88, .92	4.3	.63
Limited hip a	bduction ²²	As above except considered positive if either (1) abduction $<$ 60° or (2) asymmetry in abduction of \geq 20°	683 infants	Hip dyspla- sia as de- tected by ultrasound	.69	.54	1.5	.57

Assessing Muscle Strength

Reliability of Detecting Pain or Weakness During Resisted Tests

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Reliability		
			Intra-examiner	Inter-examiner	
Abduction strength ²³	With subject supine, patient exerts maximal isometric hip abduction force into a handheld dynamometer placed just proximal to the knee		ICC (right/left) = .81/.84	ICC (right/left) = .73/.58	
Adduction strength ²³	With subject supine, patient exerts maximal isometric hip adduction force into a sphygmomanometer placed between the knees	29 football	ICC = .81 to .94 (depending on knee angle)	ICC = .80 to .83 (depending on knee angle)	
Internal rotation ²³	With subject supine and tested knee flexed to 90°, patient exerts maximal iso- metric rotational force into a handheld dynamometer placed just proximal to the lateral malleolus	players	ICC (right/left) = .67/.57	ICC (right/left) = .40/.54	
External rotation ²³	As above except with the dynamometer placed just proximal to the medial malleolus		ICC (right/left) = .55/.64	ICC (right/left) = .60/.63	
Abduction strength ¹⁰	With patient supine, patient abducts bi- lateral hips into examiner's hands. Strength graded on scale of 0-2		Inter-examiner pre- tion: $\kappa = .90/.86$	post standardiza-	
Adduction strength ¹⁰	As above except patient adducts bilateral hips		Inter-examiner pre- tion: $\kappa = .87/.86$	post standardiza-	
Flexion strength (sitting) ¹⁰	With patient sitting, the patient lifts one knee against examiner's hand. Strength graded on scale of 0-2	6 patients with hip OA	Inter-examiner pre- tion: $\kappa = .83/.95$	post standardiza-	
Flexion strength (supine) ¹⁰	As above except supine with knees bent 90°	t Inter-examine tion: $\kappa = NA$		post standardiza-	
Extension strength ¹⁰	Patient prone with knee bent 90°. Lifts 1 leg against examiners hand. Strength graded on scale of 0-2		Inter-examiner pre/post standardization: $\kappa = .85/.86$		

Assessing Muscle Strength (continued)

Reliability of Detecting Pain or Weakness During Resisted Tests

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Reliability	
			Intra-examiner	Inter-examiner
Abduction strength ²³	With subject supine, the patient exerts maximal isometric hip abduction force into a handheld dynamometer placed just proximal to the knee		ICC (right/left) = .81/.84	ICC (right/left) = .73/.58
Adduction strength ²³	With subject supine, the patient exerts maximal isometric hip adduction force into a sphygmomanometer placed between the knees	29 football	ICC = .81 to .94 (depending on knee angle)	ICC = .80 to .83 (depending on knee angle)
Internal rotation ²³	With subject supine and tested knee flexed to 90°, the patient exerts maximal isometric rotational force into a handheld dynamometer placed just proximal to the lateral malleolus	players	ICC (right/left) = .67/.57	ICC (right/left) = .40/.54
External rotation ²³	As above except with the dynamometer placed just proximal to the medial malleolus		ICC (right/left) = .55/.64	ICC (right/left) = .60/.63
Abduction strength ¹⁰	With patient supine, the patient abducts bilateral hips into examiner's hands. Strength graded on scale of 0-2		Inter-examiner pre/post standardization: $\kappa = .90/.86$	
Adduction strength ¹⁰	As above except the patient adducts bilateral hips		Inter-examiner pre- ization: $\kappa = .87/.6$	•
Flexion strength (sitting) ¹⁰	With patient sitting, the patient lifts one knee against examiner's hand. Strength graded on scale of 0-2	6 patients with hip OA	Inter-examiner pre/post standa ization: $\kappa = .83/.95$	
Flexion strength (supine) ¹⁰	As above except with patient supine and knees bent 90°		Inter-examiner pre/post standard-ization: $\kappa = NA/.90$	
Extension strength ¹⁰	With patient prone and knee bent 90°, patient lifts one leg against examiner's hand. Strength graded on scale of 0-2		Inter-examiner pre/post standardization: $\kappa = .85/.86$	

Assessing Muscle Strength

Diagnostic Utility of Pain or Weakness for Identifying Lateral Hip Tendon Pathology

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR		
Pain with resisted gluteus minimus ¹⁷	Tested isometri- cally as described by Kendal and			.47 (.22, .73)	.86 (.42, .99)	3.27 (.49, 21.70)	.62 (.37, 1.05)		
Pain with resisted gluteus minimus and medius ¹⁷	colleagues. Posi- tive if reproduc- tion of pain	40 patients with unilat-	Lateral hip tendon pathol-	.47 (.22, .73)	.86 (.42, .99)	3.27 (.49, 21.70)	.62 (.37, 1.05)		
Gluteus minimus and medius weakness ¹⁷	Tested isometri- cally as described by Kendal and	pain ogy via MRI			'	.80 (.51, .95)	.71 (.30, .95)	2.80 (.85, 9.28)	.28 (.09, .86)
Gluteus minimus weakness ¹⁷	colleagues. Posi- tive if less than 5/5		.80 (.51, .95)	.57 (.20, .88)	1.87 (.76, 4.55)	.35 (.10, 1.19)			
Pain with resisted abduction ²⁴	With patient supine and affected hip at 45°, positive if symptoms over the greater trochanter are reproduced on resisted abduction	24 patients with lateral			.73	.46	1.35	.59	
Pain with resisted internal rotation ²⁴	With patient supine and affected hip at 45° and maximal external rotation, positive if symptoms over the greater trochanter are replicated on internal rotation	hip pain and tenderness over the greater trochanter	Gluteus medius tendon tear via MRI	.55	.69	1.77	.65		

Assessing Muscle Strength		Interpretation
		Substantial agreement
Reliability of the Trendelenburg Test	.6180	Moderate agreement
		Fair agreement
		Slight agreement
	.010	No agreement

Left: patient demonstrates negative Trendelenburg test of normal right hip. Right: positive test of involved left hip. When weight is on affected side, normal hip drops, indicating weakness of left gluteus medius muscle. Trunk shifts left as patient attempts to decrease biomechanical stresses across involved hip and thereby maintain balance

Figure 6-14 Trendelenburg test.

Test and Study	Description and Positive Findings	Population	Intra-examiner Reliability
Positive Trendelenburg test ¹⁰	Standing patient raises one foot 10 cm off the ground while examiner inspects for change in level of pelvis. Positive if pelvis drops on the unsupported side or trunk shifts to the stance side	6 patients with hip OA	$\kappa = .36$ (pre-standardization) $\kappa = .06$ (post-standardization)
Positive Trendelenburg test ²⁴	Assessed in two ways. Pelvic tilt was assessed in single leg stance on the affected leg. Pelvic movement was assessed during gait. A positive test was defined as clearly abnormal pelvic tilt during both stance and gait	24 patients with lateral hip pain and tenderness over the greater trochanter	κ = .67 (.27, 1.08)

Diagnostic Utility of the Trendelenburg Test for Identifying Lateral Hip Tendon Pathology

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Positive Trendelen- burg test ¹⁷	Patient lifts one foot off the ground at a time while standing. Positive if the patient is unable to elevate his/her pelvis on the nonstance side and hold the position for at least 30 sec	40 patients with unilateral lateral hip pain	Lateral hip tendon pa- thology via MRI	.23 (.05, .57)	.94 (.53, 1.00)	3.64 (.20, 65.86)	.82 (.59, 1.15)
Positive Trendelen- burg test ²⁴	Assessed in two ways. Pelvic tilt was assessed in single leg stance on the affected leg. Pelvic movement was assessed during gait. A positive test was defined as clearly abnormal pelvic tilt during both stance and gait	24 patients with lateral hip pain and ten- derness over the greater trochanter	Gluteus medius tendon tear via MRI	.73	.77	3.17	.35

Assessing Muscle Length

Reliability of Tests for Iliotibial Band Length

Ober test

Interpretation
Substantial agreement
Moderate agreement
Fair agreement
Slight agreement
No agreement

Modified Ober test

Figure 6-15Tests for iliotibial band length.

Measurements	Test Procedure	Population	Reliability
Ober test ¹⁰	With patient side-lying with examined leg up, examiner flexes patient's knee to 90° and abducts and extends the hip until the hip is in line with the trunk. Examiner allows gravity to adduct hip as much as possible. Positive if unable to adduct to horizontal position	6 patients with hip OA	$\kappa = .38$ (pre-standardization) $\kappa = .80$ (post-standardization)
Ober test ²⁵	As above except an inclinometer is used on the distal	30 patients with patellofemoral pain syndrome	Inter-examiner ICC = .97 (.93 , .98)
Ober test ²⁶	lateral thigh to measure hip adduction angle	61 asymptomatic individuals	Intra-examiner ICC = .90
Modified Ober test ²⁷	As above but with test knee	10 patients experiencing anterior knee pain	Inter-examiner ICC = .73 Intra-examiner ICC = .94
Modified Ober test ²⁷	fully extended	61 asymptomatic individuals	Intra-examiner ICC = .91

Assessing Muscle Length	ICC or ĸ	Interpretation
Assessing Plusete Length		Substantial agreement
Reliability of the Thomas Test for Hip Flexor Contracture	.6180	Moderate agreement
		Fair agreement
		Slight agreement
	.010	No agreement

angle of flexion is recorded

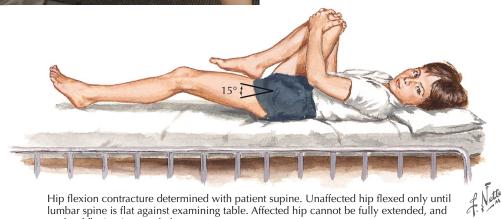


Figure 6-16 Thomas test.

Measurements	Test Procedure	Population	Reliability
Modified Thomas test ²⁸	With the subject sitting as close to the edge of the table as possible and holding the nontested thigh, the patient rolls back into supine position and flexes the untested hip until the lumbar lordosis is flattened. The tested limb is allowed to hang into extension and is measured with an inclinometer or goniometer	42 asymptom- atic individuals	ICC = .92 (goniometer) ICC = .89 (inclinometer)
Thomas test ¹⁰	With patient supine with both hips flexed and maintaining one hip in flexion, the tested hip is extended. Positive if unable to touch posterior thigh with examination table	6 patients with hip OA	$\kappa =$.60 (pre-standardization) $\kappa =$.88 (post-standardization)

Assessing Muscle Length

Reliability of Assessing Muscle Length

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Test and Study Description and Positive Findings		Reliability	
			Intra-examiner	Inter-examiner
Bent knee fall out (adductors) ²³	With subject supine and knees flexed to 90°, the patient lets knees fall out while keeping feet together. The distance from the fibular head to the table is measured with a tape measure		ICC (right/left) = .90/.89	ICC (right/left) = .93/.91
External rotators of the hip ²³	With subject prone and knees flexed to 90°, the patient lets feet fall outward while keeping feet together. Examiner passively flexes knee 90°. Internal rotation measurement is taken with an inclinometer	29 football players	ICC (right/left) = .97/.96	ICC (right/left) = .89/.93
Internal rotators of the hip ²³	With subject supine with nontested hip flexed and the test leg hanging over the end of the table, passive ex- ternal rotation is measured with an inclinometer		ICC (right/left) = .82/.80	ICC (right/left) = .64/.77
Short hip extensors ²⁹	With patient supine, examiner brings hip passively into flexion while palpating posterior-superior iliac spine (PSIS) on ipsilateral side. As soon as PSIS moves posteriorly, the movement is ceased and the measurement is recorded with an inclinometer		Intra-examiner ICC	= .87
Short hip flexors ²⁹	With patient supine, lower limbs over the plinth, and both hips flexed, ex- aminer slowly lowers the side being tested. When limb ceases to move, measurement is recorded with an inclinometer	11 asymptomatic individuals	Intra-examiner ICC	= .98
External rotators of the hip ²⁹	With patient prone, examiner passively flexes knee 90°. Examiner palpates contralateral PSIS and passively internally rotates limb. When rotation of pelvis occurs, measurement is taken with an inclinometer		Intra-examiner ICC	= .99
Internal rotators of the hip ²⁹	Same as above except examiner takes hip into external rotation		Intra-examiner ICC	= .98

Measurement of the length of external rotators of the hip

Measurement of the length of internal rotators of the hip

Figure 6-17 Measurement of muscle length with a bubble inclinometer.

Functional Movements

Diagnostic Utility of Pain with Functional Movements

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Posterior pain with squat ⁸	Patient squats as low as possible with feet 20 cm apart, trunk upright, and hands on hips	78 patients with unilat- eral pain in the buttock, groin, or an- terior thigh	Hip OA on x-rays using the Kellgren and Lawrence grading scale	.24 (.09, .48)	.96 (.85, .99)	6.1 (1.5, 25.6)	.79 (.62, 1.00)
Step up ¹⁹			PGP defined by: • Current or recent	.29	1.0	Undefined	.71
Single leg stance ¹⁹			pregnancyDaily painPoints to the pelvic	.35	.67	1.1	.97
Lunge ¹⁹		21 women	girdle joints as the painful area Pain during one or more of the six selected clinical tests	.44	.83	2.6	.68
Sit to stand ¹⁹	No details given	with pelvic girdle pain		.13	1.0	Undefined	.88
Deep squat ¹⁹				.24	1.0	Undefined	.88

Palpation

Reliability of Pain with Palpation

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Trochanteric tenderness ¹⁰	With patient supine, firm pressure is applied to the greater trochanter. Test positive if patient's symptoms	6 patients with hip OA	$\kappa = .40$ (pre-standardization) $\kappa = .68$ (post-standardization)
Trochanteric tenderness ⁷	are reproduced	70 patients with hip pain	κ = .66 (.48, .84)

Diagnostic Utility of Pain with Palpation for Intra-articular Hip Pain

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Patient Complaint	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Trochanteric tenderness ⁷	With patient supine, firm pressure is applied to the greater trochanter. Test positive if patient's symptoms are reproduced	49 potential surgi- cal patients with hip pain	Intra-articular hip pain as defined by > 50% relief with intra-articular anes- thetic-steroid injection	.57 (.39, .74)	.45 (.27, .65)	1.1 (.36, 3.6)	.93 (.49, 1.8)

Special Tests

Reliability of Patrick's (FABER) Test

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Reliability
Patrick's test ⁷	With patient supine, examiner flexes, abducts, and externally rotates the involved hip so that the lateral ankle is placed just proximal to the contralateral knee. While stabilizing the anterior superior iliac spine, the involved leg is lowered toward the table to end range. Test is positive if it reproduces the patient's symptoms	70 patients with hip pain	Intra-examiner $\kappa = .63$ (.43, .83)
Patrick's test ¹⁰	As above except test is considered positive if the patient has inguinal pain	6 patients with hip OA	Inter-examiner $\kappa = .78$ (pre-standardization) $\kappa = .75$ (post-standardization)
Patrick's test ⁸	As above except inclinometer is used 2.5 cm proximal to the patient's flexed knee	78 patients with unilateral pain in the buttock, groin, or anterior thigh	Intra-examiner ICC = .90 (.78 to .96)

Diagnostic Utility of Patrick's (FABER) Test

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
10-20	Rarely important	5-10

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Patrick's test ⁷	With patient supine, examiner flexes, abducts, and externally rotates the involved hip so that the lateral ankle is placed just proximal to the contralateral knee. While stabilizing the anterior superior iliac spine, the involved leg is lowered toward the table to end range. Test is positive if it reproduces the patient's symptoms	49 potential surgical patients with hip pain	Intra-articular hip pain as defined by > 50% relief with intra- articular anesthetic- steroid injection	.60 (.41, .77)	.18 (.07, .39)	.73 (.5, 1.1)	2.2 (.8, 6.0)
Patrick's test less than 60°8	As above, but also uses incli- nometer 2.5 cm proximal to the patient's flexed knee	78 patients with unilateral pain in the buttock, groin, or ante- rior thigh	Hip OA on radio- graphs using the Kellgren and Lawrence grading scale	.57 (.34, .77)	.71 (.56, .82)	1.9 (1.1, 3.4)	.61 (.36, 1.00)

Special Tests

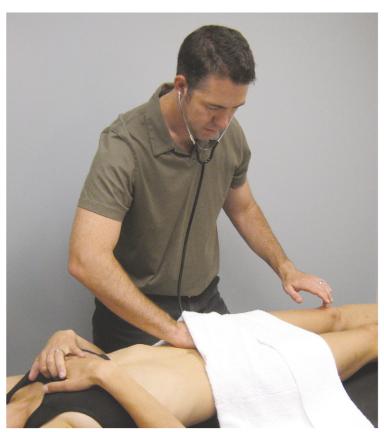
Reliability of Special Tests for Detecting Intra-articular Pathology

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 6-18 Internal rotation-flexion-axial compression

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Flexion-internal rotation-adduction (FADIR) impinge- ment test ⁷	With patient supine, examiner flexes, adducts, and internally rotates the involved hip to end range. Test is positive if it reproduces the patient's symptoms		$\kappa = .58 (.29, .87)$
Log roll ⁷	With patient supine with greater trochanters in the maximally prominent position, examiner places both hands on the patient's mid thigh and passively externally rotates each hip maximally. Test is positive if greater external rotation is noted on the symptomatic side	70 patients with hip pain	κ = .61 (.41, .81)

Diagnostic Utility of Special Tests for Detecting Intra-articular Pathology

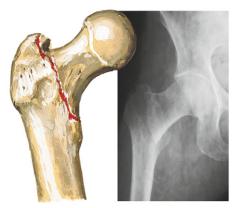

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Scour test with adduction causes lateral hip or groin pain ⁸	With patient supine, examiner passively flexes the symptomatic hip to 90° and then moves the knee toward the opposite shoulder and applies an axial load to the femur	78 patients with unilateral pain in the buttock, groin, or anterior thigh	Hip OA on radio- graphs using the Kellgren and Law- rence grading scale	.62 (.39, .81)	.75 (.60, .85)	2.4 (1.4, 4.3)	.51 (.29, .89)
FADIR impingement	With patient supine, examiner flexes, adducts, and internally rotates the involved hip to end range. Test is positive if it reproduces the patient's symptoms	49 potential surgical pa- tients with hip pain	Intra-articular hip pain as defined by > 50% relief with intra-articular anesthetic-steroid injection	.78 (.59, .89)	.10 (.03, .29)	.86 (.67, 1.1)	2.3 (.52, 10.4)
Internal rotation-flexion-axial compression maneuver ⁹	With patient supine, examiner flexes and internally rotates the hip, then applies an axial compression force through the femur. Provocation of pain is considered positive	18 patients with hip pain	Acetabular labral tear as determined by magnetic resonance arthrography	.75 (.19, .99)	.43 (.18, .72)	1.32	.58

Special Tests

Diagnostic Utility of the Patellar-Pubic-Percussion Test for Detecting Hip Fractures

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0


Figure 6-19 Percussion test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Patellar- pubic-per- cussion test ³⁰	With patient supine, examiner percusses (taps) one patella at a time while auscultating the pubic symphysis with a stethoscope. A positive test is a diminution of the percussion note on the affected side	290 patients with suspected radiologically occult hip fractures	Hip fracture seen on repeat radiographs, bone scintography, MRI, or computed tomography	.96 (.87, .99)	.86 (.49, .98)	6.73	.14
Patellar- pubic-per- cussion test ³¹		41 patients in the emergency department with a chief com- plaint of hip trauma	Hip fracture on seen on radiograph	.94	.96	21.6	.07

Special Tests (continued)

Diagnostic Utility of the Patellar-Pubic-Percussion Test for Detecting Hip Fractures

Intertrochanteric Fracture of Femur

I. Nondisplaced fracture

II. Comminuted displaced fracture

Fracture of Shaft Femur

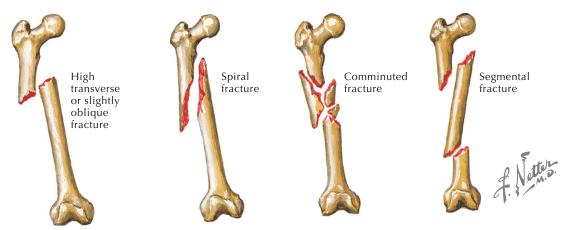


Figure 6-20 Hip fractures.

Combinations of Tests

Diagnostic Utility of Combinations of Tests for Osteoarthritis

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Number of Variables Present	Population	Reference Standard	Sens	Spec	+LR	-LR
Squatting aggravates symptoms	5/5			.14 (.04, .37)	.98 (.88, 1.0)	7.3 (1.1, 49.1)	.87 (.73, 1.1)
+ Lateral pain with active hip flexion +	≥ 4/5	70 askisuta		.48 (.26, .70)	.98 (.88, 1.0)	24.3 (4.4, 142.1)	.53 (.35, .80)
Scour test with adduction causes lateral hip or groin	≥ 3/5	78 patients with unilateral pain in the buttock, groin, or anterior thigh	the Kellgren and	.71 (.48, .88)	.86 (.73, .94)	5.2 (2.6, 10.9)	.33 (.17, .66)
pain +	≥ 2/5			.81 (.57, .94)	.61 (.46, .74)	2.1 (1.4, 3.1)	.31 (.13, .78)
Pain with active hip extension + Passive internal rotation ≤ 25°8	≥ 1/5			.95 (.74, 1.0)	.18 (.09, .31)	1.2 (.99, 1.4)	.27 (.04, 2.0)

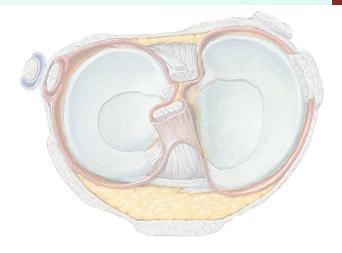
OUTCOME MEASURES

Outcome Measure	Scoring and Interpretation	Test-Retest Reliability	MCID
Lower Extremity Functional Scale (LEFS)	Users are asked to rate the difficulty of performing 20 functional tasks on a Likert-type scale ranging from 0 (extremely difficult or unable to perform activity) to 4 (no difficulty). A total score out of 80 is calculated by summing each score. The answers provide a score between 0 and 80, with lower scores representing more disability	ICC = .92 ³²	9 ³³
Western Ontario and Mc- Master Universities Osteo- arthritis Index (WOMAC)	The WOMAC consists of three subscales: pain (5 items), stiffness (2 items), and physical function (17 items). Users answer the 24 condition-specific questions on a numerical rating scale ranging from 0 (no symptoms) to 10 (extreme symptoms), or alternatively on a Likert-type scale from 0 to 4. Scores from each subscale are summed with higher scores indicating more pain, stiffness, and disability	ICC = .90 ³²	6.7% for improve- ment and 12.9% for worsening ³⁴
Numeric Pain Rating Scale (NPRS)	Users rate their level of pain on an 11-point scale ranging from 0 to 10, with high scores representing more pain. Often asked as "current pain" and "least," "worst," and "average pain" in the past 24 hours	ICC = . 72 ³⁵	2 ^{36,37}
MCID, Minimum clinically importa	ant difference.		

APPENDIX

Quality Assessment of Diagnostic Studies Using QUADAS

	Altman 1991	Adams 1997	Birrell 2001	Bird 2001	Castelein 2001	Joe 2002	Jari 2002	Fishman 2002	Tiru 2002	Narvani 2003	Cook 2007	Martin 2008	Sutlive 2008	Woodley 2008
Was the spectrum of patients representa- tive of the patients who will receive the test in practice?	U	U	Υ	Υ	Υ	N	Y	U	Υ	Υ	Υ	Υ	Υ	Y
2. Were selection criteria clearly described?	N	Ν	Υ	Υ	Υ	N	Υ	U	Υ	U	Υ	Υ	Υ	Υ
3. Is the reference standard likely to correctly classify the target condition?	U	Υ	Υ	Υ	Y	Y	Y	U	Υ	Υ	Y	Y	Y	Υ
4. Is the time period between reference stan- dard and index test short enough to be rea- sonably sure that the target condition did not change between the two tests?	U	U	Υ	U	U	U	U	Υ	U	N	U	U	Υ	Y
5. Did the whole sample or a random selection of the sample, receive verification using a reference standard of diagnosis?	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
6. Did patients receive the same reference standard regardless of the index test result?	Υ	Υ	Υ	Υ	Υ	Υ	Y	Y	Υ	Y	Υ	Y	Υ	Y
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	U	Υ	Υ	Υ	Υ	Υ	Υ	U	Υ	Υ	N	Υ	Υ	Υ
8. Was the execution of the index test described in sufficient detail to permit replication of the test?	N	Υ	Υ	Υ	N	U	Y	Υ	Υ	U	N	Y	Υ	1
9. Was the execution of the reference stan- dard described in sufficient detail to permit its replication?	N	U	Υ	Υ	Υ	Υ	Y	Υ	U	Y	Y	Υ	Υ	`
O. Were the index test results interpreted without knowledge of the results of the reference test?	U	Υ	Υ	Υ	U	Y	U	U	U	U	U	U	Υ	`
1. Were the reference standard results inter- preted without knowledge of the results of the index test?	Υ	U	U	Υ	U	U	U	U	U	U	U	U	Υ	١
Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	U	Υ	Υ	Υ	Υ	U	Υ	U	U	U	U	Υ	١
3. Were uninterpretable/intermediate test results reported?	Υ	U	U	Υ	U	Υ	Y	U	Υ	Y	Υ	Υ	Υ	١
4. Were withdrawals from the study explained?	Υ	U	U	Υ	Υ	Υ	Υ	U	Υ	Y	Y	Υ	Υ	Υ
Quality summary rating:			\Diamond	\Diamond			\Diamond					\Diamond	\Diamond	<


REFERENCES

- 1. Hertling D, Kessler RM. Management of Common Musculoskeletal Disorders: Physical Therapy Principles and Methods. 3rd ed. Philadelphia: Lippincott; 1996.
- 2. Pecina MM, Bojanic I. Overuse Injuries of the Musculoskeletal System. Boca Raton: CRC Press; 1993.
- 3. Altman R, Alarcon G, Appelrouth D, et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum. 1991;34:505-514.
- 4. Hartley A. Practical Joint Assessment. St Louis: Mosby; 1995.
- 5. Clohisy JC, Knaus ER, Hunt DM, et al. Clinical presentation of patients with symptomatic anterior hip impingement. Clin Orthop Relat Res. 2009;467: 638-644.
- 6. Fishman LM, Dombi GW, Michaelsen C, et al. Piriformis syndrome: diagnosis, treatment, and outcome—a 10-year study. Arch Phys Med Rehabil. 2002;83:295-301.
- 7. Martin RL, Irrgang JJ, Sekiya JK. The diagnostic accuracy of a clinical examination in determining intraarticular hip pain for potential hip arthroscopy candidates. Arthroscopy. 2008;24:1013-1018.
- 8. Sutlive TG, Lopez HP, Schnitker DE, et al. Development of a clinical prediction rule for diagnosing hip osteoarthritis in individuals with unilateral hip pain. J Orthop Sports Phys Ther. 2008;38:542-550.
- 9. Narvani AA, Tsiridis E, Kendall S, et al. A preliminary report on prevalence of acetabular labrum tears in sports patients with groin pain. Knee Surg Sports Traumatol Arthrosc. 2003;11:403-408.
- 10. Cibere J, Thorne A, Bellamy N, et al. Reliability of the hip examination in osteoarthritis: effect of standardization. Arthritis Rheum. 2008;59:373-381.
- 11. Pua YH, Wrigley TV, Cowan SM, Bennell KL. Intrarater test-retest reliability of hip range of motion and hip muscle strength measurements in persons with hip osteoarthritis. Arch Phys Med Rehabil. 2008;89: 1146-1154.
- 12. Cliborne AV, Wainner RS, Rhon DI, et al. Clinical hip tests and a functional squat test in patients with knee osteoarthritis: reliability, prevalence of positive test findings, and short-term response to hip mobilization. J Orthop Sports Phys Ther. 2004;34:676-685.
- 13. Holm I, Bolstad B, Lutken T, et al. Reliability of goniometric measurements and visual estimates of hip ROM in patients with osteoarthrosis. Physiother Res Int. 2000;5:241-248.
- 14. Klässbo M, Harms-Ringdahl K, Larsson G. Examination of passive ROM and capsular patterns in the hip. Physiother Res Int. 2003;8:1-12.
- 15. Lin YC, Davey RC, Cochrane T. Tests for physical function of the elderly with knee and hip osteoarthritis. Scand J Med Sci Sports. 2001;11:280-286.

- 16. Bijl D, Dekker J, van Baar ME, et al. Validity of Cyriax's concept capsular pattern for the diagnosis of osteoarthritis of hip and/or knee. Scand J Rheumatol. 1998;27:347-351.
- 17. Woodley SJ, Nicholson HD, Livingstone V, et al. Lateral hip pain: findings from magnetic resonance imaging and clinical examination. J Orthop Sports Phys Ther. 2008;38:313-328.
- 18. Birrell F, Croft P, Cooper C, et al. Predicting radiographic hip osteoarthritis from range of movement. Rheumatology (Oxford). 2001;40:506-512.
- 19. Cook C, Massa L, Harm-Ernandes I, et al. Interrater reliability and diagnostic accuracy of pelvic girdle pain classification. J Manipulative Physiol Ther. 2007;30:252-258.
- 20. Joe G, Kovacs J, Miller K, et al. Diagnosis of avascular necrosis of the hip in asymptomatic HIV-infected patients: clinical correlation of physical examination with magnetic resonance imaging. J Back Musculoskeletal Rehabil. 2002;16:135-139.
- 21. Jari S, Paton RW, Srinivasan MS. Unilateral limitation of abduction of the hip. A valuable clinical sign for DDH? J Bone Joint Surg Br. 2002;84:104-107.
- 22. Castelein RM, Korte J. Limited hip abduction in the infant. J Pediatr Orthop. 2001;21:668-670.
- 23. Malliaras P, Hogan A, Nawrocki A, et al. Hip flexibility and strength measures: reliability and association with athletic groin pain. Br J Sports Med. 2009
- 24. Bird PA, Oakley SP, Shnier R, Kirkham BW. Prospective evaluation of magnetic resonance imaging and physical examination findings in patients with greater trochanteric pain syndrome. Arthritis Rheum. 2001; 44:2138-2145.
- 25. Piva SR, Fitzgerald K, Irrgang JJ, et al. Reliability of measures of impairments associated with patellofemoral pain syndrome. BMC Musculoskelet Disord. 2006;
- 26. Reese NB, Bandy WD. Use of an inclinometer to measure flexibility of the iliotibial band using the Ober test and the modified Ober test: differences in magnitude and reliability of measurements. J Orthop Sports Phys Ther. 2003;33:326-330.
- 27. Melchione WE, Sullivan MS. Reliability of measurements obtained by use of an instrument designed to indirectly measure iliotibial band length. J Orthop Sports Phys Ther. 1993;18:511-515.
- 28. Clapis PA, Davis SM, Davis RO. Reliability of inclinometer and goniometric measurements of hip extension flexibility using the modified Thomas test. Physiother Theory Pract. 2008;24:135-141.
- 29. Bullock-Saxton JE, Bullock MI. Repeatability of muscle length measures around the hip. Physiother Can. 1994;46:105-109.

- 30. Tiru M, Goh SH, Low BY. Use of percussion as a screening tool in the diagnosis of occult hip fractures. *Singapore Med J.* 2002;43:467-469.
- 31. Adams SL, Yarnold PR. Clinical use of the patellar-pubic percussion sign in hip trauma. *Am J Emerg Med.* 1997;15:173-175.
- 32. Pua YH, Cowan SM, Wrigley TV, Bennell KL. The Lower Extremity Functional Scale could be an alternative to the Western Ontario and McMaster Universities Osteoarthritis Index physical function scale. *J Clin Epidemiol.* 2009
- Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. *Phys Ther.* 1999;79:371-383.
- 34. Angst F, Aeschlimann A, Stucki G. Smallest detectable and minimal clinically important differences of rehabilitation intervention with their implications for required sample sizes using WOMAC and SF-36 quality of life measurement instruments in patients with osteoarthritis of the lower extremities. *Arthritis Rheum*. 2001;45:384-391.
- Li L, Liu X, Herr K. Postoperative pain intensity assessment: a comparison of four scales in Chinese adults. *Pain Med.* 2007;8:223-234.
- 36. Farrar JT, Berlin JA, Strom BL. Clinically important changes in acute pain outcome measures: a validation study. *J Pain Symptom Manage*. 2003;25:406-411.
- 37. Farrar JT, Portenoy RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. *Pain*. 2000;88:287-294.

Knee 7

CLINICAL SUMMARY AND RECOMMENDATIONS	284
Anatomy	285
Osteology	285
Arthrology	286
Ligaments	287
Muscles	289
Nerves	292
Patient History	295
Initial Hypotheses Based on Historical Findings	295
Reliability of Assessing Subjective Questions in Patients with	
Osteoarthritis of Knee	296
Diagnostic Utility of the Patient History for Identifying Effusion,	
Meniscal Tears, and Medial Collateral Ligament Tears	297
Physical Examination Tests	298
Screening	298
Range of Motion	301
Assessing Strength	304
Assessing Muscle Length	305
Assessing Bony Alignment	306
Palpation	312
Special Tests	313
Combinations of Tests	322
Interventions	325
Outcome Measures	327
Appendix	328
Quality Assessment of Diagnostic Studies Using QUADAS	328
References	332

CLINICAL SUMMARY AND RECOMMENDATIONS

Patient History	
Complaints	Little is known about the utility of subjective complaints with knee pain. The lack of self-noticed swelling seems moderately helpful in ruling out knee joint effusion. Similarly, the absence of "weight bearing during trauma" may help rule out a meniscal tear (both $-LRs = .40$).
Physical Examination	
Screening	The Ottawa Knee Rule for Radiography is highly sensitive for knee fractures in both adults and children. When patients are younger than 55, can bear weight and flex their knee to 90°, and have no tenderness on the patella or fibular head; providers can confidently rule out a knee fracture $(-LR = .05 \text{ to } .07)$
Range of Motion and Strength Assessment	Measuring knee range of motion (ROM) has consistently been shown to be highly reliable but is of unknown diagnostic utility. The assessment of "end-feel" during ROM, however, is unreliable, especially between different examiners.
	Assessing strength with manual muscle testing (MMT) has been shown to accurately detect side-to-side knee extension strength deficits, at least in patients in an acute rehabilitation hospital setting.
Special Tests	Several systematic reviews with meta-analysis have examined special tests of the knee.
	Both "joint line tenderness" and McMurray's test consistently show moderate utility in detecting and ruling out meniscal tears. More recently, the Thessaly test has been shown to be excellent at both detecting and ruling ruling our meniscal tears ($+LR=9.0$ to 39.3 , $-LR=.08$ to $.35$).
	While the anterior drawer and the pivot shift test are good at identifying anterior cruciate ligament (ACL) tears ($+LR=2.9$ to 8.5), the Lachman test is best at ruling them out ($-LR=.10$ to .20).
	Varus and valgus testing, while not particularly reliable, is fairly good at ruling out medial collateral ligament (MCL) tears ($-LR = .20$ to .30).
	The "moving patellar apprehension test" seems to show very good diagnostic utility in both identifying and ruling out patellar instability (+LR = 8.3 , -LR = $.00$).
Combinations of Findings	Generally, the clinical examination and/or combinations of findings seem to be very good at identifying and ruling out various knee pathologies, including meniscal tears, ACL tears, and symptomatic plica.
	However, although the ability of several combinations of tests to identify meniscal tears have been studied, no combination seems as helpful as the Thessaly test alone.
Interventions	
	In patients with patellofemoral pain syndrome, two factors (2° or more of forefoot valgus and 78° or less of great toe extension) seem to predict a favorable response to off-the-shelf foot orthoses and activity modification.
	Similarly, several factors have been identified that predict which patients with knee osteoarthritis (OA) may benefit from hip mobilizations.

Osteology

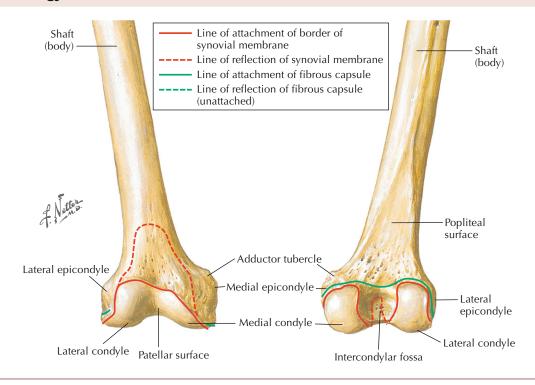


Figure 7-1 Femur.

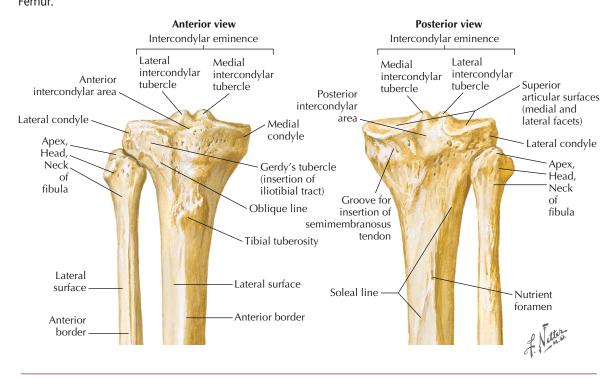
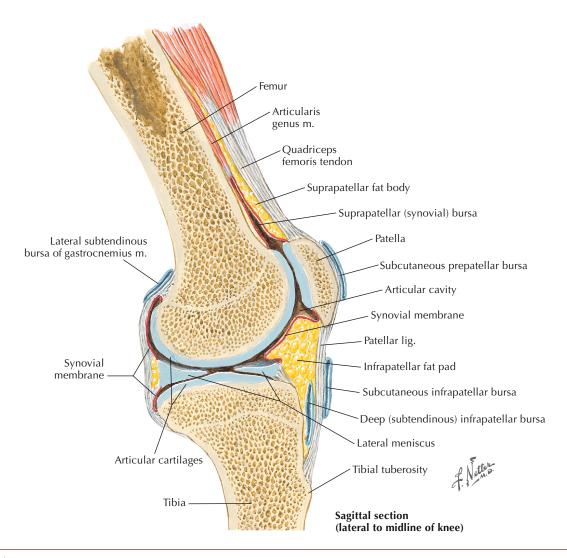



Figure 7-2 Tibia and fibula.

Figure 7-3 Sagittal knee.

Joints	Type and Classification	Closed Packed Position	Capsular Pattern
Tibiofemoral	Double condyloid	Full extension	Flexion restricted greater than extension
Proximal tibiofibular	Synovial: plane	Not reported	Not reported
Patellofemoral	Synovial: plane	Full flexion	Not reported

Ligaments

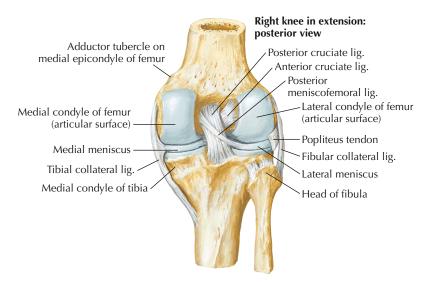
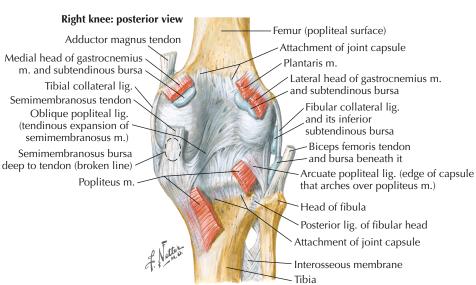
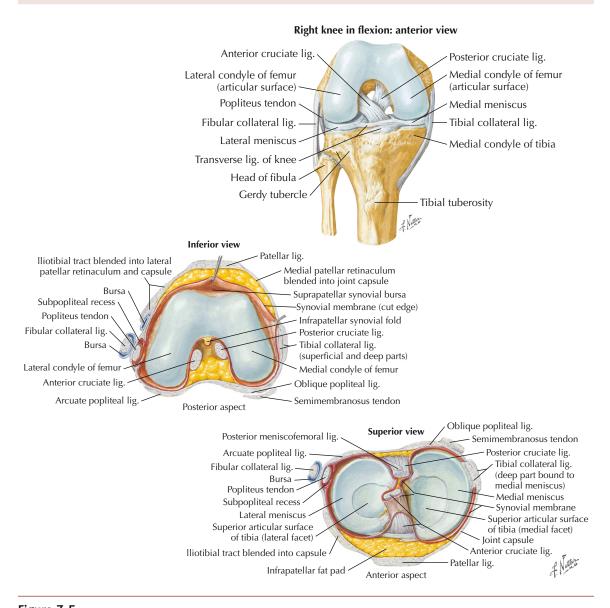




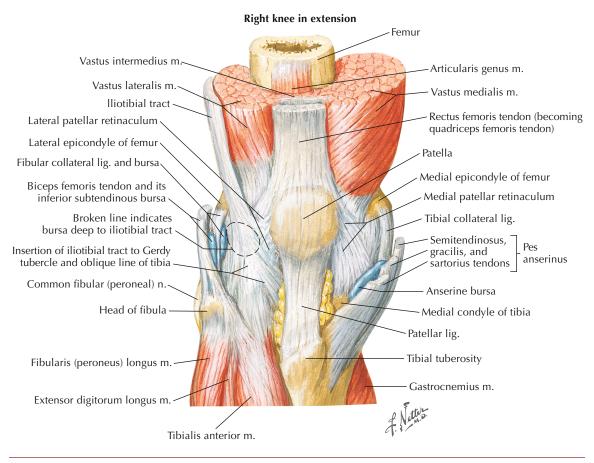
Figure 7-4 Posterior ligaments of knee.

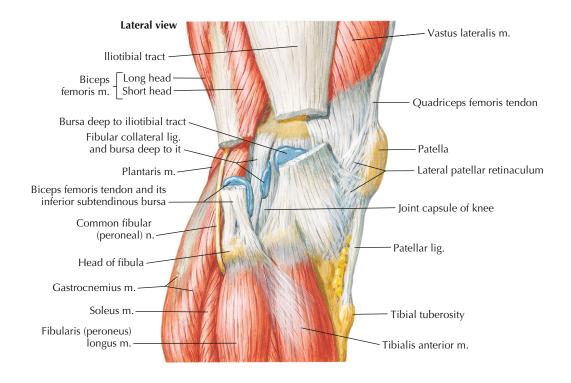
Ligaments	Attachments	Function
Posterior meniscofemoral	Lateral meniscus to posterior cruciate ligament (PCL) and medial femoral condyle	Reinforces posterior lateral meniscal attachment
Oblique popliteal	Posterior aspect of medial tibial condyle to posterior aspect of fibrous capsule	Strengthens posterior portion of joint capsule
Arcuate popliteal	Posterior fibular head over tendon of popliteus to posterior capsule	Strengthens posterior portion of joint capsule
Posterior ligament of fibular head	Posterior fibular head to inferior lateral tibial condyle	Reinforces posterior joint capsule

Ligaments (continued)

Figure 7-5 Inferior and anterior ligaments of knee.

Ligaments	Attachments	Function
Anterior cruciate	Anterior intracondylar aspect of tibial plateau to posteromedial side of lateral femoral condyle	Prevents posterior translation of femur on tibia and anterior translation of tibia on femur
Posterior cruciate	Posterior intracondylar aspect of tibial plateau to anterolateral side of medial femoral condyle	Prevents anterior translation of femur on tibia and posterior translation of tibia on femur
Fibular collateral	Lateral epicondyle of femur to lateral aspect of fibular head	Protects joint from varus stress
Tibial collateral	Femoral medial epicondyle to medial condyle of tibia	Protects the joint from valgus stress
Transverse liga- ment of knee	Anterior edges of menisci	Allows menisci to move together during knee movement




Figure 7-6 Anterior muscles of knee.

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental Level	Action
Quadriceps				
Rectus femoris	Anterior inferior iliac spine and ileum just superior to acetabulum			
Vastus lateralis	Greater trochanter and linea aspera of femur	Base of patella and by patellar ligament	Femoral nerve (L2, L3, L4)	Extends knee; rectus femoris also flexes hip and stabilizes
Vastus medialis	Intertrochanteric line and linea aspera	to tibial tuberosity	L5, L4)	head of femur in acetabulum
Vastus intermedius	Anterolateral aspect of shaft of femur			
Articularis genu	Anteroinferior aspect of femur	Synovial membrane of knee joint	Femoral nerve (L3, L4)	Pulls synovial membrane supe- riorly during knee extension to prevent pinching of membrane

Muscles (continued)

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental Level	Action	
Hamstrings					
Semimembranosus	Ischial tuberosity	Medial aspect of superior tibia	Tibial branch of sciatic nerve (L4,	Flexes and medially rotates knee, extends	
Semitendinosus	Ischial tuberosity	Posterior aspect of medial condyle of tibia	L5, S1, S2)	and medially rotates hip	
Biceps femoris					
Short head	Lateral linea aspera and proximal two thirds of supracondylar line of femur	Lateral head of fibula and	Fibular branch of sciatic nerve (L5, S1, S2)	Flexes and laterally rotates knee	
Long head	Ischial tuberosity	lateral tibial condyle	Tibial branch of sciatic nerve (L5, S1-3)	Flexes and laterally rotates knee, extends and laterally rotates hip	
Gracilis	Body and inferior ramus of pubis	Medial aspect of superior tibia	Obturator nerve (L2, L3)	Adducts hip, flexes and medially rotates knee	
Sartorius	Anterior superior iliac spine and anterior iliac crest	Superomedial aspect of tibia	Femoral nerve (L2, L3)	Flexes, abducts, and externally rotates hip, flexes knee	
Gastrocnemius					
Lateral head	Lateral femoral condyle		Tibial nerve (S1,	Plantarflexes ankle and	
Medial head	Superior aspect of medial femoral condyle	Posterior calcaneus	S2)	flexes knee	
Popliteus	Lateral femoral condyle and lateral meniscus	Superior to soleal line on posterior tibia	Tibial nerve (L4, L5, S1)	Weak knee flexion and unlocking of knee joint	
Plantaris	Lateral supracondylar line of femur and oblique popliteal ligament	Posterior calcaneus	Tibial nerve (S1, S2)	Weak assist in knee flexion and ankle plantarflexion	

Muscles (continued)

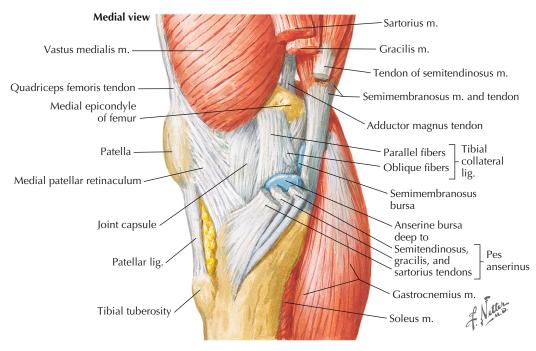
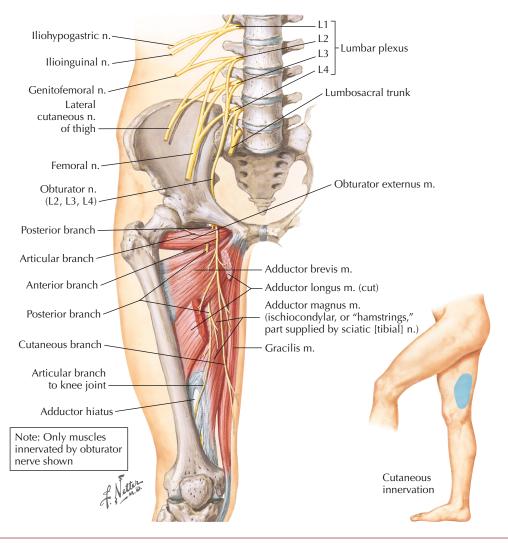



Figure 7-7
Lateral and medial muscles of knee.

Figure 7-8Obturator nerve.

Nerves	Segmental Level	Sensory	Motor
Femoral	L2, L3, L4	Thigh via cutaneous nerves	Iliacus, sartorius, quadriceps femoris, articularis genu, pectineus
Obturator	L2, L3, L4	Medial thigh	Adductor longus, adductor brevis, adductor magnus (adductor part), gracilis, obturator externus
Saphenous	L2, L3, L4	Medial leg and foot	No motor
Tibial nerve	L4, L5, S1, S2, S3	Posterior heel and plantar surface of foot	Semitendinosus, semimembranosus, biceps femoris, adductor magnus, gastrocnemius, soleus, plantaris, flexor hallucis longus, flexor digitorum longus, tibialis posterior
Common fibular nerve	L4, L5, S1, S2	Lateral posterior leg	Biceps femoris

Nerves (continued)

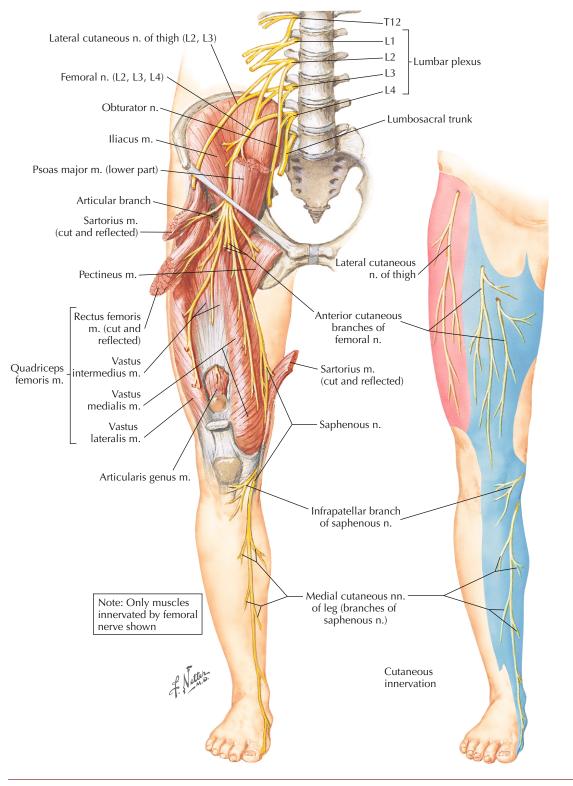
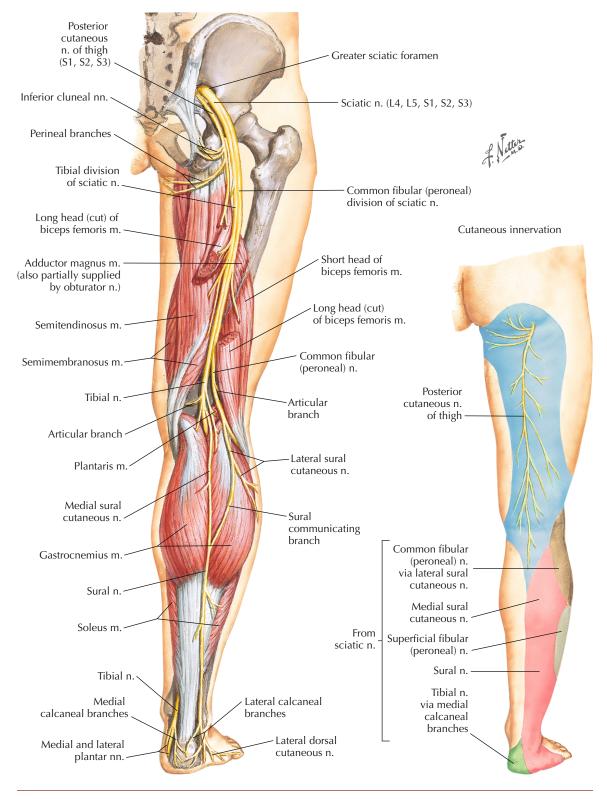



Figure 7-9 Femoral nerve and lateral femoral cutaneous nerves.

Nerves (continued)

Figure 7-10Sciatic nerve and posterior femoral cutaneous nerve.

PATIENT HISTORY

Initial Hypotheses Based on Historical Findings

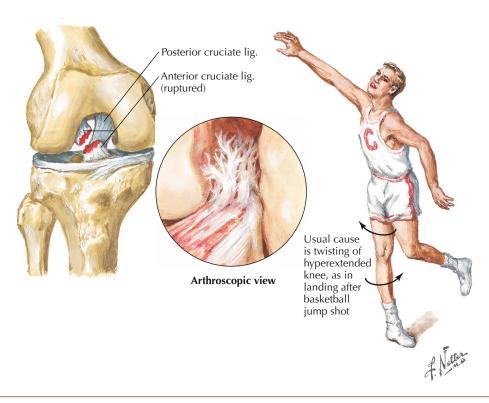
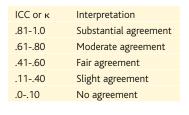
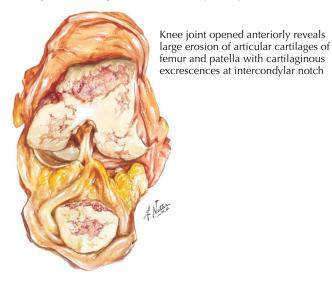
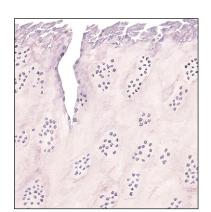


Figure 7-11 Anterior cruciate ligament ruptures.

Patient Reports	Initial Hypothesis
Patient reports a traumatic onset of knee pain that occurred during jumping, twisting, or changing directions with foot planted	Possible ligamentous injury (anterior cruciate) ^{1,2} Possible patella subluxation ² Possible quadriceps rupture Possible meniscal tear
Patient reports traumatic injury that resulted in a posteriorly directed force to tibia with knee flexed	Possible PCL injury (posterior cruciate) ³
Patient reports traumatic injury that resulted in a varus or valgus force exerted on knee	Possible collateral ligament injury (LCL or MCL) ³
Patient reports anterior knee pain with jumping and full knee flexion	Possible patellar tendonitis ^{2,4} Possible patellofemoral pain syndrome ^{5,6}
Patient reports swelling in knee with occasional locking and clicking	Possible meniscal tear ⁷ Possible loose body within knee joint
Patient reports pain with prolonged knee flexion, during squats, and while going up and down stairs	Possible patellofemoral pain syndrome ^{5,6}
Patient reports pain and stiffness in morning that diminishes after a few hours	Possible OA ^{8,9}


Reliability of Assessing Subjective Questions in Patients with Osteoarthritis of Knee


Progressive stages in joint pathology


A State of the sta

Early degenerative changes with surface fraying of articular cartilages Further erosion of cartilages, pitting, and cleft formation. Hypertrophic changes of bone at joint margins

Cartilages almost completely destroyed and joint space narrowed. Subchondral bone irregular and eburnated; spur formation at margins. Fibrosis of joint capsule

Section of articular cartilage shows fraying of surface and deep cleft. Hyaline cartilage abnormal with clumping of chondrocytes

Figure 7-12Osteoarthritis of the knee.

History	Population	Inter-examiner Reliability
Acute injury ¹⁰		к = .21 (.03, .39)
Swelling ¹⁰	к 152 patients with OA of knee	к = .33 (.17, .49)
Giving way ¹⁰		к = .12 (04, .28)
Locking ¹⁰		к = .44 (.26, .62)
Pain, generalized ¹⁰		к =03 (.15, .21)
Pain at rest ¹⁰		к = .16 (.0, 32)
Pain rising from chair ¹⁰		к = .25 (.05, .45)
Pain climbing stairs ¹⁰		к = .21 (.06, .48)
Inactivity stiffness ⁹		к = .90 (.74, 1.0)
Pain on using stairs ⁹	49 patients presenting to outpatient rheumatology clinics for OA of knee	к = .86 (.70, 1.0)
Night pain ⁹		к = .81 (.66, .96)

Diagnostic Utility of the Patient History for Identifying Effusion, Meniscal Tears, and Medial Collateral Ligament Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

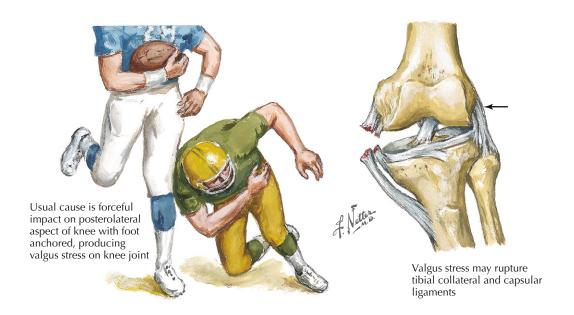
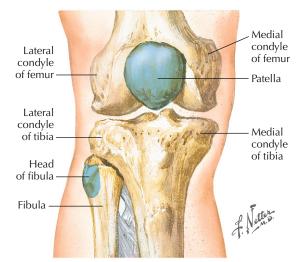
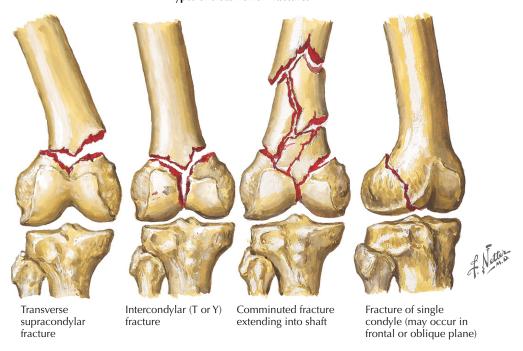



Figure 7-13 Medial collateral ligament rupture.

Patient Report and Study Quality	Population	Reference Standard	Sens	Spec	+LR	-LR
Self-noticed swell-ing ¹¹		Knee joint ef- fusion per MRI	.80 (.68, .92)	.45 (.35, .39)	1.5 (1.1, 1.9)	.40 (.20, .90)
Trauma by external force to the leg ¹²		MCL tear per	.21 (.07, .35)	.89 (.83, .96)	2.0 (.8, 4.8)	.90 (.70, 1.1)
Rotational trauma ¹²	134 pa- tients with	MINI	.62 (.41, .83)	.63 (.51, .74)	1.7 (1.1, 2.6)	.60 (.30, 1.1)
Age > 40 years ¹³	traumatic knee		.70 (.57, .83)	.64 (.54, .74)	2.0 (1.4, 2.8)	.50 (.30, .70)
Continuation of activity impossible ¹	complaints	Meniscal tear per MRI	.64 (.49, .78)	.55 (.45, .66)	1.4 (1.0, 2.0)	.70 (.40, 1.0)
Weight bearing during trauma ¹³			.85 (.75, .96)	.35 (.24, .46)	1.3 (1.1, 1.6)	.40 (.20, .90)


PHYSICAL EXAMINATION TESTS

Screening

Stiell and colleagues^{60,61} identified a clinical prediction rule to determine the need to order radiographs following knee trauma. If one of five variables identified were present, radiographs were required. The five variables included an age ≥55 years, isolated patellar tenderness without other bone tenderness, tenderness of the fibular head, inability to flex knee to 90°, inability to bear weight immediately after injury and in the emergency room (unable to transfer weight onto each lower extremity-regardless of limping). This rule has been validated in numerous studies in adult^{14,61-63} and pediatric^{64,65} populations. The inter-examiner agreement between clinicians for identification of predictor variables exhibited a kappa value of .77 with a 95% confidence interval of .65-.89.61

Types of distal femur fractures

Figure 7-14 Identifying the need to order radiographs following acute knee trauma.

Screening		Interpretation	-LR
Diagnostic Utility of the Ottawa Knee Rule for Radiography		Large	<.1
		Moderate	.12
	2.0-5.0	Small	.25
	1.0-2.0	Rarely important	.5-1.0

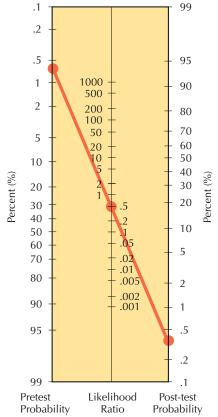


Figure 7-15

Nomogram. Assuming a fracture prevalence of 7% (statistically pooled from Bachmann and colleagues¹⁴), an adult seen in the emergency department with an acute injury whose finding was negative on the Ottawa Knee Rule would have a 0.37% (95% CI, 0.15% to 1.48%) chance of having a knee fracture. (Adapted with permission from Fagan TJ. Nomogram for Bayes' theorem. N Engl J Med. 1975;293-257. Copyright 2005, Massachusetts Medical Society. All rights reserved.)

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Ottawa Knee Rule for Ra- diography in Adults ¹⁴ 2004 Meta- analysis	Knee x-rays ordered when patients exhibited any of the following: (1) Age ≥55 years (2) Isolated patellar tenderness without other bone tenderness	Statistically pooled data from six high-quality studies involving 4249 adults	V rous	.99 (.93, 1.0)	.49 (.43, .51)	1.9	.05 (.02, .23)
Ottawa Knee Rule for Ra- diography in Children ¹⁵ 2009 Meta- analysis	(3) Tenderness of the fibular head(4) Inability to flex knee to 90°(5) Inability to bear weight immediately after injury and in the emergency department	Statistically pooled data from three high- quality studies involving 1130 children	X-rays	.99 (.94, 1.0)	.46 (.43, .49)	1.9 (1.6, 2.4)	.07 (.02, .29)

Screening

Reliability of Detecting Inflammation

Interpretation
Substantial agreement
Moderate agreement
Fair agreement
Slight agreement
No agreement

Figure 7-16 Fluctuation test.

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Observation of swelling ¹⁶			$\kappa =02$ to .65
Palpation for warmth ¹⁶	Not described	53 patients with knee pain	к =18
Palpation for swelling ¹⁶		'	$\kappa =11$ to .11
Fluctuation test ¹⁷	With patient supine, examiner places thumb and finger around patella while pushing any fluid from suprapatellar pouch with other hand. Positive if finger and thumb are pushed apart		κ = .37
Patellar tap test ¹⁷	With patient supine, examiner presses suprapatel- lar pouch then taps on patella. Patella remains in contact with femur if no swelling is present	152 patients with unilateral knee	κ = .21
Palpation for warmth ¹⁷	Examiner palpates anterior aspect of knee. Results compared with uninvolved knee	dysfunction	κ = .66
Visual inspection for redness ¹⁷	Examiner visually inspects involved knee for redness and compares it with uninvolved side		к = .21

Diagnostic Utility of the Ballottement Test for Identifying Knee Joint Effusion

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Ballottement test ¹¹	Examiner quickly pushes the patient's patella posteriorly with 2 or 3 fingers. Positive if patella bounces off trochlea with a distinct impact	134 patients	Knee joint	.83 (.71, .94)	.49 (.39, .59)	1.6 (1.3, 2.1)	.30 (.20, .70)
Self-noticed knee swelling + Ballotte- ment test ¹¹	Combination of two findings	with trau- matic knee complaints	effusion per MRI	.67 (.52, .81)	.82 (.73, .90)	3.6 (2.2, 5.9)	.40 (.30, .60)

Range of Motion

Reliability of Range of Motion Measurements

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 7-17 Measurement of active knee flexion range of motion.

Measurements	Instrumentation	Population	Reliability			
Active flexion sitting ¹⁸			Inter-exami	ner ICC =	.86 (.64, .94)	
Passive flexion sitting ¹⁸			Inter-examiner ICC = .88 (.69, .95)			
Active flexion supine ¹⁸	Chandand wantamakan		Inter-examiner ICC = .89 (.78, .95)			
Passive flexion supine ¹⁸	Standard goniometer	after total knee arthroplasty	Inter-exami	ner ICC =	.88 (.77, .94)	
Active extension ¹⁸			Inter-exami	ner ICC =	.64 (.38, .81)	
Passive extension ¹⁸			Inter-exami	ner ICC =	.62 (.28, .80)	
Passive flexion ¹⁶	Standard goniometer	53 patients with knee pain	Intra-exami Inter-exami			
Passive flexion Passive extension ¹⁹	Standard goniometer	25 patients with knee osteoarthritis			: .87 (.73, .94) : .69 (.41, .85)	
Passive flexion and	3 standard goniome-	24 patients referred for	Intra-exami	ner ICC		
extension ²⁰	ters (metal, large plastic, and small plastic)	physical therapy	Metal Large Small		Flexion .97 .99 .99	Extension .96 .91 .97
Passive flexion ²¹	Standard goniometer	30 asymptomatic subjects	Inter-exami	ner ICC =	: .99	
Passive flexion	Standard goniometer	43 patients referred for	Intra-exami	ner ICC	Inter-examine	er ICC
Passive extension ²²		physical therapy where examination would normally include	Flexion Extension	.99 .98	Flexion Extension	.90 .86
Passive flexion Passive extension ²²	Visual estimation	passive ROM (PROM) measurements of knee	Inter-examiner ICC = .83 Inter-examiner ICC = .82			
Active flexion Active extension ²³	Standard goniometer	20 asymptomatic subjects	Intra-exami Intra-exami			
Active flexion ²⁴	Universal goniometer	60 healthy university students	Intra-exami Inter-exami			
Passive flexion Passive extension ²⁵	Universal goniometer	79 patients with OA of knee	Intra-examiner ICC = .9596 Intra-examiner ICC = .7186			
Passive flexion	Standard goniometer	152 patients with uni-	Inter-exami	ner ICC		
Passive extension ¹⁷		lateral knee dysfunction	Involved kn	ee	Uninvolved k	nee
			Flexion Extension	.97 .94	Flexion Extension	.80 .72
ICC, Intraclass correlation co	efficient.					

Range of Motion

Reliability of Determining Capsular and Noncapsular End-Feels

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 7-18Assessment of end-feel for knee flexion.

Test and Study	Description and Positive Findings	Population	Reliability
Flexion end-feel Extension end-feel ¹⁹	End-feel is assessed at end of PROM and categorized as "normal," "empty," "stiff," or "loose"	25 patients with knee osteoarthritis	Inter-examiner ICC = .31 (53, 1.15) Inter-examiner ICC = .25 (18, .68)
Flexion end-feel Extension end-feel ²⁵	End-feel is assessed at end of PROM and categorized as "capsular," "tissue approximation," "springy block," "bony," "spasm," "empty"	79 patients with OA of knee	Intra-examiner $\kappa = .48$ Intra-examiner $\kappa = .17$
Flexion end-feel Extension end-feel ²⁶	End-feel is assessed at end of PROM and graded on an 11-point scale with "capsular at end of normal range," "capsular early in range," "capsular," "tissue approximation," "springy block," "bony," "spasm," "empty"	40 patients with uni- lateral knee pain	Intra-examiner $\kappa=.76$ (.55, .97) Inter-examiner $\kappa=01$ (36, .35) Intra-examiner $\kappa=1.0$ (1.0, 1.0) Inter-examiner $\kappa=.43$ (06, .92)
End-feel assessment during Lachman test ²⁷	Examiners asked to grade end-feel during Lachman test. End-feel graded as "hard" or "soft"	35 patients referred to physical therapy clinics for rehabilita- tion of knee joint	Intra-examiner $\kappa = .33$
End-feel of adduction stress applied to knee ²⁸	Examiner places knee in 0° and 30° of flexion and applies valgus force through knee. End-feel graded as "soft" or "firm"	50 patients referred to an outpatient or- thopaedic clinic who would normally undergo valgus stress tests directed at knee	Inter-examiner 0° of flexion $\kappa=.00$ 30° of flexion $\kappa=.33$

Range of Motion

Reliability of Assessing Pain During Range of Motion

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Study	Description and Positive Findings	Population	Reliability
Pain resistance sequence: Passive flexion Passive extension ²⁵	Pain sequence is assessed during PROM of knee. Pain is graded on a 4-point scale as "no pain,"	79 patients with OA of knee	Intra-examiner $\kappa = .34$ Intra-examiner $\kappa = .36$
Pain resistance sequence: Passive flexion ²⁶	"pain occurs after resistance is felt," "pain occurs at the same time as resistance is felt," or	40 patients with uni-	Intra-examiner $\kappa = .78$ (.68, .87) Inter-examiner $\kappa = .51$
Pain resistance sequence: Passive extension ²⁶	"pain occurs before resistance is felt"	lateral knee pain	Intra-examiner $\kappa = .85$ (.75, .95) Inter-examiner $\kappa = .42$
Pain resistance sequence: Passive flexion ¹⁷	Examiner passively flexes knee. Subject is directed to report when pain is above baseline levels. Examiner reports if pain occurs before, during, or after PROM limitation has occurred	152 patients with unilateral knee dysfunction	Inter-examiner $\kappa = .28$
Assessment of pain during adduction stress applied to knee ²⁸	Examiner places knee in 0° and 30° of flexion and applies valgus force through knee. Pain responses recorded	50 patients referred to outpatient ortho- paedic clinic who would normally undergo valgus stress tests directed at knee	Inter-examiner 0° of flexion $\kappa=.40$ 30° of flexion $\kappa=.33$

Assessing Strength

Reliability of Strength Assessment

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Measurements	Measurements Instrumentation		Reliability
Determination of 1 repetition maximum (1RM) knee extension ²⁹	With patient sitting in leg extension machine, subject performs slow knee extension from 100° to 0°. Amount of weight is systematically increased until subject can no longer complete lift. 1RM defined as the heaviest resistance that could be lifted once	27 asymptom- atic adults	Inter-day (same examiner) ICC = .90 Inter-examiner ICC = .96
Isometric extensor strength ¹⁶	Against inflated sphygmomanometer cuff	53 patients	Intra-examiner ICC = .85 Inter-examiner ICC = .83
Isometric flexor strength ¹⁶	Agamsi iimated spriygmomanometer cum	with knee pain	Intra-examiner ICC = .89 Inter-examiner ICC = .70

Diagnostic Utility of Manual Muscle Testing for Detecting Strength Deficits

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
MMT of knee extension strength ³⁰	Patient extends knee as forcefully as possi- ble into examiner's hand. Strength graded on a scale of 0 to 5	107 patients from an acute rehabil- itation hospital	Side-to-side difference with a handheld dynamometer of: 15% 20% 25% 30%	.63 .68 .72 .72	.89 .88 .83 .77	5.7 5.7 4.2 3.1	.42 .36 .34 .36

Assessing Muscle Length

Reliability of Assessing Muscle Length

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

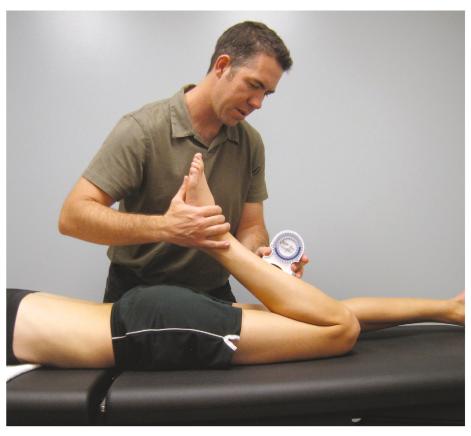


Figure 7-19 Quadriceps length.

Test and Study	Description and Positive Findings	Population	Inter-examiner Reliability
Quadriceps length ¹⁹	· ·		Result: $\kappa = .18$ (17, .53) Pain: $\kappa = .39$ (.14, .64)
Hamstring length ³¹	Straight leg raise test with inclinometer		ICC = .92 (.82, .96)
ITB/TFL complex length ³¹	Ober's test with inclinometer		ICC = .97 (.93, .98)
Quadriceps length ³¹	Quadriceps femoris muscle angle with inclinometer	30 patients with patello- femoral pain syndrome	ICC = .91 (.80, .96)
Gastrocnemius length ³¹	Dorsiflexion with knee extended and inclinometer	remoral pain syndrome	ICC = .92 (.83, .96)
Soleus length ³¹	Dorsiflexion with knee flexed 90° and inclinometer		ICC = .86 (.71, .94)

Reliability of the Assessing Mediolateral Patellar Tilt

Interpretation
Substantial agreement
Moderate agreement
Fair agreement
Slight agreement
No agreement

Figure 7-20 Examination of mediolateral patellar tilt.

Test and Measure	Procedure	Determination of Positive Finding	Population	Reliability
Mediolateral tilt ³²	Examiner estimates patellar alignment while palpating medial and lateral aspects of patella	Patellar orientation graded using an ordinal scale extending from -2 to +2 with -2 representing a lateral tilt, 0 no appreciable tilt, and +2 a medial tilt	27 asymptom- atic subjects	Intra-examiner $\kappa = .57$ Inter-examiner $\kappa = .18$
Mediolateral tilt ³³	Examiner palpates medial and lateral borders of patella with thumb and index finger	If digit palpating the medial border is higher than lateral border, then patella is con- sidered laterally tilted. If digit palpating the lateral border is higher than patella, then patella is medially tilted	66 patients re- ferred for physi- cal therapy who would normally undergo an eval- uation of patel- lofemoral alignment	Inter-examiner $\kappa = .21$
Mediolateral tilt ³⁴	Examiner attempts to palpate posterior surface of medial and lateral patellar borders	Scored 0, 1 or 2.0 if examiner palpates posterior border on both medial and lateral sides. 1 if >50% of lateral border can be palpated but posterior surface cannot. 2 if <50% of lateral border can be palpated	56 subjects, 25 of whom had symptomatic knees	Intra-examiner $\kappa = .28$ 33 Inter-examiner $\kappa = .19$
Patellar tilt test ³⁴	Examiner lifts lateral edge of patella from lateral femoral epicondyle	Graded as having positive, neutral, or negative angle with respect to horizontal plane	99 knees, of which 26 were symptomatic	Intra-examiner $\kappa = .44\text{-}.50$ Inter-examiner $\kappa = .20\text{-}.35$

Reliability of the Assessing Patellar Orientation

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 7-21 Examination of mediolateral patellar orientation.

Test and Measure	Procedure	Determination of Positive Finding	Population	Reliability
Mediolateral position ³²	Examiner visually esti- mates patellar align- ment while palpating sides of lateral epicon- dyles with index fingers and patella midline with thumbs	Patellar orientation graded using an ordinal scale extending from -2 to +2, with -2 representing a lateral displacement and +2 a medial displacement	27 asymptom- atic subjects	Intra-examiner $\kappa=.40$ Inter-examiner $\kappa=.03$
Mediolateral orientation ³⁵	With patient's knee supported in 20° of flexion, examiner identifies medial and lateral epicondyle of femur and midline of patella. Examiner then marks medial and lateral epicondyle and patella midline with tape	Distances between patella midline and medial and lateral condyles are measured	20 healthy physiotherapy students	Inter-examiner Medial distance: ICC = .91 Lateral distance: ICC = .94
Mediolateral displacement ³³	Examiner palpates medial and lateral epicondyles with index fingers while simultaneously palpating midline of patella with thumbs	Distance between index fingers and thumbs should be same. When distance between index finger palpating lateral epicondyle is less, patella is laterally displaced. When distance between index finger palpating medial epicondyle is less, patella is medially displaced	66 patients re- ferred for physical therapy who would nor- mally undergo evaluation of patellofemoral alignment	Inter-examiner $\kappa = .10$
Mediolateral glide ³⁴	Examiner uses a tape measure to record dis- tance from medial and lateral femoral con- dyles to mid patella	Scored 0 or 1. 0 if the distance from medial epicondyle to mid patella equals distance from lateral epicondyle to mid patella. 1 if the distance from medial epicondyle to mid patella is 0.5 cm greater than from lateral condyle to mid patella	56 subjects, 25 of whom had symptom- atic knees	Intra-examiner $\kappa=.11\text{-}.35$ Inter-examiner $\kappa=.02$

Reliability of Assessing Superoinferior Patellar Tilt

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 7-22Examination of anteroposterior patellar tilt.

Test and Measure	Procedure	Determination of Positive Finding	Population	Reliability
Superoinferior tilt ³²	Examiner visually estimates patellar alignment while palpating superior and inferior patel- lar poles	Patellar orientation graded using an ordinal scale extending from -2 to +2, with -2 representing inferior patellar pole below superior pole and +2 representing inferior patellar pole above superior pole	27 asymptomatic subjects	Intra-examiner $\kappa=.50$ Inter-examiner $\kappa=.30$
Anterior tilt ³³	Examiner palpates inferior patellar pole	If examiner easily palpates in- ferior pole, no anterior tilt exists. If downward pressure on superior pole is required to palpate inferior pole, it is con- sidered to have an anterior tilt	66 patients re- ferred for physi- cal therapy who would normally undergo evalua- tion of patello- femoral alignment	Inter-examiner $\kappa = .24$
Anteroposterior tilt component ³⁴	Examiner palpates inferior and supe- rior patellar poles	Scored 0, 1, or 2. 0 if inferior patellar pole is as easily palpable as superior pole. 1 if inferior patellar pole is not as easily palpable as superior pole. 2 if inferior pole is not clearly palpable compared with superior pole	56 subjects, 25 of whom had symp- tomatic knees	Intra-examiner $\kappa=.03$ 23 Inter-examiner $\kappa=.04$

Reliability of Assessing Patellar Rotation

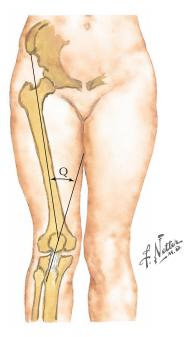

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 7-23 Examination of patellar rotation.

Test and Measure	Procedure	Determination of Positive Finding	Population	Reliability
Rotation ³²	Examiner positions index fingers along longitudinal axes of patella and esti- mates acute angle formed	Graded using ordinal scale extending from -2 to +22 represents longitudinal axis of patella being more lateral than axis of femur. +2 represents patella being more medial than axis of femur	27 asymptomatic subjects	Intra-examiner $\kappa=.41$ Inter-examiner $\kappa=03$
Patellar rotation ³³	Examiner deter-	Longitudinal axis of patella should be in line with ASIS. If distal end of patella is medial, it is considered to be medi- ally rotated. If distal end is lateral, it is considered to be laterally rotated	66 patients re- ferred for physical therapy who would normally undergo evalua- tion of patello- femoral alignment	Inter-examiner $\kappa = .36$
Patellar rotation component ³⁴	mines relationship between longitudi- nal axis of patella and femur	Scored as -1, 0, or +1.0 when patellar long axis is parallel to long axis of femur. 1 when inferior patellar pole is lateral to axis of femur and classified as a lateral patellar rotation1 when inferior pole is medial to axis of femur and classified as medial patellar rotation	56 subjects, 25 of whom had symp- tomatic knees	Intra-examiner $\kappa =06\text{-}.00$ Inter-examiner $\kappa =03$

Reliability of Assessing Quadriceps Angle Measurements

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Q-angle formed by intersection of lines from anterior superioriliac spine and from tibial tuberosity through midpoint of patella. Large Q-angle predisposes to patellar subluxation

Figure 7-24 Quadriceps angle.

Test and Measure	Procedure	Population	Reliability ICC	
Q-angle ³¹	Proximal arm of goniometer is aligned with ASIS, distal arm is aligned with tibial tubercle, and fulcrum is positioned over patellar midpoint	30 patients with patello- femoral pain syndrome	Inter-examiner ICC = .70 (.46, .85)	
Q-angle ³²		27 asymptomatic subjects	Intra-examiner ICC = .63 Inter-examiner ICC = .23	
Q-angle ³⁶		50 asymptomatic knees	Inter-examiner at full extension	
	As above. Measure with knee fully extended and in 20° of flexion		Right ICC = .1421 Left ICC = .0811	
			Inter-examiner at 20° of knee flexion	
			Right ICC = .0408 Left ICC = .1316	

Reliability of the Assessing the Angle between the Longitudinal Axis of the Patella and the Patellar Tendon Measurements (A Angle)

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

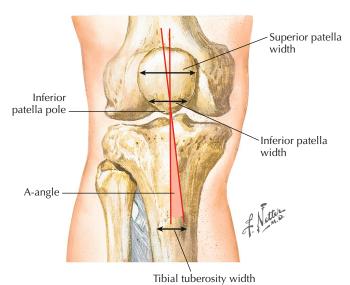


Figure 7-25 A angle.

Test and Measure	Procedure	Population	Reliability
A angle ³²	Proximal and distal goniometer arms are aligned with middle of superior patellar pole and tibial tubercle. Fulcrum is positioned over midpoint of inferior patellar pole. Angle recorded in degrees	27 asymptomatic subjects	Intra-examiner ICC = .61 Inter-examiner ICC = .49
A angle ³⁷	Superior patellar pole, superior patellar width, inferior patellar width, inferior patellar pole and tibial tuberosity are identified. A angle is then measured with a goniometer. Angle recorded in degrees	36 asymptomatic subjects	Intra-examiner ICC = $.2032$ Inter-examiner ICC = 01

Reliability of the Lateral Pull Test to Assess Patellar Alignment

Test and Study	Description and Positive Findings	Population	Reliability
Lateral pull test ³⁸	With patient supine and knee extended, examiner asks patient to perform isometric quadriceps contraction. Examiner observes patellar tracking during contraction. Positive if patella tracks more laterally than superiorly. Negative if superior displacement is equal to lateral displacement	99 knees, 26 of which were symptomatic	Intra-examiner $\kappa=.39\text{-}.47$ Inter-examiner $\kappa=.31$

Palpation

Reliability of Pain during Palpation

ICC or K Interpretation

.81-1.0 Substantial agreement

.61-.80 Moderate agreement

.41-.60 Fair agreement

.11-.40 Slight agreement

.0-.10 No agreement

Palpation of lateral joint line

Palpation of medial joint line

Figure 7-26Palpation of joint lines.

Physical Finding	Population	Reliability	
Palpation for tenderness ¹⁶	53 patients with knee pain	Inter-examiner $\kappa = .10$ 30	
Posterior joint line tenderness ³⁹	71 patients with knee pain	Inter-examiner $\kappa = .48$	
Tenderness at medial joint line ¹⁰	152 patients with OA of knee	Inter-examiner $\kappa = .21$ (.01, .41)	
Tenderness at lateral joint line ¹⁰		Inter-examiner $\kappa = .25$ (.07, .43)	
Patellofemoral tenderness ⁹		Intra-examiner $\kappa = .61$ (.43, .78)	Inter-examiner $\kappa = .27$ (.05, .48)
Medial tibiofemoral tenderness ⁹	49 patients presenting to outpatient rheumatology clinics for OA of knee	Intra-examiner $\kappa = .60$ (.47, .72)	Inter-examiner $\kappa = .35$ (.24, .45)
Lateral tibiofemoral tenderness ⁹		Intra-examiner $\kappa = .60$ (.44, .74)	Inter-examiner $\kappa = .29$ (.14, .44)
Periarticular tenderness ⁹		Intra-examiner $\kappa = .58$ (.45, .73)	Inter-examiner $\kappa = .22$ (.09, .36)

Diagnostic Utility of Joint Line Tenderness

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Joint line tenderness ⁴⁰ 2008 Meta- analysis	Depended on study, but generally: Exam- iner palpates joint line with patient's knee in 90° flexion. Positive if test reproduces pain	Pooled, quality adjusted estimates from eight studies*	Meniscal tears via ar- throscopy or arthrotomy	.76 (.73, .80)	.77 (.64, .87)	3.3	.31
Joint line tenderness ⁴¹ 2007 Meta- analysis		Pooled, estimates from 14 studies*	Meniscal tears via ar- throscopy, arthrotomy, or MRI	.63 (.61, .66)	.77 (.76, .79)	2.7	.48

*Some of the included studies would not have met our QUADAS quality criterion for inclusion.

Special Tests

Reliability of the Lachman Test

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 7-27 Lachman test.

Test and Measure	Procedure	Determination of Positive Finding	Population	Reliability
Examiners perform Lachman test ²⁷ Lachman test as they would in practice		Results are graded as "positive" or "negative." Examiners also grade amount of anterior tibial translation as 0, 1+, 2+, or 3+. 0 represents no difference in tibial translation between unaffected and affected knees	35 patients re- ferred to physical therapy clinics for rehabilitation of knee joint	For positive or negative findings
	perform			Intra-examiner $\kappa = .51$ Inter-examiner $\kappa = .19$
	as they would			For grading of tibial translation
	in practice			Intra-examiner $\kappa = .44$ 60 Inter-examiner $\kappa = .02$ 61
Lachman test ¹⁰	Not specified	Not specified	152 patients with OA of knee	Inter-examiner $\kappa =08$ (12, .04)

Diagnostic Utility of the Lachman Test in Identifying Anterior Cruciate Ligament Tears

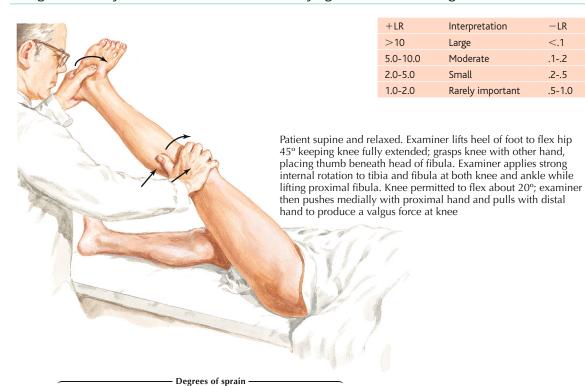
+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Lachman test (without anesthesia) ⁴² 2006 Meta- analysis	Depended on study, but generally: With patient supine and knee joint flexed between 10° and 20°, examiner stabilizes femur with one hand. With other hand, examiner translates tibia anteriorly. Positive if lack of end point for tibial translation or subluxation is positive	Pooled estimates from 2276 patients from 21 studies*	ACL tears via arthroscopy, arthrotomy, or MRI	.85 (.83, .87)	.94 (.92, .95)	1.2 (4.6, 22.7)	.2 (.1, .3)
Lachman test (with anesthesia) ⁴² 2006 Meta- analysis		Pooled estimates from 1174 patients from 15 studies*		.97 (.96, .98)	.93 (.89, .96)	12.9 (1.5, 108.5)	.1 (.0, .3)

Reliability of the Anterior Drawer Test

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 7-28
Anterior drawer test.


Test and Study	Description and Positive Finding	Population	Inter-examiner Reliability
Anterior drawer test ¹⁶	Not specified	53 patients with knee pain	к = .34

Diagnostic Utility of the Anterior Drawer Test in Identifying Anterior Cruciate Ligament Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Anterior drawer test (without anesthesia) ⁴² 2006 Meta- analysis	Depended on study, but generally: With patient's knee flexed between 60° and 90° with foot on	Pooled esti- mates from 1809 pa- tients from 20 studies*	ACL tears via ar-	.55 (.52, .58)	.92 (.90, .94)	7.3 (3.5, 15.2)	.5 (.4, .6)
Anterior drawer test (with anesthesia) ⁴² 2006 Meta- analysis	examination table, ex- aminer draws tibia an- teriorly. Positive if there is anterior sub- luxation of > 5 mm	Pooled esti- mates from 1306 pa- tients from 15 studies*	throscopy, ar- throtomy, or MRI	.77 (.82, .91)	.87 (.82, .91)	5.9 (.9, 38.2)	.4 (.2, .8)

Diagnostic Utility of the Pivot Shift Test in Identifying Anterior Cruciate Ligament Tears

Grade I. Stretching of ligament with minimal disruption of fibers

Grade II. Tearing of up to 50% of ligament fibers; small hematoma. Hemarthrosis may be present

Grade III. Complete tear of ligament and separation of ends, hematoma, and hemarthrosis

Figure 7-29 Pivot shift test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Pivot shift test (without anesthesia) ⁴² 2006 Meta- analysis	Depended on study, but generally: Patient's knee is placed in 10°- 20° of flexion, and tibia is	Pooled estimates from 1431 pa- tients from 15 studies*	ACL tears via arthroscopy,	.24 (.21, .27)	.98 (.96, .99)	8.5 (4.7, 15.5)	.9 (.8, 1.0)
Pivot shift test (with anesthesia) ⁴² 2006 Meta- analysis	rotated internally while examiner applies valgus force. Positive if lateral tibial plateau sub- luxes anteriorly	Pooled estimates from 1077 pa- tients from 13 studies*	arthrotomy, or MRI	.74 (.71, .77)	.99 (.96, 1.0)	2.9 (2.8, 156.2)	.3 (.1, .7)

^{*}Some of the included studies would not have met our QUADAS quality criterion for inclusion.

 $-\mathsf{LR}$

<.1

.1-.2

.2-.5

.5-1.0

Reliability of Varus and Valgus Stress Tests

ICC or K Interpretation

.81-1.0 Substantial agreement

.61-.80 Moderate agreement

.41-.60 Fair agreement

.11-.40 Slight agreement

.0-.10 No agreement

Varus stress test

Valgus stress test

Figure 7-30 Valgus and varus stress tests.

Test and Study	Description and Positive Finding	Population	Inter-examiner Reliability
Varus test ¹⁶		53 patients with knee pain	(Laxity) $\kappa = .24$ (Pain) $\kappa = .18$
Valgus test ¹⁶	Not specified	33 patients with knee pain	(Laxity) $\kappa = .48$ (Pain) $\kappa = .37$
Varus test ¹⁰		152 patients with OA of knee	κ = 0 (18, .18)
Valgus test ¹⁰			к = .05 (13, 2.3)

Diagnostic Utility of Valgus Stress for Identifying Medial Collateral Ligament Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Pain with valgus stress at 30° 12	Not specifically	134 pa- tients with	MCL tears per	.78 (.64, .92)	.67 (.57, .76)	2.3 (1.7, .3.3)	.30 (.20, .60)
Laxity with valgus stress at 30° 12	described	traumatic knee complaint	MRI	.91 (.81, 1.0)	.49 (.39, .59)	1.8 (1.4, 2.2)	.20 (.10, .60)

Special Tests	ICC or ĸ	Interpretation
Special resus	.81-1.0	Substantial agreement
Reliability of McMurray's Test		Moderate agreement
		Fair agreement
		Slight agreement
	.010	No agreement

Test and Study	Description and Positive Finding	Population	Reliability
McMurray's test ¹⁰	Knee is passively flexed, externally rotated, and axially loaded while brought into extension. Test is repeated in IR. Positive if a palpable or audible click or pain occurs during rotation	152 patients with OA of knee	Inter-examiner $\kappa = .16$ (01, .33)

Figure 7-31 McMurray's test.

With internal rotation of tibia

With external rotation of tibia

Diagnostic Utility of the McMurray's Test

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
McMurray's test ⁴⁰ 2008 Meta- analysis	Depended on study, but	Pooled, quality adjusted esti- mates from 8 studies*	Arthroscopy or arthrotomy	.55 (.50, .60)	.77 (.62, .87)	2.4	.58
McMurray's test ⁴¹ 2007 Meta- analysis	generally same as above	Pooled, estimates from 14 studies [*]	Arthroscopy, arthrotomy, or MRI	.71 (.67, .73)	.71 (.69, .73)	2.5	.41

 $[\]ensuremath{^*}\textsc{Some}$ of the included studies would not have met our QUADAS quality criterion for inclusion.

Diagnostic Utility of Apley's Test

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0



Figure 7-32 Apley's grinding test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Apley's test ⁴⁰ 2008 Meta- analysis	Depended on study, but gener- ally patient is prone with knee flexed to 90°. Examiner places	Pooled, quality- adjusted esti- mates from three studies*	Arthroscopy or arthrotomy	.22 (.17, .28)	.88 (.72, .96)	1.8	.89
Apley's test ⁴¹ 2007 Meta- analysis	downward pressure on foot, compressing knee, while inter- nally and externally rotating tibia	Pooled, esti- mates from seven studies*	Arthroscopy, arthrotomy, or MRI	.61 (.56, .66)	.70 (.68, .72)	2.0	.56
*Some of the included studies would not have met our QUADAS quality criterion for inclusion.							

Diagnostic Utility of Other Tests for Identifying Meniscal Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 7-33 Ege's test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Pain with passive knee flexion ¹³	Not described	134 patients with traumatic knee complaint	Meniscal tear per MRI	.77 (.64, .89)	.41 (.31, .52)	1.3 (1.0, 1.7)	.60 (.30, 1.0)
to 40 cm apart. To detect with knee symptom	150 consecutive patients with knee symptoms related to intra-articular	Knee arthroscopy	Medial	.81	3.5	.41	
		knee pathology		Lateral			
	externally rotated. To detect			.64	.90	6.4	.40

Special Tests

Diagnostic Utility of the Thessaly Test for Identifying Meniscal Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 7-34 Thessaly test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR		
	Patients stand on the			With knee at	5° of flexion				
	symptomatic leg while holding the examiner's hands. They then	.66 MMT .81 LMT		.96 MMT .91 LMT	16.5 MMT 9.0 LMT	.35 MMT .21 LMT			
Thorsaly	rotate the body and	patients and	213 knee injury patients and Meniscal		20° of flexion				
test ⁴⁴	ternally with the knee	197 asymp- tomatic volunteers	tear per MRI	.89 MMT .92 LMT	.97 MMT .96 LMT	29.7 MMT 23.0 LMT	.11 MMT .08 LMT		
Thessaly test ⁴⁵	As above, except only at 20° knee flexion	116 consecu- tive patients who had knee arthroscopy for suspected meniscal pathology	Meniscal tear via arthroscopy	.90	.98	39.3	.09		
LMT, lateral me	niscal tear; MMT, medial menis	scal tear.							

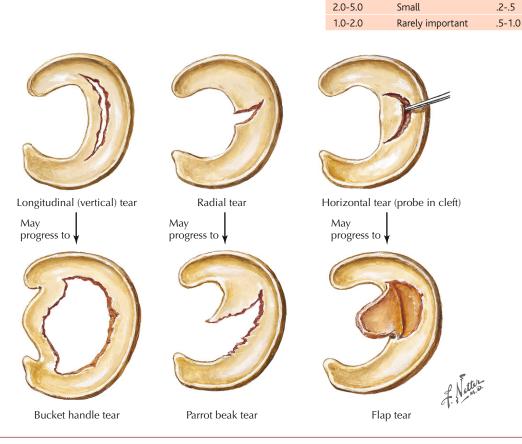
Diagnostic Utility of Moving Patellar Apprehension Test for Identifying Patellar Instability

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 7-35 Moving patellar apprehension test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Moving patellar apprehension test ⁴⁶	With patient supine with ankle off examination table and knee fully extended, examiner then flexes the knee to 90° and back to extension while holding the patella in lateral translation. The procedure is then repeated with medial translation. Positive if patient exhibits apprehension and/or quadriceps contraction during lateral glide and no apprehension during medial glide	51 patients who had knee surgery and in which patellar in- stability was suspected	Ability to dislocate the patella when ex- amined under anesthesia	1.0	.88	8.3	.00

Combinations of Tests


Diagnostic Utility of Combinations of Tests for Diagnosing Meniscal Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Both pain and laxity with valgus stress at 30° + Trauma by external force to the leg or rota- tional trauma 12	Self-reported trauma and physical examination of valgus stress	134 patients with traumatic knee complaint	MRI	.56 (.33, .79)	.91 (.85, .98)	6.4 (2.7, 15.2)	.50 (.30, .80)
Age > 40 years + Continuation of activity impossible + Weight-bearing during trauma + Pain with passive knee flexion ¹³	All four factors positive	134 patients with traumatic knee complaint	MRI	.15 (.05, .25)	.97 (.94, 1.0)	5.8 (1.3, 26.8)	.90 (.80, 1.0)
Tenderness to palpation of joint line + Bohler test + Steinmann test + Apley's grinding test + Payr test + McMurray's test ⁷	If two tests are pos- itive, then patient is considered to have meniscal lesion	36 patients scheduled to undergo ar- throscopic surgery	Arthroscopic visualization	.97	.87	7.5	.03

Combinations of Tests (continued)

Diagnostic Utility of Combinations of Tests for Diagnosing Meniscal Tears

+LR

>10

5.0-10.0

Interpretation

Large

Moderate

 $-\mathsf{LR}$

<.1

.1-.2

Figure 7-36 Types of meniscal tears.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Combined historical and physical examination ⁴⁷	Physical examination includes assessment of joint effusion, joint line tenderness, McMur- ray's test, hyperflexion test, and squat test. Exact proce- dures of each test not defined	100 consecutive patients who un- derwent ar- throscopic surgery of knee	Arthroscopic visualization	.86	.83	5.06	.17
Patient history	Conclusion of examiner	50 patients with	Knee	Medial			
+ Joint line tender-		clinical diagnosis of meniscal tears		.87	.68	2.7	.19
ness +		and/or ACL rupture		Lateral			
McMurray's test + Steinmann + Modified Apley's test ⁴⁸				.75	.95	15.0	.26

Combinations of Tests

Diagnostic Utility of Combinations of Tests for Diagnosing Other Knee Pathology

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Clinical examination ⁴⁹	Retrospective review of	698 patients who had under-	Medial meniscal tear via arthroscopy	.92	.79	4.4	.10
	clinical exam- ination and	gone knee arthroscopy	OA via arthroscopy	.75	.97	25.0	.26
	clinical diagnosis		ACL tear via arthroscopy	.86	.98	43.0	.14
	diagnosis		Lateral meniscal tear via arthroscopy	.54	.96	13.5	.48
			Loose body via arthroscopy	.94	.98	47.0	.06
			Tight lateral retinaculum via arthroscopy	1.0	1.0	UD	.00
			Synovitis via arthroscopy	.57	1.0	UD	.43
			Lateral meniscal cyst via arthroscopy	1.0	.99	100.0	.00
Patient History + Anterior drawer + Lachman test + Pivot shift test ⁴⁸	Conclusion of examiner	50 patients with clinical diagnosis of meniscal tears and/or ACL rupture	ACL rupture via arthroscopy	1.0	1.0	UD	.00
History of anteromedial knee pain + Pain primarily over the medial femoral condyle + Visible or palpable plica + Exclusion of other causes of anteromedial knee pain ⁵⁰ UD, Undefined.	Meet all four criteria	48 patients with anteromedial knee pain that was clinically suspected of being caused by pathological medial plicae	Pathological medial plica via arthroscopy	1.0 (.92, 1.0)	.00	1.0	UD

Interventions

Diagnostic Utility of History and Physical Examination Findings for Predicting Favorable Response to Foot Orthoses and Activity Modification

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Sutlive and colleagues⁵¹ have developed a clinical prediction rule that identifies individuals with patellofemoral pain who are likely to improve with an off-the-shelf foot orthosis and modified activity. The study identified a number of predictor variables.

Test and Study Quality	Population	Reference Standard	Sens	Spec	+LR	-LR
2° or more of fore- foot valgus ⁵¹			.13 (.04, .24)	.97 (.90, 1.0)	4.0 (.7, 21.9)	.90
78° or less of great toe extension ⁵¹			.13 (.04, .24)	.97 (.90, 1.0)	4.0 (.7, 21.9)	.90
3 mm or less of navicular drop ⁵¹		≥50% decreased pain after 3 weeks of wearing off-the-shelf foot orthoses and activ-	.47 (.32, .61)	.80 (.67, .93)	2.4 (1.3, 4.3)	.66
5° or less valgus and any varus of relaxed calcaneal stance ⁵¹	50 patients with patello- femoral pain syndrome		.36 (.17, .55)	.81 (.71, .92)	1.9 (1.0, 3.6)	.79
Tight hamstring muscles as measured by 90/90 straight-leg raise test ⁵¹	-	ity modification	.68 (.55, .80)	.56 (.37, .75)	1.5 (1.0, 2.3)	.57
Reports of difficulty walking ⁵¹			.71 (.55, .86)	.48 (.33, .62)	1.4 (1.0, 1.8)	.60

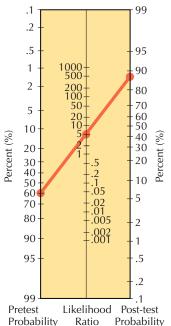



Figure 7-37

Nomogram. Considering a pretest probability of success of 60% (as determined in the Sutlive et al51 study), 2° or more of forefoot valgus or 78° or less of great toe extension results in a post-test probability of 85%. This means that if a patient presented with one of the two aforementioned variables, the likelihood of achieving a successful outcome with off-the-shelf orthotics and activity modification would be 86%. (Adapted with permission from Fagan TJ. Nomogram for Bayes' theorem. N Engl | Med. 1975;293-257. Copyright 2005, Massachusetts Medical Society. All rights reserved.)

Interventions

Diagnostic Utility of History and Physical Examination Findings for Predicting Favorable Short-term Response to Hip Mobilizations

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 7-38

Hip mobilization technique used in the management of patients with knee osteoarthritis. Patients were treated with one session of four different hip mobilizations including (1) posteroanterior glide with flexion, abduction, and lateral rotation (depicted left), (2) caudal glide, (3) anteroposterior glide (depicted right), and (4) posteroanterior glide.

Test and Study Quality	Population	Reference Standard	Sens	Spec	+LR	-LR
Ipsilateral anterior thigh pain ¹⁹			.27 (.13, .4)	.95 (.85, 1.05)	5.1 (.71, 36.7)	.77 (.62, .96)
Intermittent hip or groin pain ¹⁹			.15 (.05, .26)	.98 (.91, 1.04)	6.2 (.4, 104.7)	.87 (.75, 1.00)
Strengthening exercises aggravate knee pain 19			.20 (.04, .37)	.96 (.85, 1.07)	4.9 (.3, 83.7)	.83 (.65, 1.06)
Location of hip or groin pain bilater-ally ¹⁹			.18 (.06, .29)	.98 (.91, 1.04)	7.1 (.4, 119.0)	.84 (.72, .99)
Side-to-side differ- ence in hip internal rotation ROM ¹⁹		≥ 30% de- creased pain or	.98 (.93, 1.02)	.11 (03, .24)	1.1 (.9, 1.3)	.23 (.02, 2.40)
Empty end-feel on ipsilateral hip flexion ROM ¹⁹	60 patients with knee OA	Global Rating of Change rated as "mod-	.13 (.03, .23)	.98 (.91, 1.04)	5.2 (.3, 9.2)	.89 (.78, 1.02)
Pain with ipsilateral hip distraction ¹⁹	- OA	erately better" 2 days after hip mobilizations	.13 (.03, .23)	.98 (.91, 1.04)	5.2 (.3, 9.2)	.89 (.78, 1.02)
Pain at knee on ip- silateral hip exten- sion ROM ¹⁹		MODILLEGISTIS	.11 (.01, .20)	.98 (.91, 1.04)	4.3 (.2, 75.8)	.92 (.81, 1.04)
Ipsilateral knee flexion PROM <122°19			.32 (.17, .46)	.95 (.85, 1.05)	6.0 (.9, 42.8)	.72 (.57, .91)
Ipsilateral hip internal rotation PROM <17°19			.32 (.17, .45)	.95 (.85, 1.05)	6.0 (.9, 42.8)	.72 (.57, .91)
Pain or paresthesia in ipsilateral hip or groin ¹⁹			.20 (.08, .32)	.98 (.91, 1.04)	8.1 (.5, 133.4)	.82 (.69, .97)

OUTCOME MEASURES

Outcome Measure	Scoring and Interpretation	Test-Retest Reliability	MCID
Lower Extremity Functional Scale (LEFS)	Users rate the difficulty of performing 20 functional tasks on a Likert-type scale ranging from 0 (extremely difficult or unable to perform activity) to 4 (no difficulty). A total score out of 80 is calculated by summing each score. The answers provide a score between 0 and 80, with lower scores representing more disability	ICC = .92 ⁵²	9 ⁵³
Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)	The WOMAC consists of three subscales: pain (5 items), stiffness (2 items), and physical function (17 items). Users answer the 24 condition-specific questions on a numerical rating scale ranging from 0 (no symptoms) to 10 (extreme symptoms), or alternatively on a Likert-type scale from 0 to 4. Scores from each subscale are summed with higher scores indicating more pain, stiffness, and disability	ICC = .90 ⁵²	6.7% for improvement 12.9% for worsening ⁵⁴
Knee Outcome Survey (KOS) Activity of Daily Living Scale (ADLS)	The KOS ADLS consists of one section on symptoms and one section on functional disability. Users rate the eight symptom items on a Likert-type scale from 5 (never have) to 0 (prevent me from all daily activity) and the eight functional items from 5 (not difficult at all) to 0 (unable to do). Scores are summed and divided by 80 to get a percentage. Higher scores represent fewer symptoms and higher function	ICC = .93 ⁵⁵	7.1% ⁵⁶
Numeric Pain Rating Scale (NPRS)	Users rate their level of pain on an 11-point scale ranging from 0 to 10, with high scores representing more pain. Often asked as "current pain" and "least," "worst," and "average" pain in the past 24 hours	ICC = .72 ⁵⁷	2 ^{58,59}

APPENDIX

Quality Assessment of Diagnostic Studies Using QUADAS

	Braunstein 198266	Katz 1986 ⁶⁷	Bonamo 1988	Lee 1988 ⁶⁸	Fowler 1989	Cooperman 1990	Boeree 199169	Evans 1993 ⁷⁰	Rubinstein 1994 ⁷¹	Shelbourne 1995 ⁷²	Stiell 1995	Stiell 1997	Muellner 1997	Khine 2001	Emparanza 2001	Ketelslegers 2002
 Was the spectrum of patients representative of the patients who will receive the test in practice? 	N	U	U	N	Υ	Υ	Υ	N	Y	Υ	Υ	Y	Y	Υ	Y	Y
Were selection criteria clearly described?	N	N	N	N	N	Υ	N	N	N	N	Υ	Y	Υ	Υ	Y	Y
3. Is the reference standard likely to correctly classify the target condition?	Y	Υ	Υ	Y	Υ	Υ	Υ	Y	Y	Υ	Y	Y	Υ	Υ	Y	Y
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	U	U	U	Υ	Υ	U	U	U	U	U	Υ	Υ	U	Υ	U	Y
5. Did the whole sample or a random selection of the sample, receive verification using a ref- erence standard of diagnosis?	Y	Y	Y	Y	Υ	N	Y	N	N	Y	N	Y	Y	Υ	Y	Y
6. Did patients receive the same reference standard regardless of the index test result?	Y	U	U	Υ	Υ	N	U	Y	N	Υ	N	N	Υ	Υ	Y	N
 Was the reference standard in- dependent of the index test (i.e., the index test did not form part of the reference standard)? 	Υ	Υ	Y	Υ	Υ	Y	Y	Υ	Υ	Y	Υ	Υ	Y	Υ	Y	Y
8. Was the execution of the index test described in sufficient detail to permit replication of the test?	Υ	Y	U	Y	Υ	Υ	N	N	Υ	Υ	Υ	Υ	Y	Υ	Y	Y
9. Was the execution of the reference standard described in sufficient detail to permit its replication?	N	Υ	Υ	Y	U	N	Υ	Υ	N	Υ	Υ	Υ	Υ	Υ	Υ	Y
10. Were the index test results interpreted without knowledge of the results of the reference test?	U	U	U	Υ	Υ	U	U	U	Υ	Υ	Υ	Υ	Υ	Υ	Y	Y
11. Were the reference standard results interpreted without knowledge of the results of the index test?	U	U	U	U	U	U	U	U	U	U	Υ	N	Υ	Υ	Υ	U

APPENDIX (continued)

Quality Assessment of Diagnostic Studies Using QUADAS

	Braunstein 198266	Katz 1986 ⁶⁷	Bonamo 1988	Lee 1988 ⁶⁸	Fowler 1989	Cooperman 1990	Boeree 1991 ⁶⁹	Evans 1993 ⁷⁰	Rubinstein 1994 ⁷¹	Shelbourne 1995 ⁷²	Stiell 1995	Stiell 1997	Muellner 1997	Khine 2001	Emparanza 2001	Ketelslegers 2002
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	U	Υ	U	U	U	U	U	N	U	Υ	U	U	Υ	Υ	U
13. Were uninterpretable/intermediate test results reported?	Υ	U	Y	Υ	Y	U	U	Y	Υ	Υ	Υ	U	Υ	Υ	Υ	Y
14. Were withdrawals from the study explained?	U	Y	Y	U	Υ	Y	Y	Y	Y	Υ	Υ	U	Υ	Υ	Y	Y
Quality summary rating:		<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>	\langle	<u> </u>	\langle	\langle	\langle	\langle
Y = yes, N = no, U = unclear. Go	$Y = yes, N = no, U = unclear.$ Good quality $(Y - N = 10 \text{ to } 14).$ Fair quality $(Y - N = 5 \text{ to } 9).$ Poor quality $(Y - N \le 4).$							lity (Y -	- N = !	5 to 9).		Po	or quali	ity (Y -		

APPENDIX (continued)

Quality Assessment of Diagnostic Studies Using QUADAS

	Bulloch 2003	Eren 2003 ⁷³	Sutlive 2004	Akseki 2004	Kocabey 2004	Bohannon 2005	Karachalios 2005	Haim 2006 ⁷⁴	Shetty 2007	Currier 2007	Doberstein 2008 ⁷⁵	Wagemakers 2008	Kastelein 2008	Kastelein 2009	Ahmad 2009	Nickinson 2009	Harrison 2009
Was the spectrum of patients representative of the patients who will receive the test in practice?	Y	Y	\ \	U	U	Y	Y	U	Y	Y	N	Y	Y	Y	Y	Y	U
Were selection criteria clearly described?	Y	Υ	Υ	N	N	Υ	Υ	Υ	U	Υ	N	Υ	Υ	Y	U	N	N
Is the reference standard likely to correctly classify the target condition?	Y	Υ	Υ	Υ	Υ	Υ	U	N	Υ	Υ	Υ	U	Υ	Υ	Υ	Υ	Y
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	Y	U	Υ	U	U	U	U	U	U	Υ	U	Υ	Υ	Υ	U	U	U
5. Did the whole sample or a random selection of the sample, receive verifica- tion using a reference standard of diagnosis?	Y	Υ	Υ	Υ	Υ	Υ	Υ	U	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
6. Did patients receive the same reference standard regardless of the index test result?	N	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	U	Y	Υ
7. Was the reference stan- dard independent of the index test (i.e., the index test did not form part of the reference standard)?	Y	Υ	Υ	Υ	Υ	Υ	Υ	Y	Y	Υ	Υ	Υ	Υ	Υ	Υ	Y	Y
Was the execution of the index test described in sufficient detail to permit replication of the test?	Y	Y	Υ	Y	U	Y	Υ	Υ	N	Y	Y	Υ	Y	Y	Y	N	Υ
9. Was the execution of the reference standard de- scribed in sufficient detail to permit its replication?	Y	U	Y	U	U	Υ	Y	U	Y	Y	N	Υ	Y	Y	N	N	U
10. Were the index test results interpreted without knowledge of the results of the reference test?	Υ	Υ	Υ	Υ	Υ	U	Υ	N	U	Υ	U	Υ	Υ	Υ	U	Υ	Y

(Continued)

APPENDIX (continued)

Quality Assessment of Diagnostic Studies Using QUADAS

	Bulloch 2003	Eren 2003 ⁷³	Sutlive 2004	Akseki 2004	Kocabey 2004	Bohannon 2005	Karachalios 2005	Haim 2006 ⁷⁴	Shetty 2007	Currier 2007	Doberstein 2008 ⁷⁵	Wagemakers 2008	Kastelein 2008	Kastelein 2009	Ahmad 2009	Nickinson 2009	Harrison 2009
11. Were the reference stan- dard results interpreted without knowledge of the results of the index test?	Y	U	Y	U	U	U	Υ	N	U	Y	U	Υ	Υ	Υ	U	U	U
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	Y	Y	Υ	Υ	Y	U	Υ	Υ	Υ	Υ	U	Υ	Υ	Y	Υ	Υ	U
13. Were uninterpretable/in- termediate test results reported?	Y	Y	Y	U	Y	Y	Υ	Υ	Y	Υ	Υ	Υ	Υ	Y	Y	U	U
14. Were withdrawals from the study explained?	Υ	Y	Υ	U	U	Υ	Υ	Υ	Y	Υ	Y	Υ	Υ	Y	Υ	Υ	U
Quality summary rating:	\langle	\Diamond	\Diamond	<u> </u>	<u> </u>	\Diamond	\Diamond		<u> </u>	\rightarrow		\Diamond	\Diamond	\langle	<u> </u>		<u> </u>
Y = yes, $N = no$, $U = unclear$.	Go	od qua	lity (Y	- N =	10 to 1	4).	F.	air qua	lity (Y	- N = !	5 to 9).		Poo	or qual	ity (Y -	N ≤ 4	l).

REFERENCES

- Greenfield B, Tovin BJ. Knee. Current Concepts in Orthopedic Physical Therapy (11.2.11). La Crosse: Orthopaedic Section, American Physical Therapy Association; 2001.
- Hartley A. Practical Joint Assessment. St Louis: Mosby; 1995.
- DeHaven KE. Diagnosis of acute knee injuries with hemarthrosis. Am J Sports Med. 1980;8:9-14.
- Cook JL, Khan KM, Kiss ZS, et al. Reproducibility and clinical utility of tendon palpation to detect patellar tendinopathy in young basketball players. Victorian Institute of Sport tendon study group. *Br J Sports Med.* 2001;35:65-69.
- Cleland JA, McRae M. Patellofemoral pain syndrome: a critical analysis of current concepts. *Phys Ther Rev.* 2002;7:153-161.
- Grelsamer RP, McConnell J. The Patella: A Team Approach. Gaithersburg: Aspen Publishers; 1998.
- Muellner T, Weinstabl R, Schabus R, et al. The diagnosis of meniscal tears in athletes. A comparison of clinical and magnetic resonance imaging investigations. Am J Sports Med. 1997;25:7-12.
- Cibere J, Bellamy N, Thorne A, et al. Reliability of the knee examination in osteoarthritis: effect of standardization. *Arthritis Rheum*. 2004;50:458-468.
- 9. Jones A, Hopkinson N, Pattrick M, et al. Evaluation of a method for clinically assessing osteoarthritis of the knee. *Ann Rheum Dis.* 1992;51:243-245.
- Dervin GF, Stiell IG, Wells GA, et al. Physicians' accuracy and interrator reliability for the diagnosis of unstable meniscal tears in patients having osteoarthritis of the knee. Can J Surg. 2001;44:267-274.
- Kastelein M, Luijsterburg PA, Wagemakers HP, et al. Diagnostic value of history taking and physical examination to assess effusion of the knee in traumatic knee patients in general practice. *Arch Phys Med Rehabil*. 2009;90:82-86.
- 12. Kastelein M, Wagemakers HP, Luijsterburg PA, et al. Assessing medial collateral ligament knee lesions in general practice. *Am J Med.* 2008;121:982-988.e2.
- Wagemakers HP, Heintjes EM, Boks SS, et al. Diagnostic value of history-taking and physical examination for assessing meniscal tears of the knee in general practice. Clin J Sport Med. 2008;18:24-30.
- Bachmann LM, Haberzeth S, Steurer J, ter Riet G. The accuracy of the Ottawa Knee Rule to rule out knee fractures: a systematic review. *Ann Intern Med*. 2004;140:121-124.
- 15. Vijayasankar D, Boyle AA, Atkinson P. Can the Ottawa Knee Rule be applied to children? A systematic review and meta-analysis of observational studies. *Emerg Med J.* 2009;26:250-253.
- Wood L, Peat G, Wilkie R, et al. A study of the noninstrumented physical examination of the knee found high observer variability. *J Clin Epidemiol*. 2006;59:512-520.

- 17. Fritz JM, Delitto A, Erhard RE, Roman M. An examination of the selective tissue tension scheme, with evidence for the concept of a capsular pattern of the knee. *Phys Ther.* 1998;78:1046-1056; discussion 1057-1061.
- Lenssen AF, van Dam EM, Crijns YH, et al. Reproducibility of goniometric measurement of the knee in the in-hospital phase following total knee arthroplasty. BMC Musculoskelet Disord. 2007;8:83.
- Currier LL, Froehlich PJ, Carow SD, et al. Development of a clinical prediction rule to identify patients with knee pain and clinical evidence of knee osteoarthritis who demonstrate a favorable short-term response to hip mobilization. *Phys Ther.* 2007;87: 1106-1119.
- Rothstein JM, Miller PJ, Roettger RF. Goniometric reliability in a clinical setting. Elbow and knee measurements. *Phys Ther.* 1983;63:1611-1615.
- Gogia PP, Braatz JH, Rose SJ, Norton BJ. Reliability and validity of goniometric measurements at the knee. *Phys Ther*. 1987;67:192-195.
- Watkins MA, Riddle DL, Lamb RL, Personius WJ. Reliability of goniometric measurements and visual estimates of knee range of motion obtained in a clinical setting. *Phys Ther.* 1991;71:90-97.
- Clapper MP, Wolf SL. Comparison of the reliability of the Orthoranger and the standard goniometer for assessing active lower extremity range of motion. *Phys Ther.* 1988;68:214-218.
- 24. Brosseau L, Tousignant M, Budd J, et al. Intratester and intertester reliability and criterion validity of the parallelogram and universal goniometers for active knee flexion in healthy subjects. *Physiother Res Int.* 1997;2:150-166.
- Hayes KW, Petersen C, Falconer J. An examination of Cyriax's passive motion tests with patients having osteoarthritis of the knee. *Phys Ther*. 1994;74:697-709.
- 26. Hayes KW, Petersen CM. Reliability of assessing endfeel and pain and resistance sequence in subjects with painful shoulders and knees. *J Orthop Sports Phys Ther*. 2001;31:432-445.
- Cooperman JM, Riddle DL, Rothstein JM. Reliability and validity of judgments of the integrity of the anterior cruciate ligament of the knee using the Lachman's test. *Phys Ther.* 1990;70:225-233.
- 28. McClure PW, Rothstein JM, Riddle DL. Intertester reliability of clinical judgments of medial knee ligament integrity. *Phys Ther.* 1989;69:268-275.
- Tagesson SK, Kvist J. Intra- and interrater reliability of the establishment of one repetition maximum on squat and seated knee extension. J Strength Cond Res. 2007;21:801-807.
- Bohannon RW. Manual muscle testing: does it meet the standards of an adequate screening test? Clin Rehabil. 2005;19:662-667.

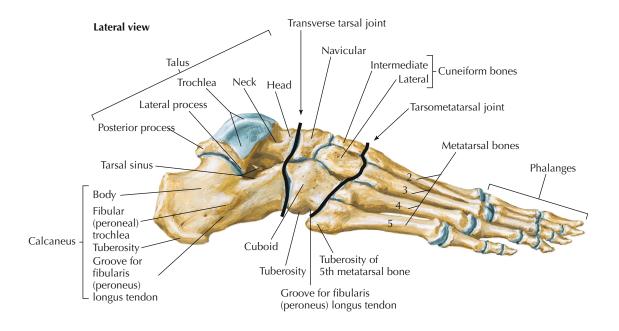
- Piva SR, Fitzgerald K, Irrgang JJ, et al. Reliability of measures of impairments associated with patellofemoral pain syndrome. *BMC Musculoskelet Disord*. 2006;7:33.
- Tomsich DA, Nitz AJ, Threlkeld AJ, Shapiro R. Patellofemoral alignment: reliability. *J Orthop Sports Phys Ther*. 1996;23:200-208.
- Fitzgerald GK, McClure PW. Reliability of measurements obtained with four tests for patellofemoral alignment. *Phys Ther.* 1995;75:84-92.
- 34. Watson CJ, Propps M, Galt W, et al. Reliability of Mc-Connell's classification of patellar orientation in symptomatic and asymptomatic subjects. *J Orthop Sports Phys Ther.* 1999;29:378-393.
- Herrington LC. The inter-tester reliability of a clinical measurement used to determine the medial-lateral orientation of the patella. *Man Ther.* 2002;7:163-167.
- Greene CC, Edwards TB, Wade MR, Carson EW. Reliability of the quadriceps angle measurement. Am J Knee Surg. 2001;14:97-103.
- Ehrat M, Edwards J, Hastings D, Worrell T. Reliability of assessing patellar alignment: the A angle. J Orthop Sports Phys Ther. 1994;19:22-27.
- 38. Watson CJ, Leddy HM, Dynjan TD, Parham JL. Reliability of the lateral pull test and tilt test to assess patellar alignment in subjects with symptomatic knees: student raters. *J Orthop Sports Phys Ther*. 2001;31:368-374.
- 39. Wadey VM, Mohtadi NG, Bray RC, Frank CB. Positive predictive value of maximal posterior joint-line tenderness in diagnosing meniscal pathology: a pilot study. *Can J Surg*. 2007;50:96-100.
- Meserve BB, Cleland JA, Boucher TR. A metaanalysis examining clinical test utilities for assessing meniscal injury. Clin Rehabil. 2008;22:143-161.
- Hegedus EJ, Cook C, Hasselblad V, et al. Physical examination tests for assessing a torn meniscus in the knee: a systematic review with meta-analysis. *J Orthop* Sports Phys Ther. 2007;37:541-550.
- 42. Benjaminse A, Gokeler A, van der Schans CP. Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. *J Orthop Sports Phys Ther*. 2006;36: 267-288.
- Akseki D, Ozcan O, Boya H, Pinar H. A new weightbearing meniscal test and a comparison with McMurray's test and joint line tenderness. *Arthroscopy*. 2004;20:951-958.
- 44. Karachalios T, Hantes M, Zibis AH, et al. Diagnostic accuracy of a new clinical test (the Thessaly test) for early detection of meniscal tears. *J Bone Joint Surg* Am. 2005;87:955-962.
- 45. Harrison BK, Abell BE, Gibson TW. The Thessaly test for detection of meniscal tears: validation of a new physical examination technique for primary care medicine. *Clin J Sport Med.* 2009;19:9-12.
- 46. Ahmad CS, McCarthy M, Gomez JA,, et al. The moving patellar apprehension test for lateral patellar instability. *Am J Sports Med.* 2009;37:791-796.

- Bonamo JJ, Shulman G. Double contrast arthrography of the knee. A comparison to clinical diagnosis and arthroscopic findings. *Orthopedics*. 1988;11:1041-1046.
- 48. Kocabey Y, Tetik O, Isbell WM, et al. The value of clinical examination versus magnetic resonance imaging in the diagnosis of meniscal tears and anterior cruciate ligament rupture. *Arthroscopy*. 2004;20:696-700.
- Nickinson R, Darrah C, Donell S. Accuracy of clinical diagnosis in patients undergoing knee arthroscopy. *Int Orthop.* 2009.
- Shetty VD, Vowler SL, Krishnamurthy S, Halliday AE. Clinical diagnosis of medial plica syndrome of the knee: a prospective study. J Knee Surg. 2007;20:277-280.
- 51. Sutlive TG, Mitchell SD, Maxfield SN, et al. Identification of individuals with patellofemoral pain whose symptoms improved after a combined program of foot orthosis use and modified activity: a preliminary investigation. *Phys Ther*. 2004;84:49-61.
- 52. Pua YH, Cowan SM, Wrigley TV, Bennell KL. The Lower Extremity Functional Scale could be an alternative to the Western Ontario and McMaster Universities Osteoarthritis Index physical function scale. *J Clin Epidemiol.* 2009.
- 53. Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. *Phys Ther.* 1999;79:371-383.
- 54. Angst F, Aeschlimann A, Stucki G. Smallest detectable and minimal clinically important differences of rehabilitation intervention with their implications for required sample sizes using WOMAC and SF-36 quality of life measurement instruments in patients with osteoarthritis of the lower extremities. *Arthritis Rheum*. 2001;45:384-391.
- 55. Marx RG, Jones EC, Allen AA, et al. Reliability, validity, and responsiveness of four knee outcome scales for athletic patients. *J Bone Joint Surg Am*. 2001;83-A:1459-1469.
- 56. Piva SR, Gil AB, Moore CG, Fitzgerald GK. Responsiveness of the activities of daily living scale of the knee outcome survey and numeric pain rating scale in patients with patellofemoral pain. *J Rehabil Med*. 2009;41:129-135.
- 57. Li L, Liu X, Herr K. Postoperative pain intensity assessment: a comparison of four scales in Chinese adults. *Pain Med.* 2007;8:223-234.
- 58. Farrar JT, Berlin JA, Strom BL. Clinically important changes in acute pain outcome measures: a validation study. *J Pain Symptom Manage*. 2003;25:406-411.
- Farrar JT, Portenoy RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. *Pain*. 2000;88:287-294.
- 60. Stiell IG, Greenberg GH, Wells GA, et al. Derivation of a decision rule for the use of radiography in acute knee injuries. *Ann Emerg Med.* 1995;26:405-413.

- 61. Stiell IG, Wells GA, Hoag RH, et al. Implementation of the Ottawa Knee Rule for the use of radiography in acute knee injuries. *JAMA*. 1997;278:2075-2079.
- 62. Emparanza JI, Aginaga JR. Validation of the Ottawa Knee Rules. *Ann Emerg Med.* 2001;38:364-368.
- 63. Ketelslegers E, Collard X, Vande Berg B, et al. Validation of the Ottawa Knee Rules in an emergency teaching centre. *Eur Radiol*. 2002;12:1218-1220.
- 64. Bulloch B, Neto G, Plint A, et al. Validation of the Ottawa Knee Rule in children: a multicenter study. *Ann Emerg Med.* 2003;42:48-55.
- Khine H, Dorfman DH, Avner JR. Applicability of Ottawa Knee Rule for knee injury in children. *Pediatr Emerg Care*. 2001;17:401-404.
- Braunstein EM. Anterior cruciate ligament injuries: a comparison of arthrographic and physical diagnosis. AJR Am J Roentgenol. 1982;138:423-425.
- 67. Katz JW, Fingeroth RJ. The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. *Am J Sports Med.* 1986;14:88-91.
- Lee JK, Yao L, Phelps CT, et al. Anterior cruciate ligament tears: MR imaging compared with arthroscopy and clinical tests. *Radiology*. 1988;166:861-864.

- Boeree NR, Ackroyd CE. Assessment of the menisci and cruciate ligaments: an audit of clinical practice. *Injury*. 1991;22:291-294.
- Evans PJ, Bell GD, Frank C. Prospective evaluation of the McMurray test. Am J Sports Med. 1993;21:604-608.
- Rubinstein RAJ, Shelbourne KD, McCarroll JR, et al. The accuracy of the clinical examination in the setting of posterior cruciate ligament injuries. *Am J Sports Med.* 1994;22:550-557.
- 72. Shelbourne KD, Martini DJ, McCarroll JR, VanMeter CD. Correlation of joint line tenderness and meniscal lesions in patients with acute anterior cruciate ligament tears. *Am J Sports Med.* 1995;23:166-169.
- Eren OT. The accuracy of joint line tenderness by physical examination in the diagnosis of meniscal tears. *Arthroscopy*. 2003;19:850-854.
- Haim A, Yaniv M, Dekel S, Amir H. Patellofemoral pain syndrome: validity of clinical and radiological features. Clin Orthop Relat Res. 2006;451:223-228.
- Doberstein ST, Romeyn RL, Reineke DM. The diagnostic value of the Clarke sign in assessing chondromalacia patella. *J Athl Train*. 2008;43:190-196.

Foot and Ankle



CLINICAL SUMMARY AND RECOMMENDATIONS	336
Anatomy	337
Osteology	337
Arthrology	339
Ligaments	340
Muscles	345
Nerves	353
Patient History	355
Initial Hypotheses Based on Historical Findings	355
Physical Examination Tests	356
Screening	356
Range of Motion	359
Assessing Strength	361
Assessing Bony Alignment	362
Assessing Balance and Dynamic Performance	365
Assessing Foot Motion during Gait	367
Assessing Swelling	368
Assessing Sensation	369
Special Tests	370
Outcome Measures	373
Appendix	374
Quality Assessment of Diagnostic Studies Using QUADAS	374
References	375

CLINICAL SUMMARY AND RECOMMENDATIONS

Patient History	
Complaints	No studies of acceptable quality have assessed either the reliability or diagnostic utility of items from the subjective history in patients with foot and ankle problems.
Physical Examination	
Screening	The Ottawa Ankle Rule for Radiography is highly sensitive for ankle and midfoot fractures in both adults and children. When patients can bear weight and have no tenderness on the malleoli, navicular, or base of the fifth metatarsal, providers can confidently rule out foot and ankle fractures ($-LR=.10$). The addition of a tuning fork may increase the specificity of the rules, especially when placed on the distal fibula.
Range of Motion and Strength Assessment	Measuring ankle range of motion (ROM) has consistently been shown to be highly reliable when measured by the same person, but much less reliable when measured by different people.
	Calf strength can be reliably assessed using repeated calf raises. The paper grip test is a simple yet accurate method to measure toe plantarflexion strength.
Other Assessment	Assessments of static foot alignment, sensation, swelling, proprioception, and dynamic performance have all been shown to be adequately reliable, but are of unknown diagnostic utility. Dynamic assessments of hindfoot motion during gait are likely too unreliable to be clinically useful.
Special Tests	The "impingement sign" seems to show very good diagnostic utility in both identifying and ruling out anterolateral ankle impingement (+LR = 7.9 , -LR = $.06$).
	The windlass test appears highly reliable, but is of unknown diagnostic utility in identifying plantar fasciitis.
	Overall there is a considerable lack of information available on diagnostic tests for the foot and ankle.

Osteology

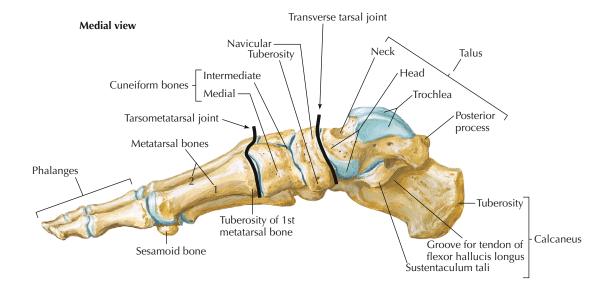
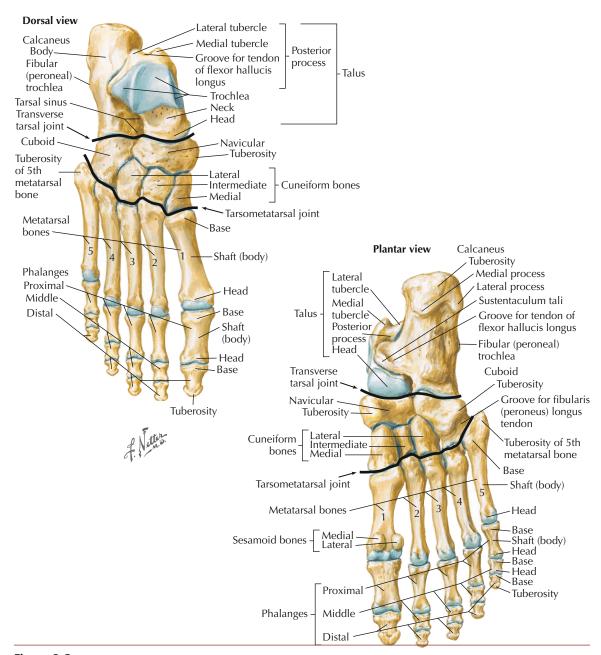
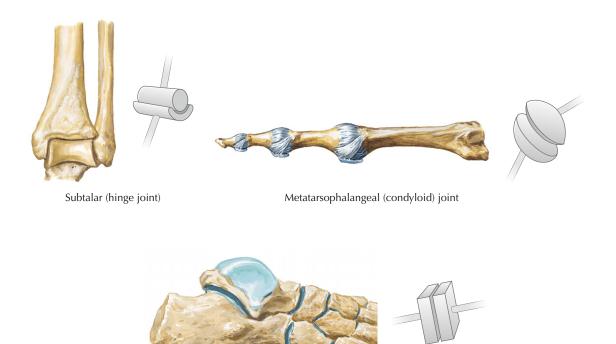
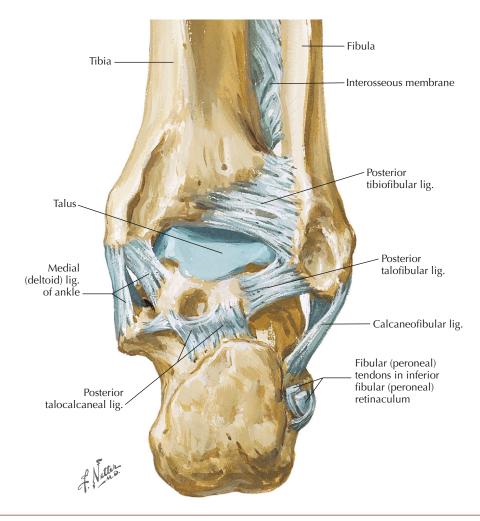



Figure 8-1 Bones of the foot.


Anatomy (continued)

Osteology

Figure 8-2Bones of the foot.


Arthrology

Subtalar, talocalcaneonavicular, calcaneocuboid, transverse tarsal, and tarsometatarsal (plane) joints

Figure 8-3 Talocrural (hinge) joint.

Joint	Type and Classification	Closed Packed Position	Capsular Pattern	
Talocrural	Synovial: hinge	Dorsiflexion	Plantarflexion slightly more limited than dorsiflexion	
Distal tibiofibular	Syndesmosis	Not available	Not available	
Subtalar	Synovial: plane	Supination	Inversion greatly restricted; eversion not restricted	
Talocalcaneonavicular	Synovial: plane	Supination	Supination more limited than pronation	
Calcaneocuboid	Synovial: plane	Supination		
Transverse tarsal	Synovial: plane	Supination	'	
Tarsometatarsal	Synovial: plane	Supination	Not available	
Metatarsophalangeal (MTP)	Synovial: condyloid	Extension	Great toe: extension more limited than flexion MTP joints 2-5: variable	
Interphalangeal (IP)	Synovial: hinge	Extension	Extension more limited than flexion	

Figure 8-4Calcaneus: posterior view with ligaments.

Ligaments	Attachments	Function
Posterior talocalcaneal	Superior body of calcaneus to posterior process of talus	Limits posterior separation of talus from calcaneus
Posterior tibiofibular	Distal posterior tibia to distal posterior fibula	Maintains distal tibiofibular joint
Posterior talofibular	Posterior talus to posterior lateral malleolus	Limits separation of fibula from talus
Interosseous membrane	Continuous connection between tibia and fibula	Reinforces approximation between tibia and fibula

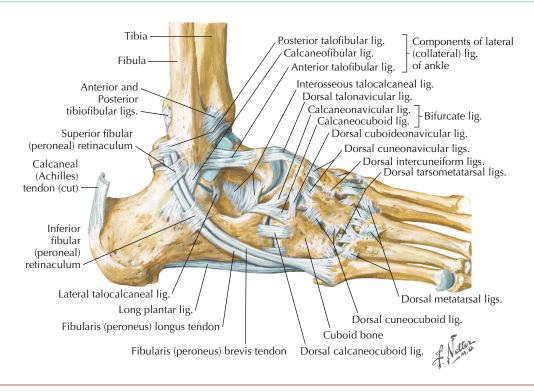


Figure 8-5 Ligaments of ankle: lateral view of right foot.

Ligaments	Attachments	Function	
Anterior tibiofibular	Anterior aspect of lateral malleolus to inferior border of medial tibia	Reinforces anterior tibiofibular joint	
Lateral Collateral			
Posterior talofibular	Lateral malleolus to lateral talus		
Calcaneofibular	Lateral malleolus to lateral calcaneus	Limits ankle inversion	
Anterior talofibular	Lateral malleolus to talus		
Interosseous talocalcaneal	Inferior aspect of talus to superior aspect of calcaneus	Limits separation of talus from calcaneus	
Dorsal talonavicular	Dorsal aspect of talus to dorsal aspect of navicular	Limits separation of navicular from talus	
Bifurcate			
Calcaneonavicular	Distal calcaneus to proximal navicular	Limits separation of navicular and cuboid	
Calcaneocuboid	Distal calcaneus to proximal cuboid	from calcaneus	
Dorsal cubonavicular	Lateral aspect of cuboid to dorsal aspect of navicular	Limits separation of navicular from cuboid	
Dorsal cuneonavicular	Navicular to three cuneiforms	Limits separation of cuneiforms from navicular	
Dorsal intercuneiform	Joining of three cuneiforms	Limits separation of cuneiforms	
Dorsal tarsometatarsal	Dorsal tarsal bones to corresponding metatarsal bones	Reinforces tarsometatarsal joints	

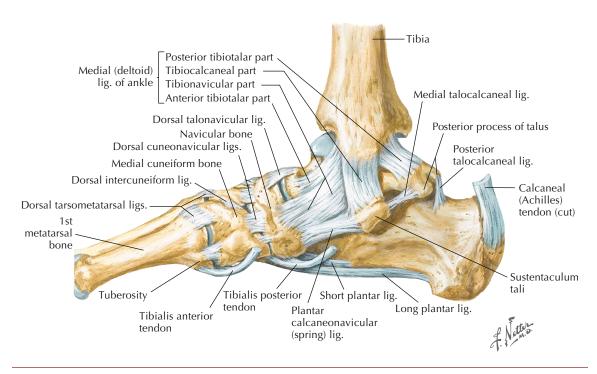


Figure 8-6 Ligaments of ankle: medial view of right foot.

Ligaments	Attachments	Function	
Medial (Deltoid)			
Posterior tibiotalar	Medial malleolus to medial talus		
Tibiocalcaneal	Anterior distal medial malleolus to sustentaculum tali	Limits ankle eversion	
Tibionavicular	Medial malleolus to proximal aspect of navicular		
Anterior tibiotalar	Medial malleolus to talus		
Medial talocalcaneal	Sustentaculum tali to talus	Limits posterior separation of talus on calcaneus	
Plantar calcaneonavicular (spring)	Sustentaculum tali to posteroinferior navicular	Maintains longitudinal arch of foot	

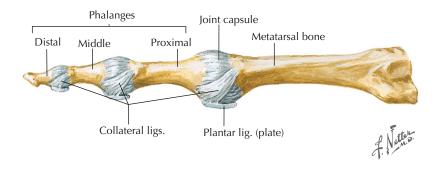


Figure 8-7 Capsules and ligaments of metatarsophalangeal and interphalangeal joints: lateral view.

Ligaments	Attachments	Function
Long plantar	Plantar of calcaneus to cuboid	Maintains arches of foot
Plantar calcaneocuboid (short plantar)	Anteroinferior aspect of calcaneus to inferior aspect of cuboid	Maintains arches of foot
Plantar calcaneonavicular (spring)	Sustentaculum tali to posteroinferior aspect of talus.	Maintains longitudinal arch of foot
Plantar cubonavicular	Inferior navicular to inferomedial cuboid	Limits separation of cuboid from navicular and supports arch
Plantar tarsometatarsal	Connects metatarsals 1-5 to corresponding tarsal on plantar aspect	Limits separation of metatarsals from corresponding tarsal bones
Collateral	Distal aspect of proximal phalanx to proximal aspect of distal phalanx	Reinforces capsule of IP joints
Plantar plate	Thickening of plantar aspect of joint capsule	Reinforces plantar aspect of IP joint
Deep transverse metatarsal	MTP joints on plantar aspect	Limits separation of MTP joints

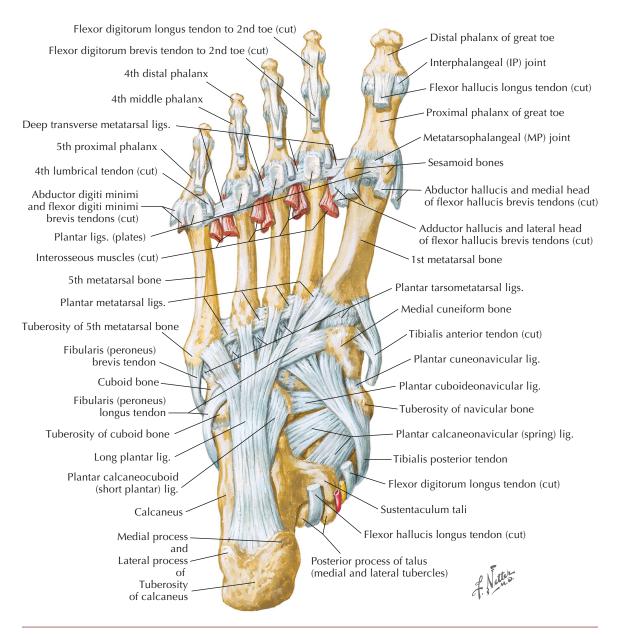
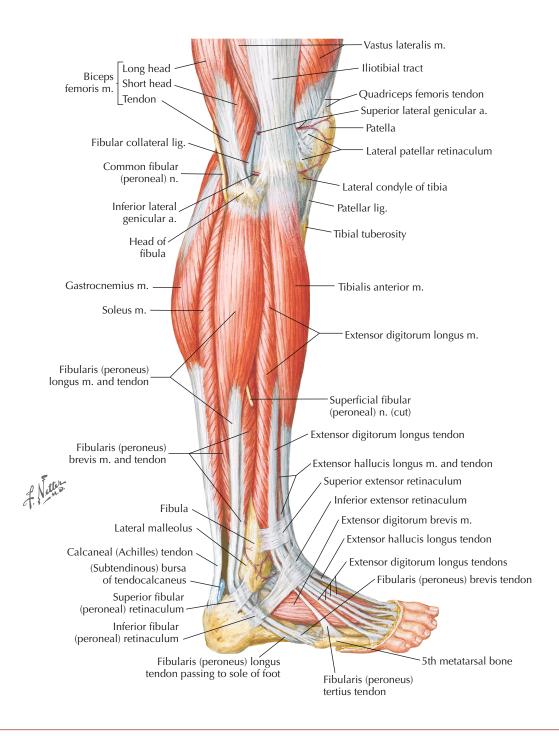



Figure 8-8 Ligaments and tendons of foot: plantar view.

Muscles

Lateral Muscles of Leg

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental Level	Action
Gastrocnemius	Lateral head: lateral femoral condyle Medial head: popliteal surface of femur	Posterior aspect of calcaneus	Tibial nerve (S1, S2)	Plantarflexes ankle and flexes knee
Soleus	Posterior aspect of head of fibula, fibular soleal line and medial aspect of tibia	Posterior aspect of calcaneus	Tibial nerve (S1, S2)	Plantarflexes ankle
Fibularis longus	Superolateral surface of fibula	Base of 1st metatarsal and medial cuneiform	Superficial fibular nerve (L5, S1, S2)	Everts foot and assists in plantarflexion
Fibularis brevis	Distal aspect of fibula	Tuberosity of base of 5th metatarsal	Superficial fibular nerve (L5, S1, S2)	Everts foot and assists in plantarflexion
Fibularis tertius	Anteroinferior aspect of fibula and interosseus membrane	Base of 5th metatarsal	Deep fibular nerve (L5, S1)	Dorsiflexes ankle and everts foot
Extensor digitorum longus	Lateral condyle of tibia, medial surface of fibula	Middle and distal pha- langes of digits 2-5	Deep fibular nerve (L5, S1)	Extends digits 2-5 and assists with ankle dorsiflexion
Extensor hallucis longus	Anterior fibula and interosseus membrane	Dorsal base of distal phalanx of great toe	Deep fibular nerve (L5, S1)	Extends great toe and assists with ankle dorsiflexion
Extensor digitorum brevis	Superolateral aspect of cal- caneus, extensor retinaculum	Dorsal base of middle phalanx of digits 2-5	Deep fibular nerve (L5, S1)	Extends digits 2-4 at MTP joints
Tibialis anterior	Lateral condyle and ante- rior surface of tibia	Inferomedial aspect of medial cuneiform and base of 1st metatarsal	Deep fibular nerve (L4, L5)	Ankle dorsiflexion and foot inversion

Figure 8-9Muscles of foot and ankle: lateral view.

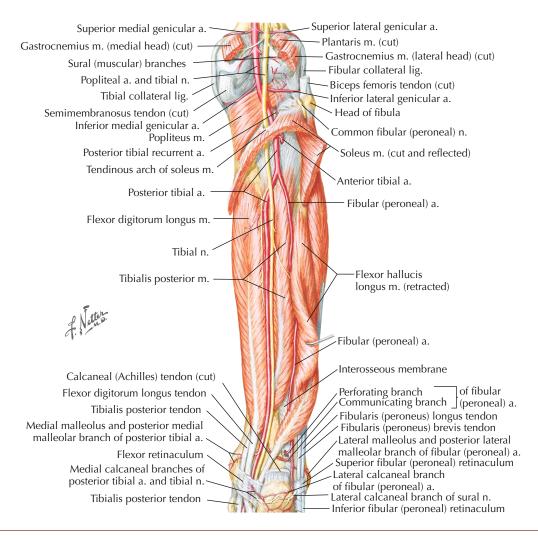
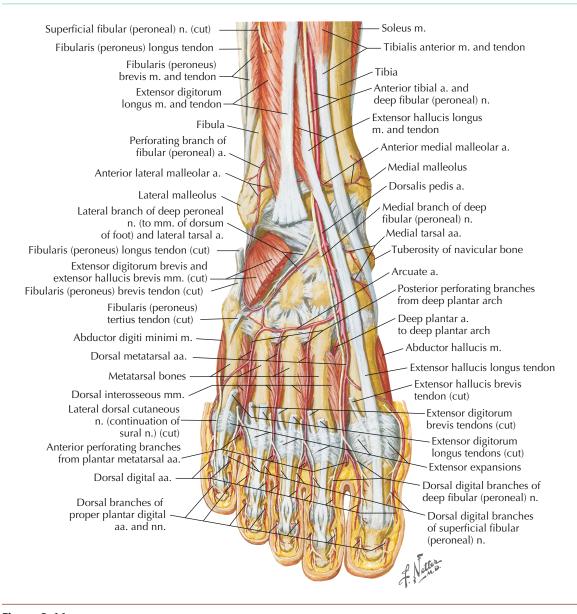



Figure 8-10 Muscles of leg: posterior view.

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental Level	Action
Tibialis posterior	Interosseus membrane, posteroinferior aspect of tibia and posterior fibula	Navicular tuberosity, cu- neiform, cuboid and bases of metatarsals 2-4	Tibial nerve (L4, L5)	Plantarflexes ankle and inverts foot
Flexor hallucis longus	Posteroinferior fibula and interosseus membrane	Base of distal phalanx of great toe	Tibial nerve (S2, S3)	Flexes great toe and assists with ankle plantarflexion
Flexor digitorum longus	Posteroinferior tibia	Bases of distal phalanges 2-5	Tibial nerve (S2, S3)	Flexes lateral four digits, plantarflexes ankle, sup- ports longitudinal arch of foot

Muscles

Dorsum of Foot

Figure 8-11Muscles, arteries, and nerves of front of ankle and dorsum of foot: deeper dissection.

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental Level	Action
Extensor digi- torum brevis	Superolateral aspect of calca- neus and extensor retinaculum	Dorsal base of middle phalanx of digits 2-5	Deep fibular nerve (L5, S1)	Extends digits 2-4 at MTP joints
Extensor hal- lucis brevis	Superolateral aspect of calca- neus and extensor retinaculum	Dorsal base of proximal phalanx of great toe	Deep fibular nerve (L5, S1)	Extends great toe at MTP joints
Dorsal interossei	Sides of metatarsals 1-5	1st: medial aspect of proximal phalanx of 2nd digit 2nd-4th: lateral aspect of digits 2-4	Lateral plantar nerve (S2, S3)	Abducts digits 2- 4 and flexes MTP joints

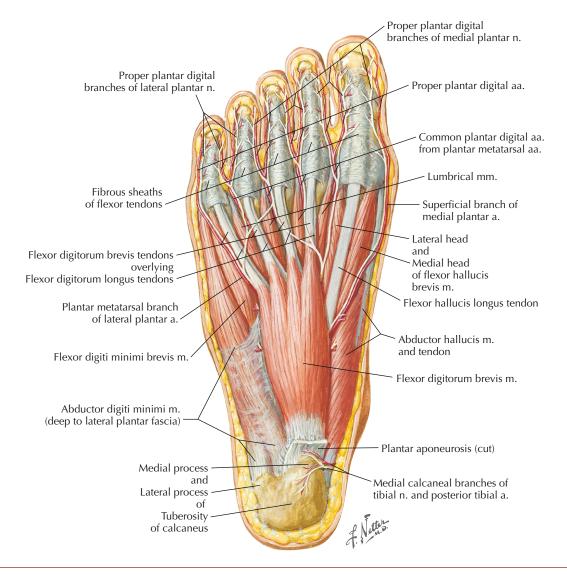
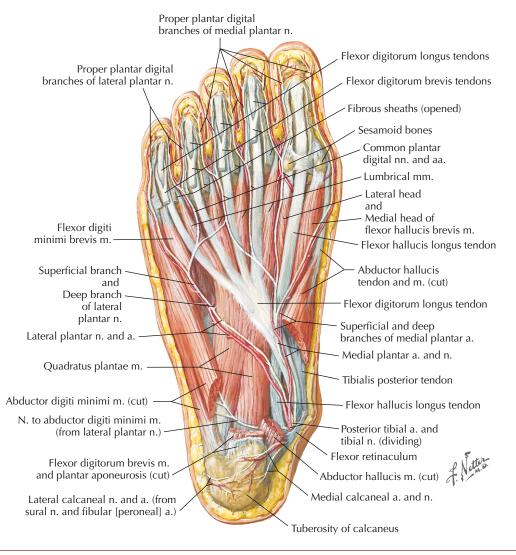



Figure 8-12 Muscles of sole of foot: first layer.

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental Level	Action
Abductor hallucis longus	Medial calcaneal tuberos- ity, flexor retinaculum, and plantar aponeurosis	Base of proximal phalanx of 1st digit	Medial plantar nerve (S2, S3)	Abducts and flexes great toe
Flexor digitorum brevis	Medial calcaneal tuberos- ity and plantar aponeurosis	Sides of middle phalanges of digits 2-5	Medial plantar nerve (S2, S3)	Flexes digits 2-5
Abductor digiti minimi	Medial and lateral calca- neal tuberosities	Lateral aspect of base of proximal phalanx of 5th metatarsal	Lateral plantar nerve (S2, S3)	Abducts and flexes 5th digit

Figure 8-13 Muscles of sole of foot: second layer.

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental Level	Action
Lumbricals	Tendons of flexor digi- torum longus	Medial aspect of ex- pansion over lateral four digits	Lateral three: lateral plantar nerve (S2, S3) Medial one: medial plantar nerve (S2, S3)	Flexes proximal phalanges and extends middle and distal phalanges of digits 2-5
Quadratus plantae	Medial and plantar aspect of calcaneus	Posterolateral aspect of tendon of flexor digitorum longus	Lateral plantar nerve (S2, S3)	Assists in flexing digits 2-5

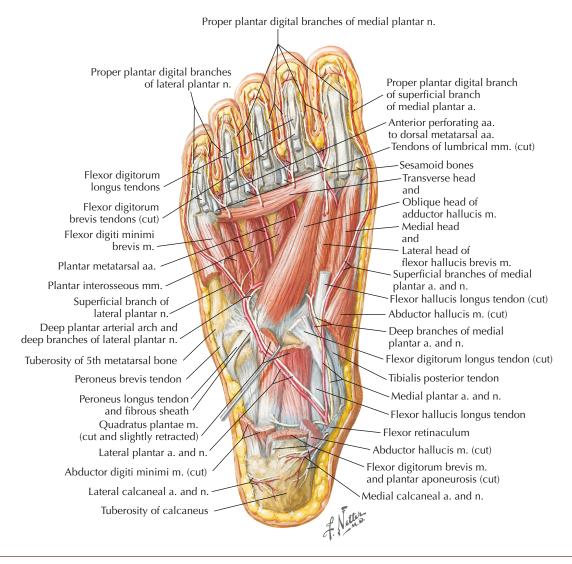


Figure 8-14 Muscles of sole of foot: third layer.

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental Level	Action
Flexor digiti minimi brevis	Base of 5th metatarsal	Base of proximal phalanx of 5th metatarsal	Superficial branch of lateral plantar nerve	Flexes proximal phalanx of fifth digit
Adductor Hallucis				
Transverse head	Plantar ligaments of MTP joints	Lateral base of proxi- mal phalanx of great	Deep branch of lateral plantar nerve (S2, S3)	Adducts great toe
Oblique head	Bases of metatarsals 2-4	toe	plantal herve (32, 33)	
Flexor hallucis brevis	Plantar cuboid and lateral cuneiforms	Sides of proximal phalanx of great toe	Medial plantar nerve (S2, S3)	Flexes proximal phalanx of great toe

Muscles

Deep Interosseous Muscles: Sole of Foot

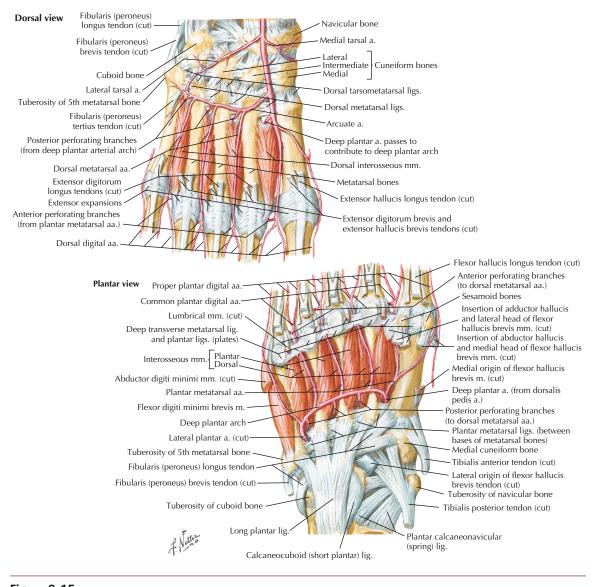


Figure 8-15 Interosseous muscles and plantar arterial arch.

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental Level	Action
Plantar interosseous	Bases of metatarsals 3-5	Medial bases of proximal phalanges 3-5	Lateral plantar nerve (S2, S3)	Adducts digits 2-4 and flexes MTP joints
Dorsal interosseous	Sides of metatarsals 1-5	1st: medial aspect of proximal phalanx of 2nd digit 2nd-4th: Lateral aspect of digits 2-4	Lateral plantar nerve (S2, S3)	Abducts digits 2-4 and flexes MTP joints

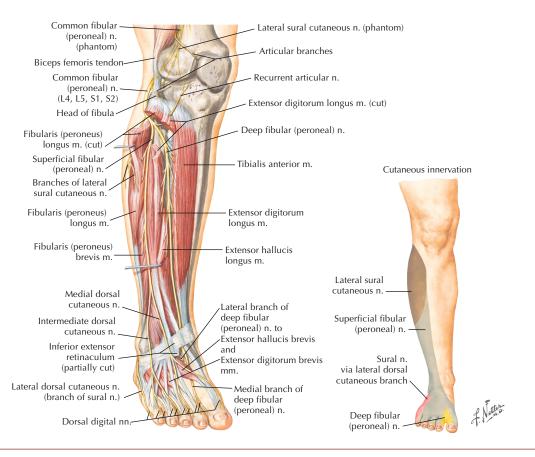


Figure 8-16 Tibial and fibular nerves: posterior view.

Nerves	Segmental Levels	Sensory	Motor
Sural	S1, S2	Posterior and lateral leg and lateral foot	No motor
Tibial	L4, L5, S1, S2, S3	Posterior heel and plantar surface of foot	Semitendinosus, semimembranosus, biceps femoris, adductor magnus, gastrocnemius, soleus, plantaris, flexor hallucis longus, flexor digitorum longus, tibialis posterior
Medial plantar	S2, S3	Medial 3 ¹ / ₂ digits	Flexor hallucis brevis, abductor hallucis, flexor digitorum brevis, lumbricales
Lateral plantar	S2, S3	Lateral 1 ¹ / ₂ digits	Adductor hallucis, abductor digiti minimi, quadratus plantae, lumbricales, flexor digiti minimi brevis, interossei
Saphenous	L2, L3, L4	Medial leg and foot	No motor
Deep fibular	L4, L5, S1	1st interdigital cleft	Tibialis anterior, extensor digitorum longus, extensor hal- lucis longus, fibularis tertius, extensor digitorum brevis, extensor hallucis brevis
Superficial fibular	L5, S1, S2	Distal anterior leg and dorsum of foot	Fibularis longus, fibularis brevis

Nerves (continued)

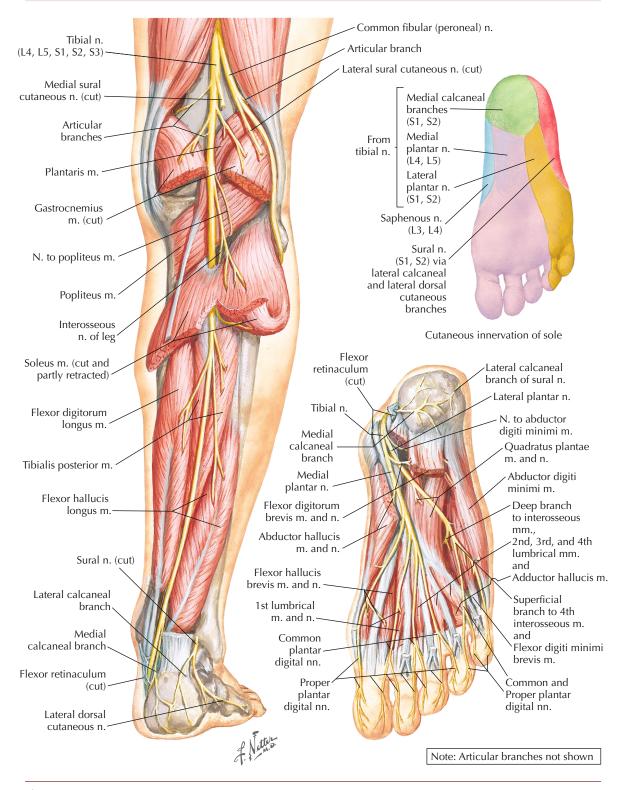


Figure 8-17
Tibial and fibular nerves: anterior view.

PATIENT HISTORY

Initial Hypotheses Based on Historical Findings

Patient Reports	Initial Hypothesis
Patient reports a traumatic incident resulting in either forced inversion or eversion	Possible ankle sprain ^{1,2} Possible fracture Possible peroneal nerve involvement (if mechanism of injury is inversion) ³⁻⁵
Patient reports trauma to ankle that included tibial rotation on a planted foot	Possible syndesmotic sprain ¹
Patient notes tenderness of anterior shin and may exhibit excessive pronation. Symptoms may be exacerbated by repetitive weight-bearing activities	Possible medial tibial stress syndrome ⁶
Patient reports traumatic event resulting in inability to plantarflex ankle	Possible Achilles tendon rupture
Patient reports pain with stretch of calf muscles and during gait (toe push off)	Possible Achilles tendonitis ⁷ Possible Sever's disease ¹
Patient reports pain at heel with first few steps out of bed after prolonged periods of walking	Possible plantar fasciitis
Patient reports pain or paresthesias in plantar surface of foot	Possible tarsal tunnel syndrome ¹ Possible sciatica Possible lumbar radiculopathy
Patient reports pain on plantar surface of foot between 3rd and 4th metatarsals. Might also state that pain is worse when walking with shoes compared with barefoot	Possible Morton's neuroma ⁷ Possible metatarsalgia

PHYSICAL EXAMINATION TESTS

Screening

Evaluation Following Acute Ankle Trauma

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test	Test Procedure and Determination of Positive Finding	Population	Inter- examiner Reliability
Ability to bear weight ⁸			к = .83
Bone tenderness at base of 5th metatarsal ⁸			к = .78
Bone tenderness at pos- terior edge of lateral malleolus ⁸			κ = .75
Bone tenderness at tip of medial malleolus ⁸			к = .66
Bone tenderness at prox- imal fibula ⁸	Tenderness calculated as tender or not. Swelling and ROM limitations dichotomized as "none-minimal" or	100 patients having sustained acute ankle trauma	к =01
Combinations of bone tenderness ⁸	"moderate-marked"	tailled acute affice trauffa	к = .76
Soft tissue tenderness ⁸			κ = .41
Degree of swelling in area of anterior talofibular ligament ⁸			κ = .18
Ecchymosis ⁸			κ = .39
ROM restrictions present ⁸			к = .33
Palpation test ⁹	Examiner palpates over anterior talofibular ligament. Positive if pain is reproduced		к = .36
ER test ⁹	With patient sitting over edge of plinth, passive ER stress is applied to foot and ankle. Positive if pain is reproduced over syndesmotic ligaments		κ = .75
Squeeze test ⁹	With patient sitting over edge of plinth, examiner manually compresses fibula and tibia over calf midpoint. Positive if pain is reproduced over syndesmotic ligaments With patient standing, patient actively dorsiflexes ankle while weight-bearing. Examiner applies manual compression around malleoli with patient's foot in dorsiflexed position. Positive if significant increase in ankle dorsiflexion or reduction in pain with compression		κ = .50
Dorsiflexion-compression test ⁹			к = .36

Screening (continued)

Evaluation Following Acute Ankle Trauma

Figure 8-18 Squeeze test.



Figure 8-19 Dorsiflexion-compression test.

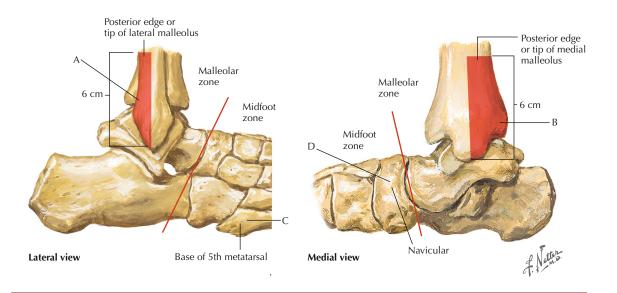
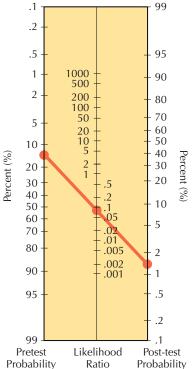



Figure 8-20 Ottawa ankle rules.

Screening		Interpretation Large	−LR <.1
Diagnostic Utility of the Ottawa Ankle Rule for Radiography		Moderate	.12
	2.0-5.0	Small	.25
	10-20	Rarely important	5-10

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR	
Ottawa Ankle Rule for Radio- graphy ¹⁰ 2003 Meta- analysis	Ankle x-ray series ordered when patients have bone tenderness at A or B or C or D (see Fig. 8-20) or if the patient could not bear weight immediately after the injury or during the examination (four steps regardless of limping)	Statistically pooled data from 27 high- quality studies involving 15,581 adults and children		.98 (.97, .99)	.20	1.23	.10 (.06, .16)	
Bernese ankle rules ¹¹	Ankle x-ray series ordered when patients had pain with any of the following: (1) Indirect fibular stress applied by compressing the tibia and fibula proximal to the malleoli (2) Direct medial malleolar stress with examiner's thumb (3) Compression stress of the mid and hindfoot applied simultaneously	354 patients reporting to the emergency de- partment after a low-energy, supination-type ankle or foot injury	Ankle or midfoot fracture on radiograph	1.0	.91	11.11	.00	
Adding tuning fork to Ottawa Ankle Rule for Radiography12	Base of a vibrating tuning fork placed on tip of lateral malleolus. Positive if patient reports discomfort or pain	49 patients re- porting to emergency de- partment after inversion ankle injury	porting to		1.0	.61	2.59	.00
	As above, but placed on distal fibular shaft.			1.0	.95	22.00	.00	

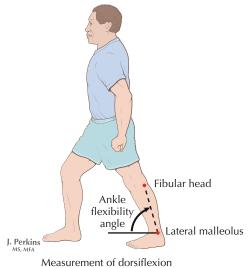
Figure 8-21

Nomogram. Assuming a fracture prevalence of 15% (statistically pooled from Bachmann et al¹⁰), an adult seen in the emergency department with an acute injury whose findings were negative on the Ottawa Ankle Rule would have a 1.4% (95% CI, 0.15% to 1.48%) chance of having an ankle and/or midfoot fracture. (Adapted with permission from Fagan TJ. Nomogram for Bayes' theorem. N Engl J Med. 1975;293-257. Copyright 2005, Massachusetts Medical Society. All rights reserved.)

Range of Motion

Reliability of Range of Motion Measurements

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement


Measurements	Instrumentation	Population	Reliability	
			Intra-examiner	Inter-examiner
AROM (sitting) Subtalar joint inversion Subtalar joint eversion ¹³	Plastic goniometer	31 asymptomatic subjects	ICC = .9196 ICC = .8293	ICC = .73 (.61, .82) ICC = .62 (.49, .74)
AROM (prone) Subtalar joint inversion Subtalar joint eversion ¹³	Plastic goniometer	31 asymptomatic subjects	ICC = .94 (.91, .96) ICC = .8394	ICC = .54 (.33, .70) ICC = .41 (.25, .56)
AROM Ankle dorsiflexion Ankle plantar flexion ¹⁴	Plastic goniometer	38 patients with ortho- paedic disorders of ankle or knee	ICC = .89 ICC = .91	ICC = .28 ICC = .25
PROM Subtalar joint neutral Subtalar joint inversion Subtalar joint eversion Plantarflexion Dorsiflexion ¹⁵	Plastic goniometer	43 patients with ortho- paedic or neurologic dis- orders wherein measure- ments of foot and ankle would be appropriate in a clinical setting	ICC = .77 ICC = .62 ICC = .59 ICC = .86 ICC = .90	ICC = .25 ICC = .15 ICC = .12 ICC = .72 ICC = .50
PROM Pronation Supination Ankle dorsiflexion First ray plantarflexion First ray dorsiflexion ¹⁶	Inclinometer	30 healthy subjects	ICC = .8997 ICC = .9095 ICC = .8697 ICC = .7297 ICC = .9098	ICC = .4649 ICC = .2840 ICC = .2631 ICC = .2191 ICC = .1416
First ray mobility ¹⁷	Manual assessment. Graded as "hypomobile," "normal," or "hypermobile"	30 asymptomatic subjects	Not tested	к = .0820
Dorsiflexion in a calf stretch position ¹⁸	Digital inclinometer used to take measurements between the tibia and vertical when subject is standing in a calf stretch position with knee extended	30 healthy subjects	ICC = . 7791	ICC = .9295
Dorsiflexion in a modi- fied lunge test ¹⁹	Inclinometer used to take measurements calculated during lunge between angle formed by fibular head and lateral malleolus	31 subjects 76 to 87 years of age re- cruited from general population	ICC = .87 (.74, .94)	Not tested
Open kinetic chain: Resting subtalar joint Subtalar joint neutral ²⁰	Inclinometer	30 asymptomatic subjects	ICC = .85 ICC = .85	ICC = .68 ICC = .79
Passive dorsiflexion ²¹	Standard goniometer	63 healthy Navy Reserve officers	ICC = .74	ICC = .65

Range of Motion

Reliability of Range of Motion Measurements

Weight-bearing lunge measurement of ankle dorsiflexion

with modified lunge test

Figure 8-22 Lunge measurements.

Reliability of Range of Motion Measurement of Calcaneal Position

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 8-23 Measurement of relaxed calcaneal stance.

Measurements	Instrumentation	Population	Reliability	
			Intra-examiner	Inter-examiner
Relaxed calcaneal stance position ²²	Standard goniometer	212 healthy subjects: 88 adults, 124 children	ICC = .6190	Not tested
Relaxed calcaneal stance Neutral calcaneal stance ¹⁶	Gravity goniometer	30 healthy subjects	ICC = .9597 ICC = .8793	ICC = .6162 ICC = .2131
Rearfoot angle ²¹	Standard goniometer	63 healthy Navy Reserve officers	ICC = .88	ICC = .86

Assessing Strength

Reliability of Strength Assessment

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Measure	Test Procedure	Population	Inter-examiner Reliability
Ankle plantarflexion strength and endurance ²³	Children asked to perform as many single-leg heel- rises as possible at a rate of 1 every 2 seconds while examiner counts the repetitions	95 7- to 9-year- old children	ICC = .99

Diagnostic Utility of the Paper Grip Test for Detecting Toe Plantarflexion Strength Deficits

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 8-24 Paper grip test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Paper grip test ²⁴	With patient sitting with hips, knees, and ankles at 90° and toes on a piece of cardboard, examiner stabilizes the feet while attempting to slide cardboard away from the toes. Positive if participant cannot maintain cardboard under toes	80 asymp- tomatic adults	Toe plantarflexion strength as measured by a force plate system	.80	.79	3.8	.25

Assessing Bony Alignment

Measurement of Navicular Height

Figure 8-25 Measurement of navicular height.

Test and Measure	Test Procedure	Population	Reliability	
			Intra-examiner	Inter-examiner
Navicular height ¹⁹	Navicular tuberosity is marked while patient is in weight-bearing position. Distance from ground to navicular tuberosity is measured	31 subjects 76 to 87 years of age re- cruited from general population	ICC = .64 (.38, .81)	Not tested
Navicular drop test ²⁵	Navicular tuberosity is marked. Difference between distance from navicular tuberosity with foot resting on ground with weight bearing mostly on contra- lateral lower extremity while ex- aminer maintains subtalar joint neutral and during relaxed bilat- eral stance with full weight bearing is recorded	30 patients with patellofemoral pain syndrome	Not tested	ICC = .93 (.84, .97)
Navicular height technique ²⁰		30 asymptomatic subjects	ICC = .83	ICC = .73
Navicular drop test ²⁶		20 symptomatic subjects	ICC = .3362	ICC = .3140
Navicular height ²⁷	Height of navicular tuberosity is calculated with digital calipers	100 consecutive patients presenting to an orthopaedic foot and ankle clinic	ICC = .90	ICC = . 74

Assessing Bony Alignment

Assessment of Medial Arch Height

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement



Figure 8-26 Measurement of arch angle.

Test and Measure	Test Procedure	Population	Reliability	
			Intra-examiner	Inter-examiner
Arch angle ²¹	Patient in weight-bearing position. Examiner measures angle formed by line connecting medial malleolus and navicular tuberosity and angle from tuberosity to medial aspect of 1st metatarsal head with standard goniometer	63 healthy Navy Reserve officers	ICC = .90	ICC = .81
Arch height test ²⁷	Highest point of soft tissue margin along medial longitudinal arch recorded with a digital caliper	100 consecutive patients presenting to an orthopaedic foot and ankle clinic	ICC = .91	ICC = .76

Assessing Bony Alignment

Measuring Forefoot Position

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

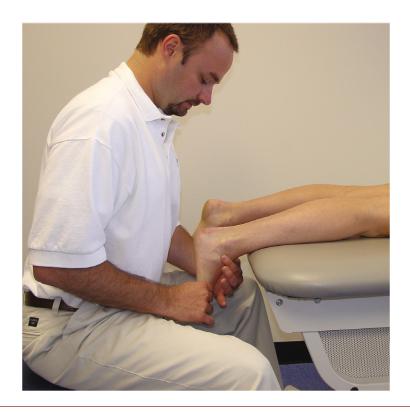


Figure 8-27 Determination of forefoot varus/valgus.

Test and	Test Procedure	Population	Reliability		
Measure			Intra-examiner	Inter-examiner	
Forefoot varus ¹	With patient prone with foot over edge of table, examiner palpates medial and lateral talar head then grasps 4th and 5th metatarsals, taking up slack in midtarsal joints. Subtalar neutral is position in which medial and lateral talar head is palpated equally ²⁸	30 healthy subjects	ICC = .9599	ICC = .61	

Assessing Balance and Dynamic Performance

Reliability of Assessing Balance and Proprioception

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test	Procedure	Population	Reliability
Single leg balance test ²⁹	Participants stand on one foot, without shoes on, on a Polyform mat with eyes closed and the contralateral leg bent for 1 minute. Examiner counts number of errors (surface contract with contralateral foot or movement of the test foot)	24 male recreational athletes with func- tional ankle instability	Test-retest ICC = .94
Single leg balance test ³⁰	Participants stand on one foot, without shoes on, with the contralateral leg bent and not touching the tested limb. Test is positive when patient cannot remain balanced or reports a sense of imbalance	240 healthy athletes	Inter-examiner $\kappa = .90$
Threshold for perception of passive movement ³¹			Test-retest ICC = .95
Active-to-active repro- duction of joint position ³¹			Test-retest ICC = .83
Reproduction of move- ment velocity ³¹	Examiner collects measurements with potentiometer	24 healthy adult subjects	Test-retest ICC = .79
Reproduction of torque ³¹			Test-retest ICC = (Dorsi- flexion) . 86 (Plantarflexion) . 72

Assessing Balance and Dynamic Performance

Reliability of Assessing Dynamic Performance

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 8-28 Single leg hop test.

Test and Measure	Test Procedure	Population	Reliability
Single leg hopping course ²⁹	Course consists of 8 squares, some of which are inclined, declined, or have a lateral inclination. Patients jump on each square on one leg as quickly as possible. Performance indicated in number of seconds taken to perform task	24 male recre- ational athletes with functional ankle instability	Test-retest ICC = .97
Single leg hop for distance ²⁹	Patients asked to hop once or three times as far		Test-retest ICC = .97
Triple hop for distance ²⁹	as possible on one leg. Performance indicated by distance covered		Test-retest ICC = .98
6-meter hop for time ²⁹	Patients hop in a straight line or crosswise over		Test-retest ICC = .95
Cross 6-meter hop for time ²⁹	a line, for 6 meters on one leg as quickly as possible. Performance indicated in number of seconds taken to perform task		Test-retest ICC = .94

Assessing Foot Motion during Gait		Interpretation
		Substantial agreement
Reliability of Assessing Hindfoot Motion during Gait	.6180	Moderate agreement
, , , , , , , , , , , , , , , , , , , ,		Fair agreement
	.1140	Slight agreement
	0- 10	No agreement

Test and Measure	Test Procedure	Population	Inter-examiner Reliability	
			5-Point Scale	2-Point Scale
Duration of hindfoot motion ³²	Each aspect of dynamic hindfoot motion is graded on a 2- or 5-point		к =0301	к = .1424
Velocity of hindfoot motion ³²	scale while observing participant walking barefoot on a treadmill. 5 point scale:		к =0401	к = .0220
Timing of hindfoot motion ³²	 (1) Less than normal (2) Normal (3) Mildly abnormal (4) Moderately abnormal (5) Severely abnormal 2 point scale: (1) Normal or less than normal (2) Greater than normal 	24 healthy participants	к = .1520	к = .1920
Maximum degree of hindfoot motion ³²			к = .1318	к = .2748
Range of hindfoot motion ³²			к = .0619	к = .1528

Accuracy of the Functional Hallux Limitus Test to Predict Abnormal Excessive Midtarsal Function During Gait

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 8-29 Functional hallux: limitus test.

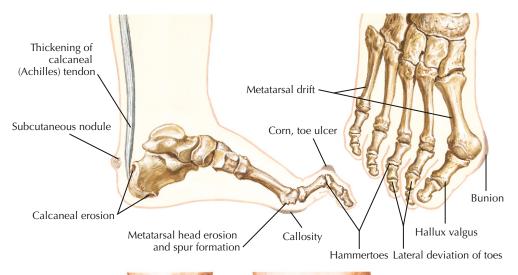
Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Functional hallux limitus test ³³	With the patient in a non—weight-bearing position, the examiner used one hand to maintaining the subtalar joint in a neutral position while maintaining the first ray in dorsiflexion. The other hand was used to dorsiflex the proximal phalanx of the hallux. The test was considered positive if examiner noted immediate plantarflexion of the first metatarsal upon dorsiflexion of the proximal phalanx	46 asymptom- atic students (86 feet) with no significant orthopaedic or structural de- formities of the foot	Abnormal mid- tarsal motion by observing if the navicular moved in a plantar di- rection or ad- ducted when the heel began to lift off the ground	.72	.66	2.1	.42

Assessing Swelling		Interpretation
		Substantial agreement
Reliability of Measuring Ankle Joint Swelling		Moderate agreement
	.4160	Fair agreement
	.1140	Slight agreement
	.010	No agreement

Start of figure-of-eight measurement

Figure-of-eight measurement continued

Completed figure-of-eight measurement


Figure 8-30Figure-of-eight measurement.

Test	Procedure	Population	Reliability	
			Intra-examiner	Inter- examiner
Figure-of-eight method ³⁴	measure midway between tibialis anterior tendon and lateral malleolus. Tape is then drawn medial and placed just distal to navicular tuberosity. Tape is then pulled across arch and just proximal to base of 5th metatarsal. Tape is then pulled across anterior tibialis tendon and around ankle joint just distal to medial malleolus. Tape is finally pulled across Achilles tendon and placed just distal to lateral malleolus and across start of tape	30 postoperative patients with ankle edema	ICC = .99-1.0	ICC = .99-1.0
Figure-of-eight method ³⁵		50 healthy subjects	ICC = .99	ICC = .99
Figure-of-eight method ³⁶		29 individuals with ankle swelling	ICC = .98	ICC = .98
Water volumetrics ³⁶			ICC = .99	ICC = .99

Assessing Sensation

Reliability of Assessing Protective Sensation

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

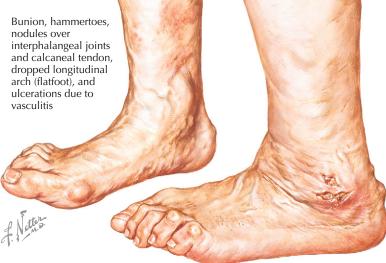


Figure 8-31 Foot involvement in rheumatoid arthritis.

Test	Procedure	Population	Test-Retest Reliability
Sensation testing ³⁷	3 and 10 g Semmes Weinstein monofilaments are used to assess protective sensation. Monofilaments are applied perpendicular to the skin for approximately 1.5 seconds on six sites (plantar hallux and 1st through 5th MTP joints). With eyes closed, participants respond if they perceive pressure	51 patients with rheumatoid ar- thritis and 20 control subjects	(3 g) $\kappa = .73$ (.64, .83) (10 g) $\kappa = .75$ (.65, .85)

Special Tests	+LR >10	Interpretation Large	−LR <.1
Detecting Anterolateral Ankle Impingement	5.0-10.0	Moderate	.12
	2.0-5.0	Small	.25
		Rarely important	5-10

Dorsiflexion

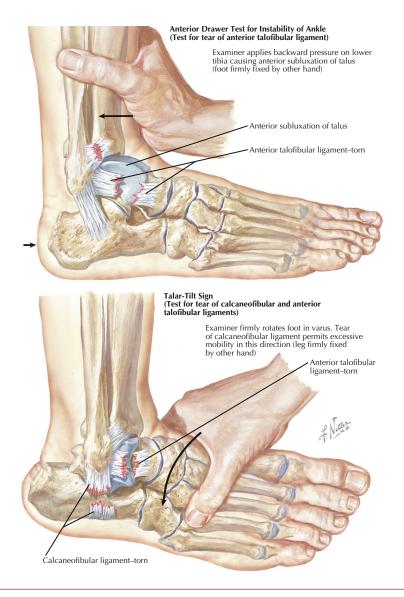
Figure 8-32 Impingement sign.

Test	Test Procedure	Determination of Positive Finding	Population	Reference Standard	Sens	Spec	+LR	-LR
Impingement sign ³⁸	With patient seated, examiner grasps calcaneus with one hand and uses other hand to grasp forefoot, bringing it into plantarflexion. Examiner uses thumb to place pressure over anterolateral ankle. Foot is then brought from plantarflexion to dorsiflexion while thumb pressure is maintained	Positive if pain provoked with pressure from examiner's thumb is greater in dorsiflexion than plantarflexion	73 patients with ankle pain	Arthroscopic visualization	.95	.88	7.91	.06
History and clinical examination ³⁹	Examiner records aggravating factors and reports loss of motion. Examination includes observation of swelling, passive forced ankle dorsiflexion and eversion, active ROM, and double and single leg squats	Positive if five or more findings are positive: • Anterolateral ankle joint tenderness • Anterolateral ankle joint swelling • Pain with forced dorsiflexion and eversion • Pain with single leg squat • Pain with activities • Ankle instability	22 patients undergoing arthroscopic surgery for complaints of chronic ankle pain	Arthroscopic visualization	.94	.75	3.76	.08

Special Tests

Reliability of the Windlass Test

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0


Non-weight bearing

Weight bearing

Figure 8-33 Windlass test.

Test	Procedure	Population	Reliability	
			Intra-examiner	Inter-examiner
Windlass test ⁴⁰	Two methods of performing the windlass test: With patient's knee flexed to 90° while in a non—weight-bearing position, examiner stabilizes the ankle and extends the MTP joint while allowing the IP joint to flex, thus preventing motion limitations due to a shortened hallucis longus muscle With patient standing on a step stool with toes over the stool's edge, the patient's MTP joint is extended while allowing the IP joint to flex	22 patients with plantar fasciitis, 23 patients with other types of foot pain, and 30 control subjects	ICC = .99	ICC = .96

Figure 8-34Anterior drawer sign of ankle for test of talofibular ligaments.

No quality studies were identified that investigated the reliability or the diagnostic utility of either the talar tilt or the anterior drawer test. Their use, however, is so common in clinical practice that they are included here for completeness.

OUTCOME MEASURES

Outcome Measure		Scoring and Interpretation	Test-Retest Reliability	MCID
Lower Extremity Functional Scale (LEFS)		Users are asked to rate the difficulty of performing 20 functional tasks on a Likert-type scale ranging from 0 (extremely difficult or unable to perform activity) to 4 (no difficulty). A total score out of 80 is calculated by summing each score. The answers provide a score between 0 and 80, with lower scores representing more disability	ICC = . 92 ⁴¹	9 ⁴²
Foot Function Index (FFI)		A self-administered questionnaire consisting of 23 items divided into pain, disability, and activity restriction subscales. A score between 0 and 100 is derived by dividing the visual analog scale into 10 segments. Higher scores indicate more impairment	ICC = .85 ⁴³	Unknown
American Or-	Ankle-hindfoot		Unknown	944
thopaedic Foot and Ankle	Midfoot	cludes subjective and objective criteria includ- ing range of motion, gait abnormalities, stabil-	Unknown	12 ⁴⁴
Society (AOFAS) scales	Hallux	ity, alignment, and callous assessment. The	ICC = .95 ⁴³	25 ⁴⁴
scales	MTP-IP joints	answers provide a score between 0 and 100, with lower scores representing more disability	ICC = .80 ⁴³	1144
Numeric Pain Rating Scale (NPRS)		Users rate their level of pain on an 11-point scale ranging from 0 to 10, with high scores representing more pain. Often asked as "current pain" and "least," "worst," and "average" pain in the past 24 hours	ICC = . 72 ⁴⁵	2 ^{46,47}

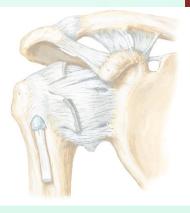
MCID, Minimum clinically important difference.

APPENDIX

Quality Assessment of Diagnostic Studies Using QUADAS

	van Dijk 1996	Liu 1997	Payne 2002	De Garceau 2003	Molloy 2003	Egol 2004	Eggli 2005	Metz 2006	Dissmann 2006	Wilson 2006
1. Was the spectrum of patients representative of the patients who will receive the test in practice?	Y	Υ	N	U	Υ	Υ	Υ	Υ	Υ	Υ
2. Were selection criteria clearly described?	Υ	N	Υ	N	N	Υ	Υ	Υ	Υ	U
3. Is the reference standard likely to correctly classify the target condition?	U	Υ	U	U	Υ	U	Υ	Υ	Y	U
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	Y	U	U	U	U	U	Y	Y	U	U
5. Did the whole sample or a random selection of the sample, receive verification using a reference standard of diagnosis?	N	Y	Υ	Υ	Υ	Υ	Y	Υ	Y	Υ
6. Did patients receive the same reference standard regardless of the index test result?	N	Υ	Υ	U	Υ	Υ	Y	Υ	Y	Υ
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the refer- ence standard)?	N	Υ	Υ	U	Y	N	Y	Υ	Y	U
8. Was the execution of the index test described in suffi- cient detail to permit replication of the test?	Y	Υ	Υ	Υ	Υ	N	U	Υ	Y	Υ
9. Was the execution of the reference standard described in sufficient detail to permit its replication?	U	Υ	N	N	Υ	Υ	Υ	Υ	U	N
10. Were the index test results interpreted without knowledge of the results of the reference test?	U	Υ	Υ	U	Υ	U	Υ	U	U	U
11. Were the reference standard results interpreted without knowledge of the results of the index test?	U	U	U	U	U	U	U	U	U	U
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	Υ	U	U	U	Υ	U	U	U	Υ
13. Were uninterpretable/intermediate test results reported?	U	U	U	U	U	U	U	U	U	U
14. Were withdrawals from the study explained?	U	U	Υ	U	U	U	Υ	Υ	U	U
Quality summary rating:							\Q	\rightarrow		
Y = yes, N = no, U = unclear. Good quality $(Y - N = 10 to 14)$. Fair quality $(Y - N = 5 to 9)$.										

REFERENCES


- 1. Appling SA. Foot and Ankle. Current Concepts of Orthopaedic Physical Therapy. La Crosse: Orthopaedic Section, American Physical Therapy Association; 2001.
- 2. Hartley A. Practical Joint Assessment. St.. Louis: Mosby; 1995.
- 3. Hunt GC. Injuries of peripheral nerves of the leg, foot and ankle: an often unrecognized consequence of ankle sprains. Foot. 2003;13:14-18.
- 4. Hunt GC. Ankle sprain in a 14-year-old-girl. In: Jones MA, Rivett DA, eds. Clinical Reasoning for Manual Therapists (8). Edinburgh: Butterworth Heinemann; 2004.123-134.
- 5. Hunt GC, Sneed T, Hamann H, et al. Biomechanical and histological considerations for development of plantar fasciitis and evaluation of arch taping as a treatment option to control associated plantar heel pain: a single-subject design. Foot. 2004.
- 6. Bennett JE, Reinking MF, Pluemer B, et al. Factors contributing to the development of medial tibial stress syndrome in high school runners. J Orthop Sports Phys Ther. 2001;31:504-510.
- 7. Wooden MJ. Foot overuse syndromes of the foot and ankle. In: Wadsworth C, Kestel L, eds. Orthopaedic Physical Therapy Home Study Course. La Crosse: Orthopaedic Section, American Physical Therapy Association; 1995.
- 8. Stiell IG, McKnight RD, Greenberg GH, et al. Interobserver agreement in the examination of acute ankle injury patients. Am J Emerg Med. 1992;10:14-17.
- 9. Alonso A, Khoury L, Adams R. Clinical tests for ankle syndesmosis injury: reliability and prediction of return to function. J Orthop Sports Phys Ther. 1998;27:276-284.
- 10. Bachmann LM, Kolb E, Koller MT, et al. Accuracy of Ottawa ankle rules to exclude fractures of the ankle and mid-foot: systematic review. BMJ. 2003;326:417.
- 11. Eggli S, Sclabas GM, Eggli S, et al. The Bernese ankle rules: a fast, reliable test after low-energy, supinationtype malleolar and midfoot trauma. J Trauma. 2005;59: 1268-1271.
- 12. Dissmann PD, Han KH. The tuning fork test—a useful tool for improving specificity in "Ottawa positive" patients after ankle inversion injury. Emerg Med J. 2006;23:788-790.
- 13. Menadue C, Raymond J, Kilbreath SL, et al. Reliability of two goniometric methods of measuring active inversion and eversion range of motion at the ankle. BMC Musculoskelet Disord. 2006;7:60.
- 14. Youdas JW, Bogard CL, Suman VJ. Reliability of goniometric measurements and visual estimates of ankle joint active range of motion obtained in a clinical setting. Arch Phys Med Rehabil. 1993;74:1113-1118.
- 15. Elveru RA, Rothstein JM, Lamb RL. Goniometric reliability in a clinical setting. Subtalar and ankle joint measurements. Phys Ther. 1988;68:672-677.

- 16. Van Gheluwe B, Kirby KA, Roosen P, Phillips RD. Reliability and accuracy of biomechanical measurements of the lower extremities. J Am Podiatr Med Assoc. 2002;92:317-326.
- 17. Cornwall MW, Fishco WD, McPoil TG, et al. Reliability and validity of clinically assessing first-ray mobility of the foot. J Am Podiatr Med Assoc. 2004;94:470-476.
- 18. Munteanu SE, Strawhorn AB, Landorf KB, et al. A weightbearing technique for the measurement of ankle joint dorsiflexion with the knee extended is reliable. J Sci Med Sport. 2009;12:54-59.
- 19. Menz HB, Tiedemann A, Kwan MM, et al. Reliability of clinical tests of foot and ankle characteristics in older people. J Am Podiatr Med Assoc. 2003;93:380-387.
- 20. Sell KE, Verity TM, Worrell TW, et al. Two measurement techniques for assessing subtalar joint position: a reliability study. J Orthop Sports Phys Ther. 1994;19: 162-167.
- 21. Jonson SR, Gross MT. Intraexaminer reliability, interexaminer reliability, and mean values for nine lower extremity skeletal measures in healthy naval midshipmen. J Orthop Sports Phys Ther. 1997;25:253-263.
- 22. Sobel E, Levitz SJ, Caselli MA, et al. Reevaluation of the relaxed calcaneal stance position. Reliability and normal values in children and adults. J Am Podiatr Med Assoc. 1999;89:258-264.
- 23. Maurer C, Finley A, Martel J, et al. Ankle plantarflexor strength and endurance in 7-9 year old children as measured by the standing single leg heel-rise test. Phys Occupat Ther Pediatr. 2007;27:37-54.
- 24. Menz HB, Zammit GV, Munteanu SE, Scott G. Plantarflexion strength of the toes: age and gender differences and evaluation of a clinical screening test. Foot Ankle Int. 2006;27:1103-1108.
- 25. Piva SR, Fitzgerald K, Irrgang JJ, et al. Reliability of measures of impairments associated with patellofemoral pain syndrome. BMC Musculoskelet Disord. 2006;7:33.
- 26. Vinicombe A, Raspovic A, Menz HB. Reliability of navicular displacement measurement as a clinical indicator of foot posture. J Am Podiatr Med Assoc. 2001;91:262-268.
- 27. Saltzman CL, Nawoczenski DA, Talbot KD. Measurement of the medial longitudinal arch. Arch Phys Med Rehabil. 1995;76:45-49.
- 28. Root ML, Orien WP, Weed JH. Biomechanical Examination of the Foot. Los Angeles: Clinical Biomechanics Corp; 1971.
- 29. Sekir U, Yildiz Y, Hazneci B, et al. Reliability of a functional test battery evaluating functionality, proprioception, and strength in recreational athletes with functional ankle instability. Eur J Phys Rehabil Med. 2008;44:407-415.
- 30. Trojian TH, McKeag DB. Single leg balance test to identify risk of ankle sprains. Br J Sports Med. 2006;40:610-613.

- Deshpande N, Connelly DM, Culham EG, Costigan PA. Reliability and validity of ankle proprioceptive measures. Arch Phys Med Rehabil. 2003;84:883-889.
- 32. Keenan AM, Bach TM. Clinicians' assessment of the hindfoot: a study of reliability. *Foot Ankle Int.* 2006;27:451-460.
- Payne C, Chuter V, Miller K. Sensitivity and specificity of the functional hallux limitus test to predict foot function. *J Am Podiatr Med Assoc.* 2002;92:269-271.
- 34. Rohner-Spengler M, Mannion AF, Babst R. Reliability and minimal detectable change for the figure-of-eight-20 method of measurement of ankle edema. *J Orthop Sports Phys Ther*. 2007;37:199-205.
- 35. Tatro-Adams D, McGann SF, Carbone W. Reliability of the figure-of-eight method of ankle measurement. *J Orthop Sports Phys Ther.* 1995;22:161-163.
- 36. Petersen EJ, Irish SM, Lyons CL, et al. Reliability of water volumetry and the figure of eight method on subjects with ankle joint swelling. *J Orthop Sports Phys Ther.* 1999;29:609-615.
- 37. Wilson O, Kirwan JR. Measuring sensation in the feet of patients with rheumatoid arthritis. *Musculoskeletal Care*. 2006;4:12-23.
- 38. Molloy S, Solan MC, Bendall SP. Synovial impingement in the ankle. A new physical sign. *J Bone Joint Surg Br.* 2003;85:330-333.
- Liu SH, Nuccion SL, Finerman G. Diagnosis of anterolateral ankle impingement. Comparison between magnetic resonance imaging and clinical examination. *Am J Sports Med.* 1997;25:389-393.
- 40. De Garceau D, Dean D, Requejo SM, Thordarson DB. The association between diagnosis of plantar fasciitis

- and windlass test results. *Foot Ankle Int.* 2003;24: 251-255.
- 41. Pua YH, Cowan SM, Wrigley TV, Bennell KL. The lower extremity functional scale could be an alternative to the Western Ontario and McMaster Universities Osteoarthritis Index physical function scale. *J Clin Epidemiol.* 2009
- 42. Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. *Phys Ther.* 1999;79:371-383.
- 43. Baumhauer JF, Nawoczenski DA, DiGiovanni BF, Wilding GE. Reliability and validity of the American Orthopaedic Foot and Ankle Society Clinical Rating Scale: a pilot study for the hallux and lesser toes. *Foot Ankle Int.* 2006;27:1014-1019.
- 44. Dawson J, Doll H, Coffey J, Jenkinson C. Responsiveness and minimally important change for the Manchester-Oxford foot questionnaire (MOXFQ) compared with AOFAS and SF-36 assessments following surgery for hallux valgus. Osteoarthritis Cartilage. 2007;15:918-931.
- Li L, Liu X, Herr K. Postoperative pain intensity assessment: a comparison of four scales in Chinese adults. *Pain Med.* 2007;8:223-234.
- 46. Farrar JT, Berlin JA, Strom BL. Clinically important changes in acute pain outcome measures: a validation study. *J Pain Symptom Manage*. 2003;25:406-411.
- 47. Farrar JT, Portenoy RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. *Pain*. 2000;88:287-294.

Shoulder

CLINICAL SUMMARY AND RECOMMENDATIONS	378
Anatomy	379
Osteology	379
Arthrology	380
Scapulohumeral Rhythm	381
Ligaments	382
Muscles	384
Nerves	387
Patient History	389
Initial Hypotheses Based on Historical Findings	389
Diagnostic Utility of the Patient History for Identifying Labrum	
and Rotator Cuff Tears	389
Physical Examination Tests	390
Range of Motion	390
Assessing Strength and Proprioception	392
Muscle Length	393
Palpation	394
Assessing Alignment	395
Classifying Shoulder Disorders	397
Special Tests—Instability	398
Special Tests—Labral Tears	402
Special Tests—Subacromial Impingement	413
Special Tests—Rotator Cuff Tears	418
Special Tests—Brachial Plexus Palsy	425
Special Tests—Acromioclavicular Lesions	426
Combination of Tests	427
Outcome Measures	429
Appendix	430
Quality Assessment of Diagnostic Studies Using QUADAS	430
References	436

CLINICAL SUMMARY AND RECOMMENDATIONS

Patient History	
Complaints	Little is known about the utility of subjective complaints with shoulder pain. While a report of trauma does not seem clinically useful, a history of popping, clicking, or catching may be minimally helpful in diagnosing a labral tear ($+$ LRs $=$ 2.0).
Physical Examination	on
Range of Motion, Strength, and Muscle Length Assessment	Measuring shoulder range of motion (ROM) has consistently been shown to be highly reliable but is of unknown diagnostic utility. Visual assessments and functional tests of ROM are more variable and may be adequately reliable in some instances.
	Assessing strength with manual muscle testing (MMT) appears to be reliable. Weak abduction and/or external rotation may be fairly useful in identifying subacromial impingement and/or full thickness rotator cuff tears. Weak internal rotation appears very helpful in identifying subscapularis tears ($+LR=7.5$ to 20.0).
	Assessments of shoulder muscle tightness are moderately reliable. However, the single study ¹ done to test associated diagnostic utility found tight pectoralis minor muscles in all 90 participants regardless of whether they had shoulder problems or not (100% sensitivity, 0% specificity).
Special Tests	The apprehension test appears to be the most useful test in identifying shoulder instability, especially when defining a positive test by an "apprehensive response" ($+LR = 7.1$ to 20.2 , $-LR = .00$ to $.29$) as opposed to "pain" ($+LR = 1.1$ to 3.1 , $-LR = .69$ to $.90$). To a lesser extent, it may also be helpful in diagnosing labral tears.
	Results of studies examining the diagnostic utility of tests to identify labral tears are highly variable. Even though most single tests do not appear very useful, one study found both the Kim test and the Jerk test to be very good at identifying labral tears (+LRs of 13.3 and 36.5, respectively). The same author also found the biceps load test I and II to be very effective at identifying superior labrum anterior posterior (SLAP) lesions (+LR = 30 for both).
	A 2008 meta-analysis found both the Hawkins-Kennedy and Neer test to be minimally helpful for both ruling in and ruling out subacromial impingement. The presence of a "painful arc" during elevation may additionally be helpful in identifying the condition ($+LR = .39, -LR = .32$).
	In addition to rotator cuff muscle weakness (above), the external and internal rotation lag signs appear to be very helpful at identifying infraspinatus and subscapularis tears respectively. Several other tests (bear-hug, belly-press, Napoleon) appear to be also very useful in diagnosing subscapularis tears.
	Whereas several signs and symptoms are helpful in identifying brachial plexus nerve root avulsions, the shoulder protraction test appears to be the most useful $(+LR=4.8,-LR=.05)$.
Combinations of Findings	Even though combinations of tests are generally better than single tests, combinations of tests are only moderately helpful in identifying labral tears. The most efficient pair seems to be the anterior apprehension and Jobe relocation tests $(+LR=5.4)$.
	Another study ² reported even better diagnostic utility when specific combinations of three tests were used. By selecting two highly sensitive tests (compression rotation, anterior apprehension, and O'Brien tests) and one highly specific tests (Yergason, biceps load II, and Speed's tests), users can be fairly confident in both ruling out and ruling in SLAP lesions.

Osteology

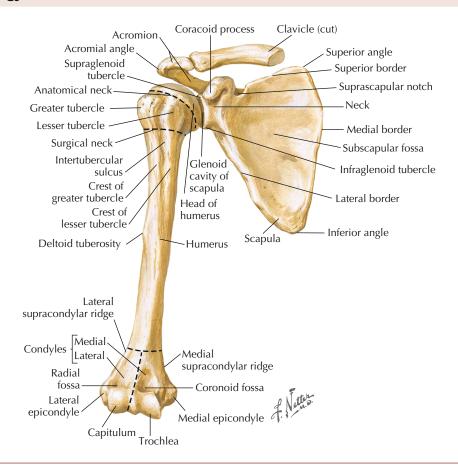


Figure 9-1 Anterior humerus and scapula.

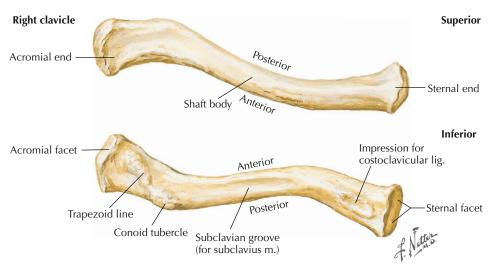
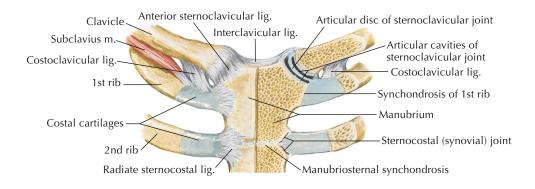
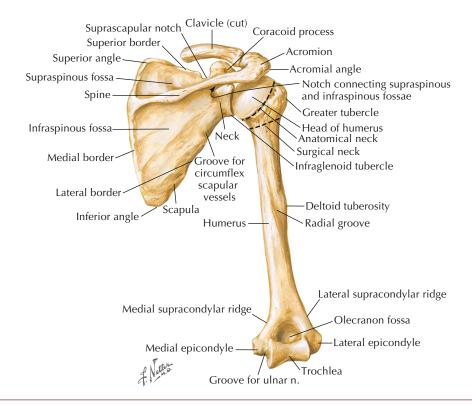




Figure 9-2 Superior and inferior surface of clavicle.

Arthrology

Figure 9-3Sternoclavicular joint.

Joint	Type and Classification	Closed Packed Position	Capsular Pattern
Glenohumeral	Spheroidal	Full abduction and external rotation	ER limited more than abduction, limited more than internal rotation and flexion
Sternoclavicular	Saddle	Arm abducted to 90°	Not reported
Acromioclavicular	Plane synovial	Arm abducted to 90°	Not reported
Scapulothoracic	Not a true articulation	Not available	Not available

Scapulohumeral Rhythm

Scapulohumeral rhythm consists of integrated movements of the glenohumeral, scapulothoracic, acromioclavicular (AC), and sternoclavicular joints, and occurs in sequential fashion to allow full functional motion of the shoulder complex. Scapulohumeral rhythm serves three functional purposes: It allows for greater overall shoulder ROM, it maintains optimal contact between the humeral head and glenoid fossa, and it assists with maintaining an optimal length-tension relationship of the glenohumeral muscles.³ To complete 180° of abduction, the overall ratio of glenohumeral to scapulothoracic, AC, and sternoclavicular motion is 2:1.

Inman and colleagues⁴ were the first to explain scapulohumeral rhythm and described it as two phases that the shoulder complex completes to move through full abduction. The first phase (0°-90°) entails the scapula setting against the thorax to provide initial stability as the humerus abducts to 30°.3,4 From 30° to 90° of abduction, the glenohumeral joint contributes another 30° of ROM while the scapula upwardly rotates 30°. The upward rotation results from clavicular elevation through the sternoclavicular and AC joints. The second phase (90°-180°) entails 60° of glenohumeral abduction and 30° of scapula upward rotation. The scapula rotation is associated with 5° of elevation at the sternoclavicular joint and 25° of rotation at the AC joint.^{4,5}

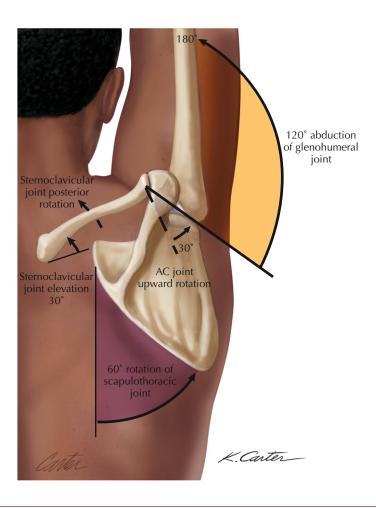
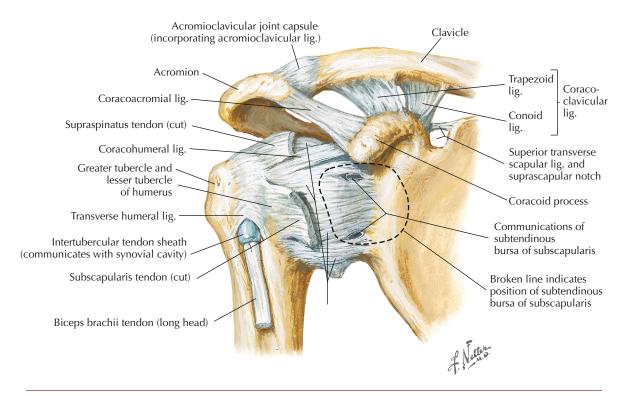
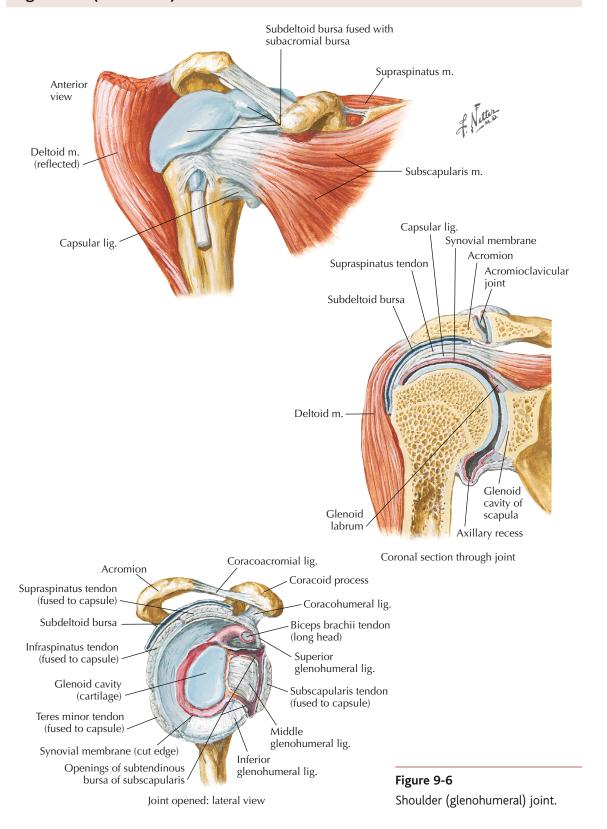



Figure 9-4 Scapulohumeral rhythm.


Ligaments

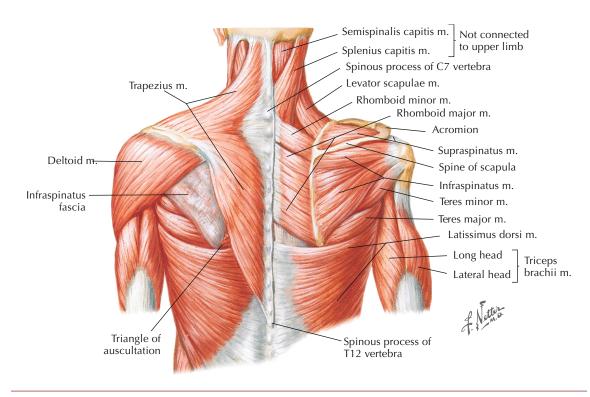


Figure 9-5 Shoulder ligaments: anterior view.

Ligaments	Attachments	Function
Glenohumeral	Glenoid labrum to neck of humerus	Reinforces anterior glenohumeral joint capsule
Coracohumeral	Coracoid process to greater tubercle of humerus	Strengthens superior glenohumeral joint capsule
Coracoclavicular		
Trapezoid	Superior aspect of coracoid process to inferior aspect of clavicle	Anchors clavicle to coracoid process
Conoid	Coracoid process to conoid tubercle on inferior clavicle	
Acromioclavicular	Acromion to clavicle	Strengthens AC joint superiorly
Coracoacromial	Coracoid process to acromion	Prevents superior displacement of humeral head
Sternoclavicular	Clavicular notch of manubrium to medial base of clavicle anteriorly and posteriorly	Reinforces sternoclavicular joint anteri- orly and posteriorly
Interclavicular	Medial end of one clavicle to medial end of other clavicle	Strengthens superior sternoclavicular joint capsule
Costoclavicular	Superior aspect of costal cartilage of first rib to inferior border of medial clavicle	Anchors medial end of clavicle to first rib

Ligaments (continued)

Figure 9-7 Muscles of the shoulder: posterior view.

Muscles	Origin	Insertion	Nerve and Segmental Level	Action
Upper trapezius	Occipital protuberance, nuchal line, ligamentum nuchae	Lateral clavicle and acromion	Cranial nerve XI and C2-C4	Rotates glenoid fossa upwardly, elevates scapular
Middle trapezius	Spinous process of T1-T5	Acromion and spine of scapula	Cranial nerve XI and C2-4	Retracts scapular
Lower trapezius	Spinous process of T6-T12	Apex of spine of scapula	Cranial nerve XI and C2-C4	Upward rotation of glenoid fossa, scapular depression
Levator scapulae	Transverse processes of C1-C4	Superior medial scapula	Dorsal scapular (C3-C5)	Elevates and adducts scapula
Rhomboids	Ligamentum nuchae and spinous processes C7-T5	Medial scapular border	Dorsal scapular (C4-C5)	Retracts scapula
Latissimus dorsi	Inferior thoracic vertebrae, thoracolumbar fascia, iliac crest, and inferior ribs 3-4	Intertubercular groove of humerus	Thoracodorsal (C6-C8)	Internally rotates, adducts, and extends humerus
Serratus anterior	Ribs 1-8	Anterior medial scapula	Long thoracic (C5-C8)	Protracts and upwardly rotates scapula

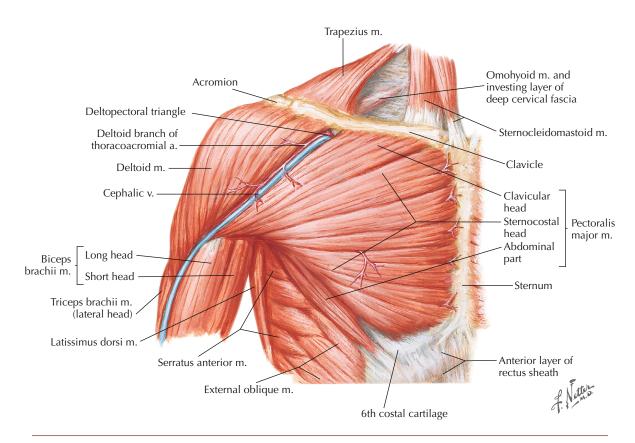
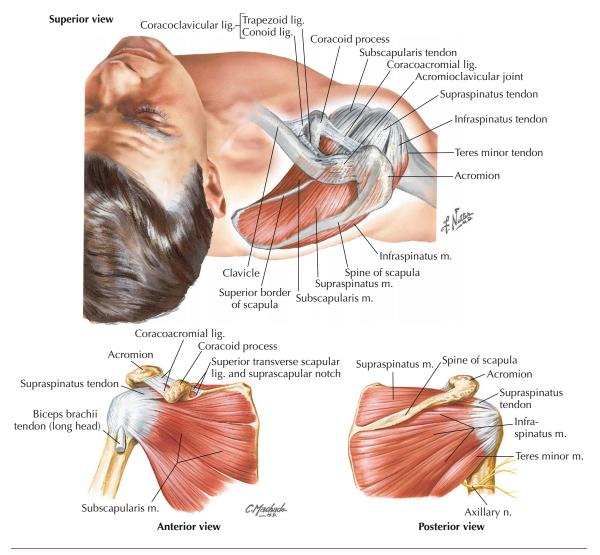
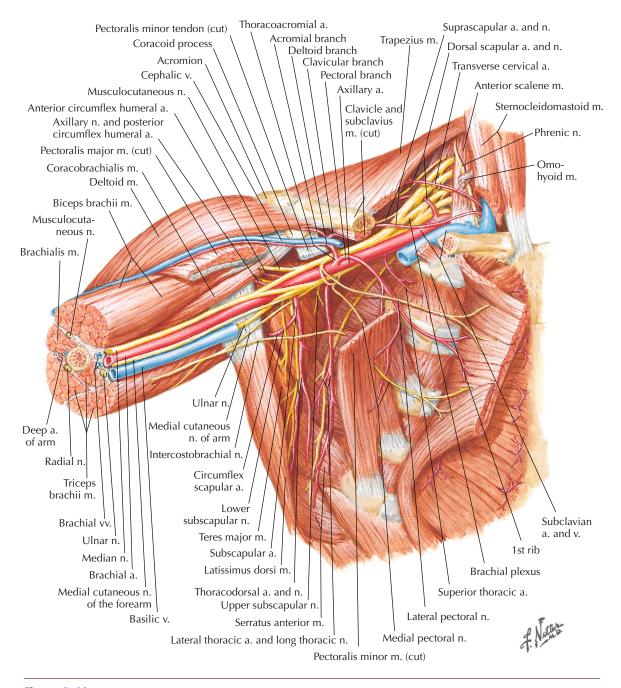



Figure 9-8 Muscles of the shoulder: anterior view.

Muscles	Origin	Insertion	Nerve and Segmental Level	Action
Deltoid	Clavicle, acromion, spine of scapular	Deltoid tuberosity of humerus	Axillary (C5-C6)	Abducts arm
Pectoralis major				
Clavicular head	Anterior medial clavicle	Intertubercular groove	Lateral and medial	Adducts and in-
Sternocostal head	Lateral border of sternum, superior six costal cartilages and fascia of external oblique muscle	of humerus	pectoral nerves (C5, C6, C7, C8, T1)	ternally rotates humerus
Pectoralis minor	Just lateral to costal cartilage of ribs 3 to 5	Coracoid process	Medial pectoral nerve (C8, T1)	Stabilizes scapula

Muscles

Rotator Cuff Muscles


Figure 9-9Muscles of the shoulder: rotator cuff.

Muscles	Origin	Insertion	Nerve and Segmental Level	Action
Supraspinatus	Supraspinous fossa of scapula	Greater tubercle of humerus	Suprascapular (C4-C6)	Assists deltoid in ab- duction of humerus
Infraspinatus	Infraspinatus fossa of scapula	Greater tubercle of humerus	Suprascapular (C5-C6)	Externally rotates humerus
Teres minor	Lateral border of scapula	Greater tubercle of humerus	Axillary (C5-C6)	Externally rotates humerus
Subscapularis	Subscapular fossa of scapula	Lesser tubercle of humerus	Upper and lower subscapular (C5-C6)	Internally rotates humerus
Teres major	Inferior angle of scapula	Intertubercular groove of humerus	Lower subscapular (C5-C6)	Internally rotates and adducts humerus

Nerves

Nerves	Segmental Levels	Sensory	Motor
Radial	C5, C6, C7, C8, T1	Posterior aspect of forearm	Triceps brachii, anconeus, brachioradialis, extensor muscles of forearm
Ulnar	C7, C8, T1	Medial hand including medial half of 4 th digit	Flexor carpi ulnaris, medial half of flexor digitorum profundus, and most small muscles in hand
Musculocutaneous	C5, C6, C7	Becomes lateral antebrachial cutaneous nerve	Coracobrachialis, biceps brachii, brachialis
Axillary	C5, C6	Lateral shoulder	Teres minor, deltoid
Suprascapular	C4, C5, C6	No sensory	Supraspinatus, infraspinatus
Dorsal scapular	Ventral rami C4, C5	No sensory	Rhomboids, levator scapulae
Lateral pectoral	C5, C6, C7	No sensory	Pectoralis major pectoralis minor
Medial pectoral	C8, T1	No sensory	Pectoralis minor
Long thoracic	Ventral rami C5, C6, C7	No sensory	Serratus anterior
Upper subscapular	C5, C6	No sensory	Subscapularis
Lower subscapular	C5, C6	No sensory	Teres major, subscapularis
Medial cutaneous of arm	C8, T1	Medial arm	No motor

Nerves (continued)

Figure 9-10Anterior axilla.

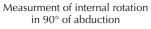
PATIENT HISTORY

Initial Hypotheses Based on Historical Findings

History	Initial Hypothesis
Patient reports lateral/anterior shoulder pain with overhead activities or exhibits a painful arc	Possible subacromial impingement ^{6,7} Possible tendinitis ⁸ Possible bursitis ⁸
Patient reports of instability, apprehension, and pain with activities, most often when shoulder is abducted and externally rotated	Shoulder instability ⁶ Possible labral tear if clicking is present ^{9,10}
Decreased ROM and pain with resistance	Possible rotator cuff or long head of the biceps tendinitis ¹¹
Patient reports of pain and weakness with muscle loading, night pain. Age > 60	Possible rotator cuff tear ¹¹
Patient reports poorly located shoulder pain with occasional radiation into elbow. Pain is usually aggravated by movement and relieved by rest. Age $>$ 45. Females more often affected than males	Possible adhesive capsulitis ¹²
Patient reports fall on shoulder followed by pain over AC joint	Possible AC sprain ⁶
Patient reports upper extremity heaviness or numbness with prolonged postures and when laying on involved side	Possible thoracic outlet syndrome ^{13,14} Possible cervical radiculopathy ¹⁵

Diagnostic Utility of the Patient History for Identifying Labrum and Rotator Cuff Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0


Patient Report and Study Quality	Population	Reference Standard	Sens	Spec	+LR	-LR
History of trauma ¹⁶	55 patients with shoulder	Glenoid labral tear observed during	.50 (.35, .65)	.36 (.08, .65)	.79 (.46, 1.34)	1.38 (.6, 3.17)
History of pop, click, or catch ¹⁶	pain scheduled for arthroscopy	arthroscopy	.55 (.4, .69)	.73 (.46, .99)	2.0 (.73, 5.45)	.63 (.38, 1.02)
History of trauma ¹¹	448 patients		.36	.73	1.33	.88
Reports of night pain ¹¹	with shoulder pain scheduled for arthroscopy	Rotator cuff tear observed during arthroscopy	.88	.20	1.10	.60

PHYSICAL EXAMINATION TESTS

Range of Motion

Reliability of Range of Motion Measurements

Measurment of external rotation in 90° of abduction

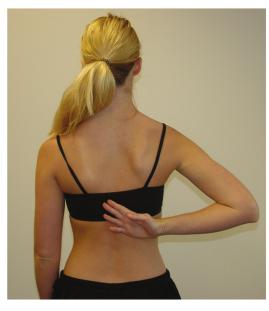

greement
eement
it
ent
t
t

Figure 9-11Range of motion measurements.

Test Procedure	Instrumentation	Population	Reliability	
Passive flexion ¹⁷	Universal goniometer	100 patients referred for physical therapy for shoulder impairments	Intra-examiner: ICC = .98 Inter-examiner: ICC = .89	
Passive extension ¹⁷			Intra-examiner: ICC = .94 Inter-examiner: ICC = .27	
Passive abduction ¹⁷			Intra-examiner: ICC = .98 Inter-examiner: ICC = .87	
Active elevation ¹⁸		201 patients with shoulder pain	Affected side: ICC = .88 (.84, .91)* Unaffected side: ICC = .76 (.67, .82)*	
Passive elevation ¹⁸	Visual estimation of		Affected side: ICC = .87 (.83, .90)* Unaffected side: ICC = .73 (.66, .79)*	
Passive external rotation ¹⁸	ROM		Affected side: ICC = .73 (.22, .88)* Unaffected side: ICC = .34 (.00, .65)*	
Passive horizontal adduction 18			Affected side: ICC = .36 (.22, .48)* Unaffected side: ICC = .18 (.04, .32)*	
*Inter-examiner only. ICC, Intraclass correlation coefficient;				

Range of Motion

Reliability of Functional Range of Motion Tests

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 9-12 Hand behind back (functional internal rotation of shoulder test).

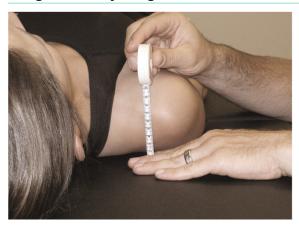
Test and Measure	Test Procedure	Population	Inter-examiner Reliability
Hand to neck ¹⁹		46 patients with shoulder pain	Intra-examiner: ICC = .80 (.63, .93) Inter-examiner: ICC = .90 (.69, .96)
Hand to scapula ¹⁹	Visual estimation of ROM graded on a scale of 0 to 3 or 4		Intra-examiner: ICC = .90 (.72, .92) Inter-examiner: ICC = .90 (.69, .94)
Hand to opposite scapula ¹⁹			Intra-examiner: ICC = .86 (.65, .90) Inter-examiner: ICC = .83 (.75, .96)
Active abduction ²⁰			ROM: ICC = $.96$ Pain: $\kappa = .65$
Passive abduction ²⁰			ROM: ICC = .96 Pain: κ = .69
Painful arc with active abduction ²⁰	ROM assessed visually to nearest 5°. Pain assessed as "no pain," "little pain," "much pain," and "excruciating	91 patients with shoulder pain	Presence of: $\kappa = .46$ Starting ROM: ICC = .72 Ending ROM: ICC = .57
Painful arc with passive abduction ²⁰	pain"		Presence of: $\kappa = .52$ Starting ROM: ICC = .54 Ending ROM: ICC = .72
Passive external rotation ²⁰			ROM: ICC = $.70$ Pain: $\kappa = .50$
Hand behind back ²⁰	As above except ROM graded on a		ROM: $\kappa = .73$ Pain: $\kappa = .35$
Hand in neck ²⁰	scale of 0 to 7		ROM: $\kappa = .52$ Pain: $\kappa = .52$
Springing test 1st rib ²⁰	Examiner exerts force with the 2nd metacarpophalangeal joint on the 1st rib of the patient, assessing ROM (normal or restricted), pain (present or absent), and joint stiffness (present or absent)		ROM: $\kappa = .26$ Stiffness: $\kappa = .09$ Pain: $\kappa = .66$

Assessing Strength and Proprioception

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Reliability of Assessing Strength

Test and Measure	d Measure Test Procedure Populatio		Test-Retest Reliability	
			Within-Day	Between-Days
Serratus anterior strength ²¹	With subject supine with arm at 90° of shoulder flexion and 105° of shoulder horizontal adduction, subject presses toward ceiling while holding weighted apparatus	30 asymp- tomatic students	Inter-examiner ICC = .9093	ICC = .8389
Serratus anterior endurance ²¹	As above, with patient holding weight equal to 15% of body weight		Inter-examiner ICC = .7176	ICC = .4462
Lower trapezius ²²	With patient prone and using a hand- held dynamometer on the spine of the scapula, resistance is applied to scapular adduction and depression		ICC = .93 (.89, .96)	ICC = .89 (.68, .95)
Serratus anterior ²²	With patient supine with shoulder and elbow at 90° and using handheld dynamometer on the elbow, resis- tance is applied to scapular protraction	40 patients with shoulder	ICC = .93 (.88, .96)	ICC = .94 (.88, .97)
Middle trapezius ²²	With patient prone and using a hand- held dynamometer on the spine of the scapula, resistance is applied to scapular retraction	pain	ICC = .94 (.90, .97)	ICC = .94 (.82, .97)
Upper trapezius ²²	With patient sitting and using a hand- held dynamometer on the superior scapula, resistance is applied to scap- ular elevation		ICC = .95 (.92, .97)	ICC = .96 (.91, .98)


Reliability of Assessing Proprioception

Test and Measure	Test Procedure	Population	Test-Retest Reliability
Joint position sense ²³	With patient standing, examiner measures full external rotation (ER) and internal rotation (IR) of shoulder with inclinometer. Target angles are determined as 90% of IR and 90% of ER. With patient blindfolded, examiner guides patient's arm into target angle position and holds it for 3 sec. The patient's arm is returned to neutral. The patient is instructed to return the arm to target angle. Examiner takes measurement with inclinometer	31 asymptomatic subjects	IR ICC = .98 ER ICC = .98

Muscle Length		Interpretation
		Substantial agreement
Reliability of Determining Length of Pectoralis Minor	.6180	Moderate agreement
		Fair agreement
	.1140	Slight agreement
	0- 10	No agreement

Test and Measur	e	Test Procedure	Population	Test-Retest Reliability
Posterior shoul-	Side-lying horizontal adduction	The humerus is passively taken into horizontal adduction. The limit of posterior shoulder flexibility is considered the onset of scapula movement or humerus rotation out of neutral. An assistant using a carpenter's square measures the distance from the top of the plinth to the medial epicondyle	37 patients with shoulder impingement syndrome and 22 control subjects	Patients: ICC = .40 (.09, .64) Controls: ICC = .63 (.29, .83)
der tightness ²⁴	Supine horizontal adduction	Degree of rotation is recorded at the palpable onset of scapular motion away from the plinth	(measurements taken 8 to 12 weeks apart)	Patients: ICC = .79 (.63, .89) Controls: ICC = .74 (.47, .88)
	Supine internal rotation	With an assistant preventing scap- ular movement, degrees of rotation are recorded at the end of passive motion		Patients: ICC = .67 (.45, .82) Controls: ICC = .79 (.55, .91)
Pectoralis minor l	ength ¹	With the participant supine with hands resting on the abdomen, examiner measures the linear distance from the treatment table to the posterior aspect of the acromion using a plastic right angle	45 patients with shoulder pain and 45 asymptomatic persons	Single measure: ICC = .9093 Mean of 3 measures: ICC = .9297

Diagnostic Utility of Tight Pectoralis Minor in Identifying Shoulder Pain

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 9-13 Measuring pectoralis minor muscle strength.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Tight pectora- lis minor ¹	As above with a positive test being a measurement < 2.6 cm (1 inch).	45 patients with shoulder pain and 45 asymptomatic persons	Self-report of shoulder pain and/or restriction of shoulder movement	1.0*	0.0*	1.0	Unde- fined
*** I.	h	'		W 1 - 11		1.6	

These results are due to the fact that at all 90 symptomatic and asymptomatic participants were classified as "tight" using this definition.

Palpation

Reliability of Palpating the Subacromial Space

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 9-14Palpation of subacromial space.

Test and Measure	Test Procedure	Population	Reliability
Palpation of subacromial space ²⁵	Examiner palpates subacromial space and estimates distance as 1/4, 1/2, 3/4, or whole finger's breadth	36 patients with shoul- der subluxation	Intra-examiner ICC = .9094 Inter-examiner ICC = .7789

Diagnostic Utility of Palpation in Identifying Labral Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Bicipital groove tenderness ²	Examiner gently presses the biceps groove with shoulder adducted 10°. Positive if pain	68 patients with type II SLAP lesions and 78 age-matched controls who underwent shoul- der arthroscopy	Type II SLAP lesion visualized during arthroscopy	.27	.66	.80	1.11
Biceps palpa- tion ²⁶	Point tenderness of the biceps tendon in the biceps groove 3-6 cm below anterior acromion	847 patients who un- derwent diagnostic ar- throscopy of the shoulder	Partial biceps tendon tear vi- sualized during arthroscopy	.53	.54	1.2	.87
Bicipital groove tenderness ²⁷	Not reported	62 shoulders scheduled to undergo arthroscopy	SLAP lesion vi-	.44	.40	.73	1.40
Bicipital groove tenderness ²⁸	Not described	54 throwing athletes with shoulder pain	sualized during arthroscopy	.25	.80	1.3	.94

Assessing Alignment

Reliability of Assessing Scapular Asymmetry during Static and Dynamic Activity

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Mea	sure	Test Procedure	Population	Reliability			
				Intra-examiner	Inter-examiner		
	Position 1	With patient standing, examiner records measurement between inferior		Not reported	ICC = .82 (left) ICC = .96 (right)		
Lateral scap- ular slide test ²⁹	Position 2		29 patients with shoulder pain	Not reported	ICC = .85 (left) ICC = .95 (right)		
	Position 3	angle of scapula and spinous process of thoracic	F	Not reported	ICC = .70 (left) ICC = .85 (right)		
	Position 1	vertebra at same horizon- tal level in three positions. Position 1: with glenohu- meral joint in neutral Position 2: 45° of shoulder	der de subjects with shoulder dysfunction and 26 subjects without shoulder der dysfunction	With dysfunction ICC = .52 (.10, .74) Without dysfunction ICC = .75 (.56, .85)	With dysfunction ICC = .79 (.46, .91) Without dysfunction ICC = .67 (.25, .85)		
Lateral scap- ular slide test ³⁰	Position 2	abduction and IR Position 3: with upper extremity in 90° of abduction and full IR. A difference between sides 1 cm is considered scapular asymmetry		With dysfunction ICC = .66 (.36, .82) Without dysfunction ICC = .58 (.60, .86)	With dysfunction ICC = .45 (38, .78) Without dysfunction ICC = .43 (29, .75)		
	Position 3			With dysfunction ICC = .62 (.27, .79) Without dysfunction ICC = .80 (.65, .88)	With dysfunction ICC = .57 (23, .85) Without dysfunction ICC = .74 (.41, .88)		
Position of pos acromion ²⁹	sterior	Measured from the posterior border of the acromion and the table surface with the patient supine	29 patients with shoulder	Not reported	ICC = .8894		
Position of me border ²⁹	edial scapular	Measured from the medial scapular border to T4 spinous process	pain	Not reported	ICC = .5080		
Movement evaluation during abduction ³¹		Movement evaluation during abduction ³¹ Examin lar mov shoulde categor Catego angle ti pared v side Catego border pared v side Catego shrug ii Catego		Category 2 = medial border tilts dorsally com- pared with contralateral	20 subjects with shoulder injuries and 6 asymptomatic subjects	κ = .42	Not reported

Assessing Alignment (continued)

Reliability of Assessing Scapular Asymmetry during Static and Dynamic Activity

Lateral slide test position 1

Lateral slide test position 2

Lateral slide test position 3

Figure 9-15 Detecting scapular asymmetry.

Classifying Shoulder Disorders

Reliability of Classifying Shoulder Disorders

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

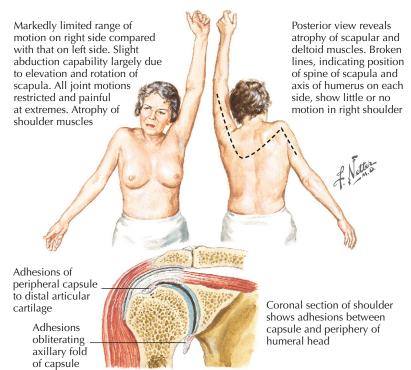
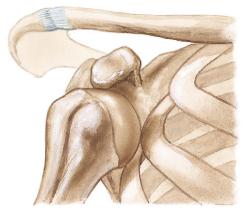
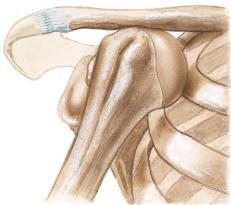



Figure 9-16 Adhesive capsulitis of the shoulder.

Classification	Description of Procedure	Population	Inter-examiner Reliability	
Bursitis ³²	Examiners use patient history		$\kappa = .3558$	
Capsulitis ³²	combined with "selective tissue tension" examination during	FC - duft laboration	к = .6382	
Rotator cuff lesion ³²	active movements, passive	56 painful shoulders	к = .7179	
Other diagnosis ³²	movements, and isometric strength assessments		к = .6978	
Capsular syndrome ³³			к = .63 (.50, .76)	
Acute bursitis ³³	Examiner obtains patient	201 patients with shoulder pain	к = .50 (10, 1.0)	
AC syndrome ³³	history. Physical examination consists of active, passive, and		к = .24 (06, .53)	
Subacromial syndrome ³³	resistive movements. Determi-		к = .56 (.45, .68)	
Rest group (does not fit any category above) ³³	nation of ROM, presence of painful arc or capsular pattern, and degree of muscle weakness		к = .39 (.24, .54)	
Mixed group (patient presents with two or more above classifications) ³³	are identified		к = .14 (03, .30)	

Reliability of Tests to Identify Shoulder Instability


ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Subcoracoid dislocation (most common)

Subglenoid dislocation

Subclavicular dislocation (uncommon). Very rarely, humeral head penetrates between ribs, producing intrathoracic dislocation

n (uncommon).

Figure 9-17Shoulder instability.

Test and Measure	Test Procedure	Population	Reliability	
Sulcus sign³⁴	With patient supine, examiner applies inferior distraction to shoulder. Amount of laxity is graded on a 0-3+ scale. 0 represents no laxity. 3+ represents maximum laxity	43 healthy college athletes	Inter-examiner $\kappa =$.0306	Intra-examiner $\kappa = .01$ 20

Diagnostic Utility of the Apprehension Test in Identifying Shoulder Instability

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 9-18 Apprehension test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Bony apprehension test ³⁵	With patient standing, examiner places the arm in a position of $\leq 45^{\circ}$ of abduction and $\leq 45^{\circ}$ of external rotation. Positive if patient appears apprehensive	29 patients with symptoms of in- stability undergo- ing shoulder surgery	Arthroscopic evidence of significant bony lesion causing instabil- ity of the shoulder	1.0	.86	7.1	.00
Anterior apprehension test ²	With patient supine, examiner passively abducts and externally rotates humerus. Positive if complaints of pain or instability	68 patients with type II SLAP lesions and 78 age-matched con- trols who under- went shoulder arthroscopy	Type II SLAP lesion visualized during arthroscopy	.62	.42	1.1	.90
Anterior apprehension test ²⁷	As above. Positive if pain is produced with ER	62 shoulders scheduled to undergo arthroscopy	Labral tear via ar- throscopic visualization	.40	.87	3.08	.69
Apprehension test (pain) ³⁶			Either radiographic documentation of an anterior shoulder dislocation after trauma or demonstration of a Hill-Sachs lesion, a Bankart lesion, or a humeral avulsion of the glenohumeral ligament at the time of arthroscopy	.50	.56	1.1	.90
Apprehension test (appre- hension) ³⁶	With patient stand- ing, examiner places both arms in 90° of abduction and 90° of ER. Positive if patient appears apprehensive and/or reports pain	ing, examiner places both arms in 90° of abduction and 90° of ER. Positive if patient appears apprehensive ing, examiner places 363 patients undergoing shoulder surgery		.72	.96	20.2	.29
Anterior appre- hension test ²⁷	With patient supine, examiner passively abducts and exter- nally rotates humerus. Positive if pain is produced with ER	62 shoulders scheduled to undergo arthroscopy	Labral tear via ar- throscopic visualization	.40	.87	3.1	.69

Diagnostic Utility of the Apprehension and Relocation Tests in Identifying Shoulder Instability

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 9-19Relocation test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Relocation test ²		68 patients with type II SLAP lesions and 78 age-matched con- trols who under- went shoulder arthroscopy	Type II SLAP lesion visualized during arthroscopy	.44	.54	1.0	1.04
Relocation test (pain) ³⁶	With patient supine with glenohumeral joint at edge of table, examiner places arm in 90° of abduction, full external rotation, and 90° of elbow flexion. Examiner then applies a posterior force on head of humerus. Positive if patient's pain or apprehension diminishes with applied force	363 patients undergoing shoulder surgery	Either radio- graphic docu- mentation of an anterior shoulder dislocation after trauma or dem-	.30	.90	3.0	.77
Relocation test (apprehension) ³⁶			onstration of a Hill-Sachs lesion, a Bankart lesion, or a humeral avulsion of the glenohumeral ligament at the time of arthroscopy	.81	.92	10.4	.20
Jobe relocation test (pain) ²⁷		62 shoulders scheduled to undergo arthroscopy	Arthroscopic visualization	.44	.87	3.38	.64
Relocation test (pain) ³⁷				.30	.58	.71	1.21
Relocation test (apprehension) ³⁷	Relocation test per- formed as above. Follow- ing relocation test, ex- aminer applies anteriorly directed force to proxi- mal humerus	100 patients un-		.57	1.0	Unde- fined	.43
Anterior relocation test (pain) ³⁷		reloca- (pain) ³⁷ aminer applies anteriorly directed force to proxi-	Surgical observation	.54	.44	.96	1.05
Anterior relocation test (apprehension) ³⁷				.68	1.0	Unde- fined	.32

Diagnostic Utility of the Anterior Drawer Test in Identifying Shoulder Instability

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

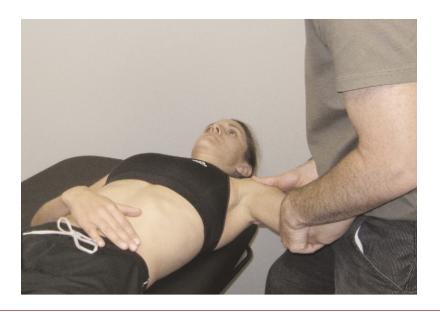
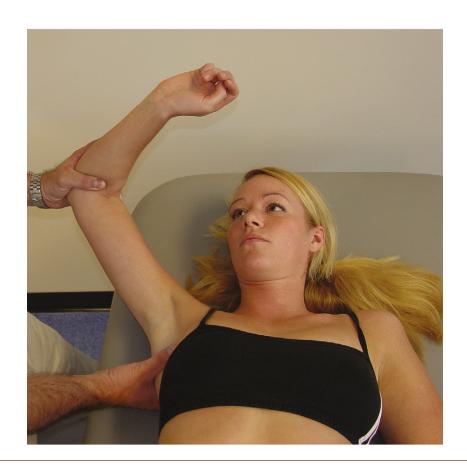



Figure 9-20 Anterior drawer test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Anterior drawer test (pain) ³⁶	With patient supine with glenohumeral joint at edge	363 patients scheduled to	Either radiographic documentation of an	.28	.71	1.0	1.01
Anterior drawer test (instability symptoms) ³⁶	of table, examiner places arm in 60°-80° of abduc- tion and neutral rotation, and then translates the humeral head anteriorly. Positive if patient reports pain or reproduction of in- stability symptoms	undergo shoulder surgery	anterior shoulder dislocation after trauma or demon- stration of a Hill- Sachs lesion, a Bankart lesion, or a humeral avulsion of the glenohumeral ligament at the time of arthroscopy	.53	.85	3.6	.56

Reliability of the Crank Test

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 9-21 Crank test.

Test	Description	Population	Inter-examiner Reliability
Crank test ¹⁶	See page 403	55 patients with shoulder pain scheduled for arthroscopic surgery	к = .20 (05, .46)

Diagnostic Utility of the Crank Test in Identifying Labral Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Crank test ²⁶	Not described	847 patients who underwent diagnostic ar- throscopy of the shoulder	Partial biceps tendon tear visualized during arthroscopy	.34	.77	1.5	.86
Crank test ¹⁶	Patient is supine while examiner elevates humerus 160° in scapular plane. Axial load is applied to humerus while shoulder is internally and externally rotated. Positive if pain is elicited	examiner elevates humerus 160° in scapu- scrieduled for arthroscopic surgery	.61 (.47, .76)	.55 (.25, .84)	1.35 (.68, 2.69)	.71 (.37, 1.36)	
Crank test ³⁸		132 patients scheduled to undergo shoul- der arthroscopy		.13	.83	.8	1.05
Crank test ³⁹		40 athletes with shoulder pain		.35	.70	1.2	.93
Crank test ²⁸	Not described	54 throwing athletes with should pain		.58	.72	2.1	.58
Crank test ⁴⁰	examiner elevates humerus 160° in scapu-	65 patients with symptoms of shoulder pain	Glenoid labral tear ob- served during arthroscopy	.46	.56	1.1	.96
Crank test ¹⁰		applied to humerus while shoulder is internally and externally rotated. Positive if pain	.91	.93	13.0	.10	
Crank test ²⁷	Patient is supine. Examiner fully abducts humerus and internally and externally rotates arm while applying axial force through glenohumeral joint. Positive if pain or clicking is elicited	62 shoulders undergoing arthroscopy		.40	.73	1.5	.82

Diagnostic Utility of the Compression Rotation Test in Identifying Labral Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

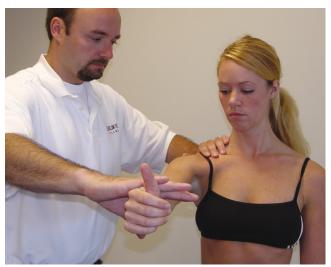
Figure 9-22 Compression rotation test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Compression rotation test ²	With patient supine with arm abducted to 90° and elbow flexed to 90°, examiner applies axial force to humerus. Humerus is circumducted and rotated.	68 patients with type II SLAP lesions and 78 age-matched controls who under- went shoulder arthroscopy	Type II SLAP lesion visualized during arthroscopy	.61	.54	1.3	.72
Compression rotation test ⁴¹	Positive if pain or clicking is elicited	426 patients who had undergone shoulder arthroscopy	Labral tear visual-	.24	.76	1.0	1.0
Compression rotation test ²⁸	Not described	54 throwing athletes with shoulder pain	ized during arthroscopy	.25	1.0	Unde- fined	.75

Diagnostic Utility of Speed's Test in Identifying Superior Labrum Anterior Posterior Lesions

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 9-23 Speed's test.


Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Speed's test ⁴² 2008 Meta-analysis		Pooled estimates from 4 high- quality studies		.32 (.24, .42)	.61 (.54, .68)	.8	1.11
Speed's test ⁴³	Patient elevates humerus to 90° with elbow flexion and	133 patients who underwent diag- nostic arthros- copy of the shoulder	SLAP lesion visual- ized during	.60	.38	1.0	1.05
Speed's test ²	forearm supination. Patient holds this position while examiner applies resistance against elevation. Positive if pain is elicited in the bicipital groove area	68 patients with type II SLAP lesions and 78 age-matched controls who un- derwent shoulder arthroscopy	arthroscopy	.32	.66	.9	1.03
Speed's test ²⁶		847 patients who underwent diag- nostic arthros- copy of the shoulder	Partial biceps tendon tear visual- ized during arthroscopy	.50	.67	1.5	.75
Only studies publishe	d after the meta-analysis were	included.					

Reliability of the Active Compression/O'Brien Test

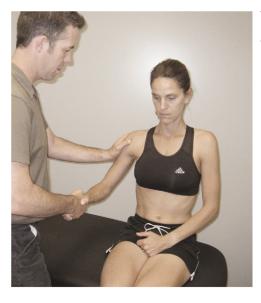
ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Active compression test with internal rotation

Active compression test with external rotation

Figure 9-24 Active compression test.

Test	Description	Population	Inter-examiner Reliability
Active compression test ¹⁶	See page 407	55 patients with shoulder pain scheduled for arthroscopic surgery	κ = .24 (02, .50)

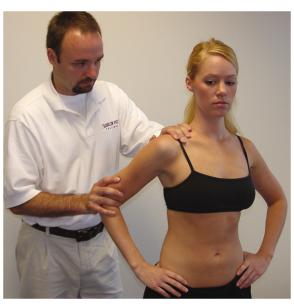

Diagnostic Utility of the Active Compression/O'Brien Test

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Active compression test 16		55 patients with shoulder pain scheduled for arthroscopic surgery	Glenoid labral tear observed during arthroscopy	.55 (.4, .69)	.18 (05, .41)	.67 (.45, .98)	2.5 (.68, 9.13)
O'Brien test ⁴³	Patient stands and flexes arm to 90° with elbow in full extension. Patient then	133 patients who underwent diagnostic ar- throscopy of the shoulder		.94	.28	1.3	.21
O'Brien test ²	adducts arm 10° internally and rotates humerus. Exam- iner applies downward force to arm as patient resists. Patient then fully supinates	68 patients with SLAP lesions and 78 age-matched controls		.63	.53	1.3	.70
Active compression test ³⁸	arm and repeats procedure. Positive if pain is elicited with first maneuver and reduced with second maneuver	132 patients scheduled to undergo shoul- der arthroscopy	SLAP lesion visu- alized during arthroscopy	.63	.50	1.3	.74
Active compression test ³⁹	maneuvei	40 athletes with shoulder pain		.78	.11	.1	2.00
Active compression test ⁴¹		426 patients who had under- gone shoulder arthroscopy		.47	.55	1.0	.96
Active compression test (palm down) ²⁶	As above except positive if	847 patients who underwent diagnostic ar- throscopy of the		.68	.46	1.3	.70
Active com- pression test (palm up) ²⁶	pain is elicited in tested position	shoulder	Partial biceps	.40	.57	.9	1.1
O'Brien test ⁴⁰	As above except patient is seated	65 patients with symptoms of shoulder pain	tendon tear vi- sualized during arthroscopy	.54	.31	.78	1.48
O'Brien test ²⁷		62 shoulders undergoing arthroscopy		.63	.73	2.3	.51
O'Brien test ²⁸	Not described	54 throwing athletes with shoulder pain		.54	.60	1.4	.77

Diagnostic Utility of the Yergason Test in Identifying Labral Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0


Figure 9-25 Yergason test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Yergason test ²	With patient standing with elbow at 90°, patient supinates forearm against examiner's resistance. During procedure, examiner palpates long head of biceps tendon. Positive if pain at biceps tendon	68 patients with type II SLAP lesions and 78 age- matched controls who underwent shoulder arthroscopy		.12	.87	.9	1.01
Yergason test ³⁸		132 patients sched- uled to undergo shoulder arthroscopy	SLAP lesion visual- ized during arthroscopy	.13	.94	2.2	.93
Yergason test ²⁷		62 shoulders sched- uled to undergo arthroscopy		.09	.93	1.29	.98
Yergason test ²⁸		54 throwing ath- letes with shoulder pain		.13	1.0	Unde- fined	.87
Yergason test ⁴⁴		152 subjects with shoulder pain scheduled to undergo surgery	Biceps tendon and/or labral tear visualized during arthroscopy	.43	.79	2.05	.72

Special Tests—Labral Tears		Interpretation
Special rests Labrat rears	.81-1.0	Substantial agreement
Reliability of the Anterior Slide Test/Kibler Test		Moderate agreement
		Fair agreement
		Slight agreement
	.010	No agreement

Test	Description	Population	Inter-examiner Reliability
Anterior slide test ¹⁶	See below	55 patients with shoulder pain scheduled for arthroscopic surgery	к = .21 (05, .46)

Diagnostic Utility of the Anterior Slide Test/Kibler Test in Identifying Labral Tears

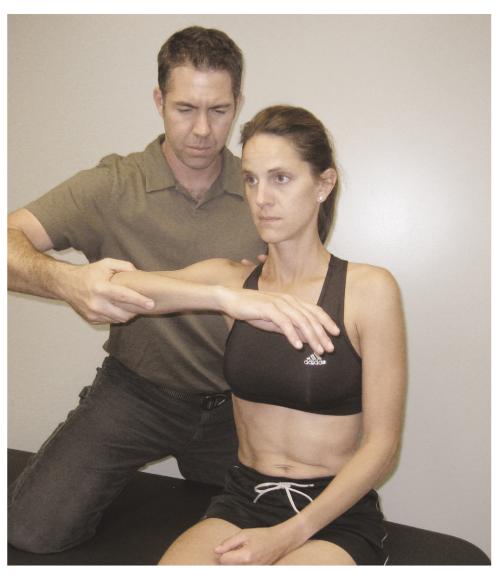

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 9-26 Anterior slide test/Kibler test.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Anterior slide test ¹⁶	With patient standing or	55 patients with shoulder pain scheduled for ar- throscopic surgery	Glenoid labral tear observed during arthroscopy	.43 (.29, .58)	.82 (.59, 1.05)	2.38 (.65, 8.7)	.69 (.48, 1.01)
Anterior slide test (Kibler test) ²	sitting with hands on hips, thumbs facing posteriorly, examiner stabilizes scapula with one hand and, with other hand on elbow, applies anteriorly	68 patients with type II SLAP lesions and 78 age-matched controls who under- went shoulder arthroscopy	Type II SLAP lesion visual- ized during arthroscopy	.21	.70	.7	1.13
Anterior slide test (Kibler test) ²⁶	Patient pushes back	847 patients who underwent diagnos- tic arthroscopy of the shoulder	Partial biceps tendon tear visualized during arthroscopy	.23	.84	1.4	.92
Anterior slide test ⁴¹		426 patients who had undergone shoulder arthroscopy	SLAP lesion vi- sualized during arthroscopy	.08	.84	.56	1.1

Reliability of Various Tests in Identifying Labral Tears

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 9-27 Kim and jerk tests.

Test	Description	Population	Reliability
Passive compression test ⁴⁵	See page 411	61 patients undergoing arthroscopy for shoulder pain	Inter-examiner $\kappa = .77$
Kim test ⁴⁶	See page 411	172 painful shoulders	Inter-examiner $\kappa = .91$

Diagnostic Utility of Various Tests in Identifying Labral Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Passive compression test ⁴⁵	With patient side lying with affected side up, examiner places one hand over the AC joint to stabilize the shoulder and the other hand on the elbow. Examiner then externally rotates the shoulder in 30° abduction and gives axial compression while extending the arm. Positive if pain	61 patients undergoing arthroscopy for shoulder pain	SLAP lesion visualized during arthroscopy	.82	.86	5.90	.21
Kim test ⁴⁶	With patient sitting with arm abducted 90°, examiner holds the elbow and lateral aspect of the proximal arm and applies a strong axial loading force. Examiner then elevates the arm to 135° and adds a posterior/inferior force. Positive if sudden onset of posterior shoulder pain	172 painful shoulders	Labral tear visu- alized during	.80	.94	13.3	.21
Jerk test ⁴⁶	With patient sitting, examiner holds scapula with one hand and internally rotates and abducts the patient's arm to 90° with the other. Examiner then horizontally adducts the arm while applying an axial loading force. Sharp pain indicates a positive test	Siloutueis	arthroscopy	.73	.98	36.5	.28
Supine flexion resistance test ⁴³	With patient supine with arm resting in full flexion and palm up, examiner grasps patient's arm just distal to the elbow and asks the patient to lift the arm as if throwing. Positive if pain is felt deep inside the shoulder joint	133 patients who underwent diag- nostic arthros- copy of the shoulder	SLAP lesion vi-	.80	.69	2.6	.29
Resisted supination external rotation test ³⁹	With patient supine with arm abducted 90° and elbow flexed 70°, examiner supports the arm by the elbow. Examiner resists supination and gently maximally externally rotates the shoulder. Positive if shoulder pain, clicking, or catching is elicited	40 athletes with shoulder pain	sualized during arthroscopy	.83	.82	4.6	.21

Special Tests—Labral Tears (continued)

Diagnostic Utility of Various Tests in Identifying Labral Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Whipple test ²	The arm is flexed 90° and adducted until the hand is opposite the other shoulder. The patient resists while examiner pushes downward on the arm. Positive if pain	68 patients with type II SLAP lesions and 78 age-matched controls who un- derwent shoulder arthroscopy		.65	.42	1.1	.83
Biceps load test II ²	With patient supine, examiner grasps wrist and elbow. Arm is elevated 120° and fully externally rotated with elbow held in 90° of flexion and forearm supinated. Ex-	68 patients with type II SLAP lesions and 78 age-matched controls who un- derwent shoulder arthroscopy		.30	.78	1.4	.90
Biceps load test II ⁴⁷	aminer then resists elbow flexion by patient. Positive if resisted elbow flexion causes pain	127 patients ex- periencing shoul- der pain sched- uled to undergo arthroscopy	Type II SLAP lesion visualized during arthroscopy	.90	.97	30	.10
Posterior jerk test ²⁸	Not described	54 throwing ath- letes with shoul- der pain		.25	.80	1.3	.72
Biceps load test ⁴⁸	With patient supine, examiner grasps wrist and elbow. Arm is abducted to 90° with elbow flexed to 90° and forearm supinated. Examiner externally rotates arm until patient becomes apprehensive at which time ER is stopped. Patient flexes elbow against examiner's resistance. Positive if patient's apprehension remains or pain is produced	75 patients with unilateral recur- rent anterior shoulder dislocations		.90	.97	30	.10

Special Tests—Subacromial Impingement

Reliability of Hawkins-Kennedy Test

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 9-28 Hawkins-Kennedy test.

Test	Description	Population	Reliability
Hawkins-Kennedy test ⁴⁹	See below	33 patients with shoulder pain	Test-retest $\kappa = 1.0$ Inter-examiner $\kappa = .91$

Diagnostic Utility of Hawkins-Kennedy Test in Identifying Subacromial Impingement

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Hawkins- Kennedy test ⁴ 2008 Meta- analysis		Pooled estimates from 4 high-quality studies	Impingement syndrome diagnosed from sub-acromial injection or surgery	.79 (.75, .82)	.59 (.53, .64)	1.9	.36
Hawkins- Kennedy test ⁵⁰	The affected arm is forward-flexed 90° pain and then forcibly	new onset shoulder	Magnetic resonance imaging (MRI) con- firmed subacromial impingement	.74	.40	1.2 (.7, 2.3)	.65
	medially rotated. Positive if the patient complains of pain.			MRI confirmed subacro- mial bursitis	.80	.43	1.4 (.8, 2.4)
Hawkins- Kennedy test ²⁶		847 patients who underwent diag- nostic arthroscopy of the shoulder	Partial biceps tendon tear visualized during arthroscopy	.55	.38	.9	1.18

Special Tests—Subacromial Impingement		Interpretation
Special rests Sabacronnal impingement	.81-1.0	Substantial agreement
Reliability of the Neer Test	.6180	Moderate agreement
	.4160	Fair agreement
	.1140	Slight agreement
	.010	No agreement

Test	Description	Population	Reliability
Neer test ⁴⁹	See below	33 patients with shoulder pain	Test-retest $\kappa = 1.0$ Inter-examiner $\kappa = 1.0$

Diagnostic Utility of the Neer Test in Identifying Subacromial Impingement

Figure 9-29 Neer test.

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Neer test ⁴² 2008 Meta- analysis		Pooled estimates from 4 high-quality studies	Impingement syn- drome diagnosed from subacromial injection or surgery	.79 (.75, .82)	.53 (.48, .58)	1.7	.40
Neer test ⁵⁰	Examiner forces patient's internally rotated arm into	tient's internally new-onset shoulder	MRI confirmed sub- acromial impingement	.68	.30	1.0 (.6, 1.6)	1.07
	maximal elevation. Positive if pain is produced		MRI confirmed sub- acromial bursitis	.80	.43	1.4 (.8, 2.4)	.47
Neer test ²⁶		847 patients who un- derwent diagnostic arthroscopy of the shoulder	Partial biceps tendon tear visualized during arthroscopy	.64	.41	1.1	.88

Special Tests—Subacromial Impingement

Diagnostic Utility of Various Tests in Identifying Subacromial Impingement

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Painful arc sign ⁵¹	Patient actively elevates arm in scapular plane to full elevation. Positive if patient experiences pain between 60° and 120°	552 patients with shoulder pain	Arthroscopic visualization All impingement Bursitis Partial thickness RCT Full thickness RCT	.74 .71 .67 .76	.81 .47 .47 .72	3.9 1.3 1.3 2.7	.32 .62 .70 .33
Cross-body adduction test ⁵¹	Arm at 90° of flexion. Examiner then adducts arm across the patient's body. Positive if shoulder pain is produced	552 patients with shoulder pain	Arthroscopic visualization All impingement Bursitis Partial thickness RCT Full thickness RCT	.23 .25 .17 .23	.82 .80 .79 .81	1.3 1.3 .8 1.2	.94 .94 1.05 .95
Lift-off test (Gerber's test) ⁵⁰	Patient attempts to lift the affected arm off the back. Positive if unable to lift off back	30 patients with new-onset shoul- der pain	MRI confirmed subacromial impingement	.68	.50	1.4 (.7, 2.7)	.64
·			MRI confirmed subacromial bursitis	.93	.71	3.3 (1.4, 7.6)	.10
Lift-off test (Gerber's test) ²⁶		847 patients who underwent diag- nostic arthros- copy of the shoulder	Partial biceps tendon tear visualized during arthroscopy	.28	.89	2.5	.81
Yocum test ⁵⁰	With patient seated or standing, patient places hand of in-	30 patients with	MRI confirmed subacromial impingement	.79	.40	1.3 (.8, 2.3)	.53
	volved shoulder on contralateral shoulder and raises elbow. Posi- tive if pain is elicited	noulder der pain w. Posi-	MRI confirmed subacromial bursitis	.80	.36	1.2 (.08, 2.0)	.56
Horizontal adduction test ⁵²	Examiner forces patient's arm into horizontal adduction while elbow is flexed. Positive if pain is elicited	125 painful shoulders	Subacromial impingement via subacromial injection	.82	.28	1.14	.64
The painful arc test ⁵²	Patient is instructed to perform straight plane abduction throughout full ROM. Positive if pain occurs between 60° and 100° of abduction			.33	.81	1.74	.83

Special Tests—Subacromial Impingement (continued)

Diagnostic Utility of Various Tests in Identifying Subacromial Impingement

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Drop arm test ⁵²	Patient is instructed to abduct shoulder to 90° and then lower it slowly to neutral posi- tion. Positive if patient is unable to do this because of pain	125 painful shoulders	Subacromial impingement via subacromial injection	.08	.97	2.67	.95

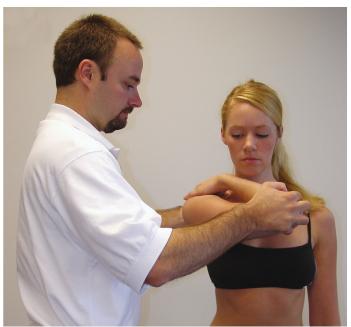


Figure 9-30 Horizontal adduction test.

Figure 9-31 Yocum test.

Special Tests—Subacromial Impingement

Diagnostic Utility of Internal Rotation Resistance Strength Test in Differentiating Subacromial Impingement versus Intra-articular Pathology

Resistance against external rotation

Resistance against internal rotation

Figure 9-32 Internal rotation resistance strength test.

Zaslav⁵³ investigated the internal rotation resistance strength (IRRS) test's ability to delineate intra-articular pathology from impingement syndrome in a group of 115 patients who underwent arthroscopic shoulder surgery. The IRRS test is performed with the patient standing. The examiner positions the patient's arm in 90° abduction and 80° ER. The examiner applies resistance against ER and then IR in the same position. The test is considered positive for intra-articular pathology if the patient exhibits greater weakness in IR when compared with ER. If the patient demonstrated greater weakness with ER, they were considered positive for impingement syndrome. The IRRS test demonstrated a sensitivity of .88, a specificity of .96, a positive LR of 22.0, and a negative LR of .13.

Special Tests—Rotator Cuff Tears	ICC or к	Interpretation Substantial agreement
Reliability of Special Tests for Identifying Supraspinatus	.6180	Moderate agreement
and/or Infraspinatus Tears		Fair agreement
	.1140	Slight agreement
	.010	No agreement

Test	Description	Population	Reliability
Supraspinatus muscle test (empty can) ⁴⁹	Shoulder and elbow at 90° with arm internally rotated. Examiner then resists	33 patients with	Test-retest $\kappa = 1.0$ Inter-examiner $\kappa = .94$
Patte maneuver ⁴⁹	internal rotation force. Positive if patient gives way	shoulder pain	Test-retest $\kappa = 1.0$ Inter-examiner $\kappa = 1.0$

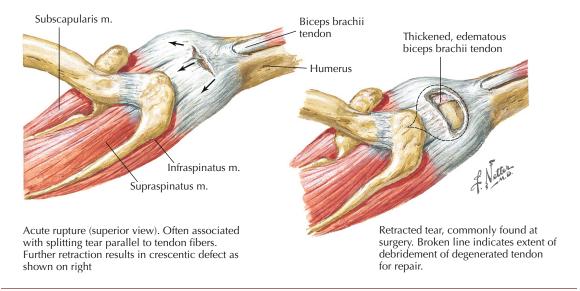


Figure 9-33 Superior rotator cuff tear.

Figure 9-34 Supraspinatus muscle test (empty can).

Special Tests—Rotator Cuff Tears (continued)

Diagnostic Utility of Special Tests for Identifying Supraspinatus and/or Infraspinatus Tears

Patients with a positive Hornblower's sign often have difficulty raising their hand to their mouth without abducting the shoulder

Figure 9-35 Hornblower's sign.

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Weakness with elevation (empty can) ¹¹	With patient stand- ing with arms ele- vated to shoulder level in scapular	448 patients undergoing arthrography	Arthrographic confir- mation of complete or partial rotator cuff tear	.64	.65	1.83	.55
Weakness with elevation (empty can) ⁵⁰	plane, thumbs pointing down, ex- aminer applies downward force and patient resists. Posi- tive if weakness is present	30 patients with new onset shoulder pain	MRI confirmed Subacromial impingement Subacromial bursitis	.74 .73	.30 .29	1.1 1.0	.87 .93

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Supraspinatus muscle test ⁵⁰	Examiner resists ab- duction of the arm	30 patients with new onset shoulder pain	MRI confirmed • Subacromial impingement • Subacromial bursitis	.58 .73	.20 .43	.7 1.3	2.10 .63
Supraspinatus muscle test ⁵¹	at 90° with pa- tient's arm neutral or internally rotated. Positive if patient gives way	552 patients with shoulder pain	Arthroscopic visualization • All impingement • Bursitis • Partial thickness RCT • Full thickness RCT	.44 .25 .32	.90 .67 .68	4.4 .80 1.0	.62 1.12 1.00
Drop-arm test ⁵¹	Patient elevates fully and then slowly lowers arm. Positive if the arm suddenly drops or patient has severe pain	552 patients with shoulder pain	Arthroscopic visualization • All impingement • Bursitis • Partial thickness RCT • Full thickness RCT	.27 .14 .14	.88 .77 .78	2.3 .60 .60	.83 1.12 1.10
Infraspinatus muscle test (Patte test) ⁵⁰	Elbow at 90° with arm neutrally rotated and adducted to the trunk. Examiner then resists internal rotation force. Positive if patient gives way	30 patients with new-onset shoulder pain	MRI confirmed • Subacromial impingement • Subacromial bursitis	.58 .73	.60 .71	1.5 2.5	.70 .38
Infraspinatus muscle test ⁵¹		552 patients with shoulder pain	Arthroscopic visualization	.42 .25 .19	.90 .69 .69	4.2 .80 .60	.64 1.09 1.17
External rotation lag sign ⁵⁴	With patient sitting, examiner holds the arm in 20° shoulder elevation (in the scapular plane), 5° from full external rotation, and 90° elbow extension. Patient maintains the position when examiner releases arm. Positive if unable to hold position	37 patients with shoulder pain	Supraspinatus or in- fraspinatus tear via ultrasound	.46	.94	7.2 (1.7, 31.0)	.60 (.40, .90)
Drop sign ⁵⁴				.73	.77	3.2 (1.5, 6.7)	.30 (.20, .80)

+LR	Interpretation	-LR		
>10	Large	<.1		
5.0-10.0	Moderate	.12		
2.0-5.0	Small	.25		
1.0-2.0	Rarely important	.5-1.0		

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Passive elevation less than 170°11	With patient supine, examiner maximally elevates shoulder	448 patients undergoing arthrography	Arthrographic confir- mation of complete or partial rotator cuff tear	.30	.78	1.36	.90
Passive ER less than 70°11	With patient supine with arm at side, examiner externally rotates arm			.19	.84	1.19	.96
Arc of pain sign ¹¹	With patient standing, examiner passively abducts arm to 170°. Patient then slowly lowers arm to side. Positive if patient reports pain at 120° to 70° of abduction			.98	.10	1.09	.20
Atrophy of the supraspinatus muscle ¹¹	Examiner deter- mines atrophy			.56	.73	2.07	.60
Atrophy of the infra- spinatus muscle ¹¹	through visual inspection			.56	.73	2.07	.60
Hornblower's signs (teres minor) ⁵⁵	With patient seated, examiner places patient's arm in 90° of scaption and patient externally rotates against resistance. Positive if patient is unable to externally rotate shoulder	54 patients who underwent shoulder surgery to repair rotator cuff	Stage of fatty degeneration of infraspinatus as determined by CT scan	1.0	.93	14.29	.00
Dropping sign (infraspinatus) ⁵⁵	With patient seated, examiner places patient's shoulder in 0° of abduction and 45° of ER with elbow flexed to 90°. Patient holds position when examiner releases forearm. Positive if patient is unable to hold position and arm returns to 0° of ER			1.0	1.0	Unde- fined	.00

Special Tests—Rotator Cuff Tears (continued)

Diagnostic Utility of Special Tests for Identifying Supraspinatus and/or Infraspinatus Tears

Test and S	Study	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Supra- spinatus test ⁵⁶	Tendinitis or partial thickness tear*	With patient stand- ing and shoulders abducted to 90° in scapular plane and	lders 90° in ne and is, ex- es iso- shoulder pain ance. scheduled to	Supraspinatus tear via arthroscopic visualization	.62 (.49, .75)	.54 (.40, .68)	1.35	.70
	ness tear [™] metric resistance.	aminer applies iso-			.41 (.27, .55)	.70 (.57, .83)	1.37	.84
Large or massive full thick- ness tear [†]		side is compared with uninvolved side. Positive if weakness or pain	andergo surgery		.88 (.79, .97)	.70 (.58, .82)	2.93	.17
ER lag sigr	157	With patient seated, examiner passively flexes elbow to 90° and elevates shoulder to 20° in scapular plane. Examiner then places shoulder in near maximal rotation (5° from full). Patient maintains position of ER when examiner releases arm. Positive if patient is unable to maintain ER	74 patients scheduled to undergo ar- throscopic shoulder surgery	Supraspinatus or in- fraspinatus tear via arthroscopic visualization	.70	1.0	Unde- fined	.30

^{*}Tendinitis defined as inflammation or fraying of supraspinatus tendon. Partial thickness defined as partial tear of supraspinatus tendon. † Full thickness tear categorized as small, moderate, large, or massive. Small indicates tear < 1 cm, moderate indicates tear 1 to 3 cm that includes in-

fraspinatus, large indicates tear 3 to 5 cm that includes infraspinatus and teres minor, and massive indicates a tear > 5 cm that includes infraspinatus tus, teres minor, and subscapularis.

Special Tests—Rotator Cuff Tears

Diagnostic Utility of Special Tests for Identifying Subscapularis Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Internal ro- tation lag sign ⁵⁴	With patient sitting, examiner holds hand behind the lumbar region into full IR. Patient maintains the position when examiner releases arm. Positive if unable to hold position	37 patients with shoulder pain	Subscapularis tear via ultrasound	1.0	.84	6.2 (1.9, 12.0)	.00 (.00, 2.50)
Bear-hug test ⁵⁸	Patient places palm of involved side on opposite shoulder and fingers extended. Examiner then attempts to pull the hand off the shoulder into ER while the patient resists. Positive if unable to maintain hand on shoulder or weakness > 20° compared to the other side			.60	.92	7.5	.43
Belly-press test ⁵⁸	With elbow at 90° and hand on belly, patient forcefully presses into a tensiometer on the belly. Positive if weak compared to other side or if patient uses elbow or shoul- der extension to push	68 shoulders scheduled to undergo ar-	Subscapularis tear via	.40	.98	20.0	.61
Lift-off test ⁵⁸	Patients places the hand of the affected arm on the back (at the position of the midlumbar spine) and then attempts to internally rotate the arm to lift the hand posteriorly off of the back. Positive if unable to lift the arm off the back or if patient performs the lifting maneuver by extending the elbow or the shoulder	throscopic shoulder surgery	arthroscopic visualization	.18	1.0	Unde- fined	.82
Napoleon test ⁵⁸	Same as the belly-press test except without a tensiometer. Positive if patient uses wrist flexion > 30° to press into belly			.25	.98	12.5	.77

Special Tests—Rotator Cuff Tears (continued)

Diagnostic Utility of Special Tests for Identifying Subscapularis Tears

Figure 9-36 Lift-off test.

Negative test

Positive test

Special Tests—Brachial Plexus Palsy	+LR	Interpretation	-LR
Special rests—braciliat riexus ratsy	>10	Large	<.1
Diagnostic Utility of Special Tests for Identifying Nerve	5.0-10.0	Moderate	.12
Root Avulsion in People with Brachial Plexus Palsy	2.0-5.0	Small	.25
	1.0-2.0	Rarely important	.5-1.0

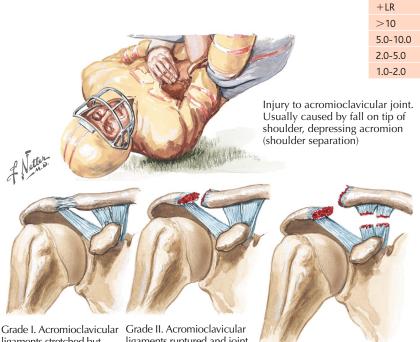


Figure 9-37 Brachial plexus: schema.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Tinel sign C-5 ⁵⁹	Gentle percussion on the su- praclavicular region. Positive if painful paresthesias radiat- ing into forearm			.85	.67	2.6	.22
Tinel sign C-6 ⁵⁹	As above except painful paresthesias radiating into hand			.50	.81	2.6	.62
Shoulder protraction test ⁵⁹	From supine position, patients protract their shoulder while being resisted by the examiner's hand placed on their anterior shoulder. Positive if weaker than opposite side	32 patients with complete bra- chial plexus palsy	CT myelography agreement with surgi- cal findings	.96	.80	4.8	.05
Hand pain ⁵⁹	Positive if reported as severe burning or crushing sensation			.86	.75	3.4	.19

Special Tests—Acromioclavicular Lesions

Diagnostic Utility of Special Tests for Identifying Acromioclavicular Lesions

ligaments stretched but not torn; coracoclavicular ligaments intact

Grade II. Acromioclavicular ligaments ruptured and joint separated; coracoclavicular ligaments intact

Grade III. Coracoclavicular and acromioclavicular ligaments rupture with wide separation of joint

Figure 9-38

Common mechanism of injury for acromioclavicular tears.

Interpretation

Rarely important

Large

Small

Moderate

-LR

<.1

.1-.2

.2-.5

.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
O'Brien sign ⁶⁰	Patient is standing. Examiner asks patient to flex arm to 90° with elbow in full extension. Patient then adducts arm 10° and internally rotates humerus. Examiner applies downward force to arm as patient resists. Patient fully supinates arm and repeats procedure. Positive if pain localized to AC joint	1013 patients	AC joint infiltration test: patients were in- jected with lidocaine in AC joint. Those who	.16	.90	1.6	.93
Paxinos sign ⁶⁰	Patient sits with arm by side. With one hand, examiner places thumb over posterolateral aspect of acromion and index finger superior to midportion of clavicle. Examiner then applies compressive force. Positive if pain is reported in area of AC joint	with pain between mid clavicle and deltoid	experienced at least a 50% reduction in symptoms within 10 minutes were consid- ered to have AC pathology	.79	.50	1.58	.42
Palpation of the AC joint ⁶⁰	Not reported			.96	.10	1.07	.40

Combination of Tests

Diagnostic Utility of Combinations of Tests for Identifying Glenoid Labral Tears

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Patient Population	Reference Standard	Sens	Spec	+LR	-LR
Pop + crank ¹⁶			.27 (.14, .4)	.91 (.74, 1.08)	3.0 (.44, 20.67)	.8 (.62, 1.04)
Pop + anterior slide ¹⁶		Glenoid labral tear observed	.16 (.05, .27)	1.0 (1.0, 1.0)	Undefined	.84 (.74, .96)
Active compression + Anterior slide ¹⁶	uled for arthroscopic surgery	during arthroscopy	.25 (.12, .38)	.91 (.74, 1.08)	2.75 (.4, 19.09)	.83 (.64, 1.06)
Anterior slide + Crank ¹⁶			.34 (.2, .48)	.91 (.74, 1.08)	3.75 (.55, 25.41)	.73 (.55, .96)
Crank test + Apprehension test + Relocation test + Load and shift test + Inferior sulcus sign ¹⁰	54 patients with shoulder pain	Arthroscopic visualization	.90	.85	6.0	.12
Jobe relocation + O'Brien ²⁷			.41	.91	4.56	.65
Jobe relocation + Anterior apprehension ²⁷		As above	.38	.93	5.43	.67
O'Brien + Anterior apprehension ²⁷	62 shoulders sched- uled to undergo arthroscopy		.38	.82	2.11	.76
Jobe + O'Brien +			.34	.91	3.78	.73
Apprehension ²⁷ See test descriptions under s	ingle tests.					

Combination of Tests

Diagnostic Utility of Combinations of Tests for Identifying SLAP Lesions

Oh and colleagues² studied the ability of combinations of two and three special tests to identify type II SLAP lesions. While no combinations of two tests substantially increased the overall diagnostic utility, several combinations of three tests did. When two tests were chosen from the group with relatively high sensitivities, and one from the group with relatively high specificities, the sensitivities of the three "or" combinations were approximately 75%, and the specificities of the three "and" combinations were approximately 90%.

High Sensitivity (choose 2)	High Specificity (choose 1)
Compression rotation +	Yergason +
Anterior apprehension +	Biceps load test II +
O'Brien	Speed

Diagnostic Utility of Combinations of Tests for Identifying Subacromial Impingement

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Test Combination	Population	Reference Standard	Sens	Spec	+LR	-LR
Hawkins-Kennedy impingement test + Painful arc sign + Infraspinatus muscle test ⁵¹	All 3 tests positive	552 patients	Arthroscopic visualization • Any impingement • Full thickness RCT	.26 .33	.98 .98	10.6 15.9	.75 .69
	2/3 tests positive	with shoulder pain	Arthroscopic visualization • Any impingement • Full thickness RCT	.26 .35	.98 .90	10.6 3.6	.75 .72
Neer test	All 7 positive		Impingement via sub- acromial injection test	.04	.97	1.33	.99
+ Hawkins test	At least 6 positive			.30	.89	2.73	.79
+ Horizontal adduc-	At least 5 positive			.38	.86	2.71	.72
tion test	At least 4 positive			.70	.67	2.12	.45
+ Painful arc test + Drop arm test + Yergason test + Speed's test ⁵²	At least 3 positive	125 painful shoulders		.84	.44	1.95	.28

See test descriptions under single tests.

OUTCOME MEASURES

Outcome Measure	Scoring and Interpretation	Test-Retest Reliability	MCID
Upper Extremity Func- tional Index	Users are asked to rate the difficulty of performing 20 functional tasks on a Likert-type scale ranging from 0 (extremely difficult or unable to perform activity) to 4 (no difficulty). A total score out of 80 is calculated by summing each score. The answers provide a score between 0 and 80, with lower scores representing more disability	ICC = .95 ⁶¹	Unknown (MDC = 9.1) ⁶¹
Disabilities of the Arm, Shoulder, and Hand (DASH)	Users are asked to rate the difficulty of performing 30 functional tasks on a Likert-type scale. Twenty-one items relate to physical function, 5 items relate to pain symptoms, and 4 items related to emotional and social functioning. A total score out of 100 is calculated with higher scores representing more disability	ICC = . 90 ⁶²	10.2 ⁶²
Shortened Disabilities of the Arm, Shoulder, and Hand Question- naire (QuickDASH)	Users are asked to rate an 11-item questionnaire that addresses symptoms and physical function. A total score out of 100 is calculated with higher scores representing more disability	ICC = .90 ⁶³	8.0 ⁶³
Shoulder Pain and Dis- ability Index (SPADI)	Users are asked to rate their shoulder pain and disability on 13 items, each on a visual analog scale from 0 (no pain/difficulty) to 100 (worst pain imaginable/ so difficult requires help). Eight items relate to physical function and 5 items relate to pain symptoms. A total score out of 100 is calculated with higher scores representing more disability	ICC = .89 ⁶²	13.1 ⁶²
American Shoulder and Elbow Surgeons (ASES) score	Users are asked to rate their shoulder pain on a 1-item and visual analog scale and functional ability on 10 items on a Likert-type scale ranging from 0 to 4. Pain and function are equally weighted to create a total score out of 100. Lower scores represent more pain and disability	ICC = .91 ⁶²	6.4 ⁶²
Numeric Pain Rating Scale (NPRS)	Users rate their level of pain on an 11-point scale ranging from 0 to 10, with high scores representing more pain. Often asked as "current pain" and "least," "worst," and "average" pain in the past 24 hours	ICC = .72 ⁶⁴	2 ^{65,66}

ICC, Intraclass correlation coefficient; MDC, minimal detectable change; MCID, minimum clinically important difference.

APPENDIX

Quality Assessment of Diagnostic Studies Using QUADAS

	Lyons 1992 ⁶⁷	Speer 1994	Kibler 1995 ⁶⁸	Leroux 1995 ⁶⁹	Hertel 1996	Liu 1996	Gross 1997 ⁷⁰	O'Brien 1998 ⁷¹	Walch 1998	Itoi 1999 ⁷²	Kim 1999	Mimori 1999 ⁷³	Calis 2000	Litaker 2000	Kim 2001
Was the spectrum of patients representative of the patients who will receive the test in practice?	U	U	U	Υ	U	Υ	U	U	U	U	U	U	Υ	Υ	U
Were selection criteria clearly described?	N	N	N	N	N	N	N	N	Υ	N	N	N	Υ	Y	U
Is the reference standard likely to cor- rectly classify the target condition?	Υ	Υ	Υ	Y	U	Υ	Υ	U	U	U	Y	Υ	Υ	Y	Y
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	U	Υ	U	U	U	U	U	U	U	U	U	U	U	U	U
5. Did the whole sample or a random selection of the sample, receive verifi- cation using a reference standard of diagnosis?	Υ	Υ	N	Υ	U	Υ	U	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ
Did patients receive the same reference standard regardless of the index test result?	Υ	Υ	N	Υ	U	Υ	U	N	Υ	Υ	Y	N	U	Υ	Y
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Υ	Y	Υ	Υ	U	Υ	Υ	U	Y	Υ	Υ	Υ	Υ	Y	Y
8. Was the execution of the index test described in sufficient detail to permit replication of the test?	N	Υ	Υ	Y	Y	Υ	Υ	Υ	Y	N	Y	Υ	Υ	Y	Y
9. Was the execution of the reference standard described in sufficient detail to permit its replication?	N	U	N	N	N	N	U	N	U	U	N	Υ	Υ	U	N
10. Were the index test results inter- preted without knowledge of the results of the reference test?	U	U	U	Υ	U	U	U	Υ	U	U	Y	U	U	Υ	Y
11. Were the reference standard results interpreted without knowledge of the results of the index test?	U	U	U	U	U	U	U	U	U	U	Υ	U	U	U	Y

(Continued)

Quality Assessment of Diagnostic Studies Using QUADAS

	Lyons 1992 ⁶⁷	Speer 1994	Kibler 1995 ⁶⁸	Leroux 1995 ⁶⁹	Hertel 1996	Liu 1996	Gross 1997 ⁷⁰	O'Brien 1998 ⁷¹	Walch 1998	Itoi 1999 ⁷²	Kim 1999	Mimori 1999 ⁷³	Calis 2000	Litaker 2000	Kim 2001
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	U	U	U	U	Y	U	U	U	U	U	U	U	Y	N
13. Were uninterpretable/ intermediate test results reported?	U	U	U	Y	U	U	U	U	U	U	U	U	U	Y	U
14. Were withdrawals from the study explained?	U	U	U	Y	U	U	U	U	U	U	U	U	U	Υ	U
Quality summary rating:														\Diamond	
Y = yes, N = no, U = unclear. Good quality $(Y - N = 10 to 14)$. Fair quality $(Y - N = 5 to 9)$.															

Quality Assessment of Diagnostic Studies Using QUADAS

	Murrell 2001 ⁷⁴	Wolf 2001 ⁷⁵	Zaslav 2001	McFarland 2002	Stetson 2002	Guanche 2003	Chronopoulos 2004	Holtby 2004 ⁴⁴	Holtby 2004 ⁵⁶	Lo 2004	Walton 2004	Kim 2005	Park 2005	Myers 2005	Nakagawa 2005
Was the spectrum of patients representative of the patients who will receive the test in practice?	U	U	U	U	U	U	U	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
2. Were selection criteria clearly described?	N	N	N	U	N	U	N	Y	Υ	Υ	Y	Y	Y	U	Υ
Is the reference standard likely to cor- rectly classify the target condition?	Υ	U	Υ	Y	Υ	Υ	Υ	Υ	Υ	U	Υ	Υ	Y	Υ	Υ
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	U	U	U	Υ	U	Υ	U	U	U	U	U	U	Υ	U	U
5. Did the whole sample or a random selection of the sample, receive verifi- cation using a reference standard of diagnosis?	Υ	Υ	Y	Υ	Υ	Y	Υ	U	Y	U	Υ	Υ	Υ	Υ	Y
Did patients receive the same reference standard regardless of the index test result?	U	U	Υ	Y	Y	Υ	U	U	Υ	N	Y	Y	Y	Υ	Υ
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Υ	U	Y	Υ	Υ	Y	U	U	Y	U	Υ	Υ	Υ	Y	Y
Was the execution of the index test described in sufficient detail to permit replication of the test?	N	Υ	Υ	Υ	Y	N	Y	N	N	Υ	Y	Y	Υ	Υ	N
9. Was the execution of the reference standard described in sufficient detail to permit its replication?	N	N	Υ	Υ	Υ	Υ	N	Υ	Υ	N	Υ	Y	Υ	Υ	N
10. Were the index test results inter- preted without knowledge of the results of the reference test?	U	Υ	Υ	Υ	Υ	U	U	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ
11. Were the reference standard results interpreted without knowledge of the results of the index test?	U	U	U	U	U	U	U	U	Υ	U	Y	Y	U	Υ	Y

(Continued)

Quality Assessment of Diagnostic Studies Using QUADAS

	Murrell 2001 ⁷⁴	Wolf 2001 ⁷⁵	Zaslav 2001	McFarland 2002	Stetson 2002	Guanche 2003	Chronopoulos 2004	Holtby 2004 ⁴⁴	Holtby 2004 ⁵⁶	Lo 2004	Walton 2004	Kim 2005	Park 2005	Myers 2005	Nakagawa 2005
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	U	Υ	Y	Y	Y	U	Υ	U	U	Y	U	Y	Υ	U
13. Were uninterpretable/ intermediate test results reported?	U	U	U	U	U	U	U	U	U	U	U	U	Υ	U	U
14. Were withdrawals from the study explained?	U	U	U	Υ	U	Υ	U	U	U	U	Υ	U	Υ	Υ	U
Quality summary rating:				\Q							\langle	\Q	\Q	\Diamond	
$Y = yes$, $N = no$, $U = unclear$. Good quality $(Y - N = 10 to 14)$. Fair quality $(Y - N = 5 to 9)$. Poor quality $(Y - N \le 4)$.															

Quality Assessment of Diagnostic Studies Using QUADAS

	Barth 2006	Bertelli 2006	Parentis 2006	Farber 2006	Gill 2007	Kim 2007	Lewis 2007	Miller 2008	Bushnell 2008	Oh 2008	Silva 2008	Ebinger 2008	Walsworth 2008	Kibler 200976	Levy 2009 ⁷⁷
Was the spectrum of patients representative of the patients who will receive the test in practice?	Y	U	Y	Y	U	Υ	Υ	Υ	Υ	Y	Υ	Υ	Υ	U	U
Were selection criteria clearly described?	U	U	Y	N	Υ	Υ	Y	Υ	Y	Y	Υ	U	U	U	U
Is the reference standard likely to cor- rectly classify the target condition?	Y	Y	Y	Y	Y	Υ	N	Y	Υ	Y	U	Υ	Y	Y	Y
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	U	U	U	U	U	U	Υ	Y	U	Υ	Y	Υ	U	U	U
5. Did the whole sample or a random selection of the sample, receive verifi- cation using a reference standard of diagnosis?	Y	Υ	Y	Υ	Y	Y	Y	Y	Y	Υ	Y	Y	Υ	N	Υ
6. Did patients receive the same reference standard regardless of the index test result?	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ	Υ	N	Y
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Y	Υ	Y	Υ	Y	Y	Y	Y	Υ	Υ	Y	Y	Υ	Y	Y
8. Was the execution of the index test described in sufficient detail to permit replication of the test?	Y	Y	Y	Y	Υ	Υ	Υ	Υ	Y	Y	Υ	Υ	Υ	Y	U
9. Was the execution of the reference standard described in sufficient detail to permit its replication?	Υ	Y	U	Y	Y	Υ	U	Y	Y	Y	Y	Υ	Υ	Y	U
10. Were the index test results inter- preted without knowledge of the results of the reference test?	Y	Y	Y	Y	Υ	Υ	U	Υ	Y	Y	Υ	Υ	Υ	Y	Y
11. Were the reference standard results interpreted without knowledge of the results of the index test?	U	U	U	U	U	U	U	Υ	U	U	Υ	U	Υ	U	U

(Continued)

Quality Assessment of Diagnostic Studies Using QUADAS

	Barth 2006	Bertelli 2006	Parentis 2006	Farber 2006	Gill 2007	Kim 2007	Lewis 2007	Miller 2008	Bushnell 2008	Oh 2008	Silva 2008	Ebinger 2008	Walsworth 2008	Kibler 2009 ⁷⁶	Levy 2009 ⁷⁷
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	U	Y	Y	Y	N	U	Y	Υ	Y	Y	Y	Y	Y	N
13. Were uninterpretable/ intermediate test results reported?	U	U	Υ	U	Y	Υ	U	U	U	U	U	U	Υ	U	U
14. Were withdrawals from the study explained?	U	U	U	U	Υ	Υ	Υ	Υ	U	Y	Y	Υ	Υ	U	U
Quality summary rating:		<u> </u>	\rightarrow	0	\Diamond	\rightarrow	<u> </u>	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Q		
Y = yes, N = no, U = unclear. Good quality $(Y - N = 10 to 14)$. Fair quality $(Y - N = 5 to 9)$.															

REFERENCES

- Lewis JS, Valentine RE. The pectoralis minor length test: a study of the intra-rater reliability and diagnostic accuracy in subjects with and without shoulder symptoms. BMC Musculoskelet Disord. 2007;8:64.
- Oh JH, Kim JY, Kim WS, et al. The evaluation of various physical examinations for the diagnosis of type II superior labrum anterior and posterior lesion. *Am J Sports Med.* 2008;36:353-359.
- Norkin CC, Levangie PK. The shoulder complex. In: Joint Structure and Function: A Comprehensive Analysis. 2nd ed. Philadelphia: FA Davis; 1992.240-261.
- Inman VT, Saunders SJB, Abbott LC. Observations on the function of the shoulder joint. 1944. *Clin Orthop*. 1996;330:3-12.
- Neumann DA. Shoulder complex. In: Kinesiology of Musculoskeletal System: Foundations for Physical Rehabilitation. St. Louis: Mosby; 2002.189-248.
- Brody LT. Shoulder. Current Concepts of Orthopaedic Physical Therapy (11.2.6). La Crosse, WI: Orthopaedic Section, American Physical Therapy Association; 2001.
- Michener LA, Walsworth MK, Burnet EN. Effectiveness of rehabilitation for patients with subacromial impingement syndrome: a systematic review. *J Hand Ther*. 2004;17:152-164.
- Hartley A. Practical Joint Assessment. St Louis: Mosby; 1995.
- Berg EE, Ciullo JV. A clinical test for superior glenoid labral or "SLAP" lesions. Clin J Sport Med. 1998;8: 121-123
- 10. Liu SH, Henry MH, Nuccion SL. A prospective evaluation of a new physical examination in predicting glenoid labral tears. *Am J Sports Med*. 1996;24:721-725.
- 11. Litaker D, Pioro M, El Bilbeisi H, et al. Returning to the bedside: using the history and physical examination to identify rotator cuff tears. *J Am Geriatr Soc.* 2000;48:1633-1637.
- 12. Cleland J, Durall CJ. Physical therapy for adhesive capsulitis. *Physiotherapy*. 2002;88:450-457.
- Rayan GM, Jensen C. Thoracic outlet syndrome: provocative examination maneuvers in a typical population. J Shoulder Elbow Surg. 1995;4:113-117.
- 14. Winsor T, Brow R. Costoclavicular syndrome: its diagnosis and treatment. *JAMA*. 2004;196:109-111.
- Wainner RS, Gill H. Diagnosis and nonoperative management of cervical radiculopathy. J Orthop Sports Phys Ther. 2000;30:728-744.
- Walsworth MK, Doukas WC, Murphy KP, et al. Reliability and diagnostic accuracy of history and physical examination for diagnosing glenoid labral tears. *Am J Sports Med.* 2008;36:162-168.
- Riddle DL, Rothstein JM, Lamb RL. Goniometric reliability in a clinical setting. Shoulder measurements. *Phys Ther.* 1987;67:668-673.
- 18. Terwee CB, de Winter AF, Scholten RJ, et al. Interobsever reproducibility of the visual estimation of range

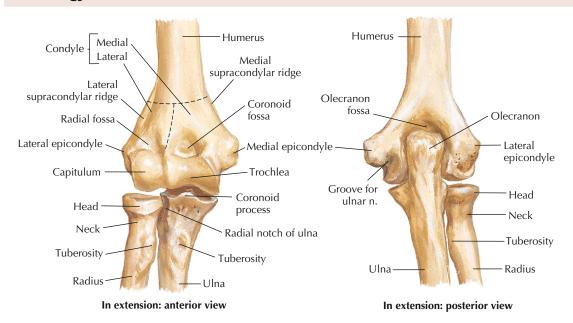
- of motion of the shoulder. *Arch Phys Med Rehabil*. 2005;86:1356-1361.
- Yang JL, Lin JJ. Reliability of function-related tests in patients with shoulder pathologies. *J Orthop Sports Phys Ther.* 2006;36:572-576.
- Nomden JG, Slagers AJ, Bergman GJ, et al. Interobserver reliability of physical examination of shoulder girdle. *Man Ther.* 2009;14:152-159.
- Wang SS, Normile SO, Lawshe BT. Reliability and smallest detectable change determination for serratus anterior muscle strength and endurance tests. *Physio*ther Theory Pract. 2006;22:33-42.
- Michener LA, Boardman ND, Pidcoe PE, Frith AM. Scapular muscle tests in subjects with shoulder pain and functional loss: reliability and construct validity. *Phys Ther.* 2005;85:1128-1138.
- Dover G, Powers ME. Reliability of joint position sense and force-reproduction measures during internal and external rotation of the shoulder. *J Athl Train*. 2003;38:304-310.
- Borstad JD, Mathiowetz KM, Minday LE, et al. Clinical measurement of posterior shoulder flexibility. *Man Ther*. 2007;12:386-389.
- Boyd EA, Torrance GM. Clinical measures of shoulder subluxation: their reliability. *Can J Public Health*. 1992;83(Suppl 2):S24-S28.
- Gill HS, El Rassi G, Bahk MS, et al. Physical examination for partial tears of the biceps tendon. *Am J Sports Med.* 2007;35:1334-1340.
- 27. Guanche CA, Jones DC. Clinical testing for tears of the glenoid labrum. *Arthroscopy*. 2003;19:517-523.
- 28. Nakagawa S, Yoneda M, Hayashida K, et al. Forced shoulder abduction and elbow flexion test: a new simple clinical test to detect superior labral injury in the throwing shoulder. *Arthroscopy*. 2005;21: 1290-1295A.
- 29. Nijs J, Roussel N, Vermeulen K, et al. Scapular positioning in patients with shoulder pain: a study examining the reliability and clinical importance of 3 clinical tests. *Arch Phys Med Rehabil*. 2005;86: 1349-1355.
- Odom CJ, Taylor AB, Hurd CE, et al. Measurement of scapular asymmetry and assessment of shoulder dysfunction using the Lateral Scapular Slide Test: a reliability and validity study. *Phys Ther*. 2001;81:799-809.
- Kibler WB, Uhl TL, Maddux JW, et al. Qualitative clinical evaluation of scapular dysfunction: A reliability study. J Shoulder Elbow Surg. 2002;11:550-556.
- 32. Hanchard NC, Howe TE, Gilbert MM. Diagnosis of shoulder pain by history and selective tissue tension: agreement between assessors. *J Orthop Sports Phys Ther*. 2005;35:147-153.
- 33. de Winter AF, Jans MP, Scholten RJ, et al. Diagnostic classification of shoulder disorders: interobserver agreement and determinants of disagreement. *Ann Rheum Dis.* 1999;58:272-277.

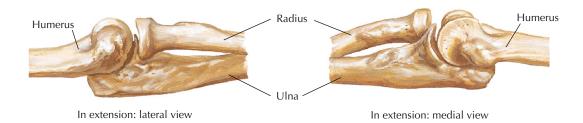
- 34. Levy AS, Lintner S, Kenter K, et al. Intra- and interobserver reproducibility of the shoulder laxity examination. Am J Sports Med. 1999;27:460-463.
- 35. Bushnell BD, Creighton RA, Herring MM. The bony apprehension test for instability of the shoulder: a prospective pilot analysis. Arthroscopy. 2008;24: 974-982.
- 36. Farber AJ, Castillo R, Clough M, et al. Clinical assessment of three common tests for traumatic anterior shoulder instability. J Bone Joint Surg Am. 2006;88:1467-1474.
- 37. Speer KP, Hannafin JA, Altchek DW, Warren RF. An evaluation of the shoulder relocation test. Am J Sports Med. 1994;22:177-183.
- 38. Parentis MA, Glousman RE, Mohr KS, et al. An evaluation of the provocative tests for superior labral anterior posterior lesions. Am J Sports Med. 2006;34: 265-268.
- 39. Myers TH, Zemanovic JR, Andrews JR. The resisted supination external rotation test: a new test for the diagnosis of superior labral anterior posterior lesions. Am J Sports Med. 2005;33:1315-1320.
- 40. Stetson WB, Templin K. The crank test, the O'Brien test, and routine magnetic resonance imaging scans in the diagnosis of labral tears. Am J Sports Med. 2002;30:806-809.
- 41. McFarland EG, Kim TK, Savino RM. Clinical assessment of three common tests for superior labral anterior-posterior lesions. Am J Sports Med. 2002;30: 810-815.
- 42. Hegedus EJ, Goode A, Campbell S, et al. Physical examination tests of the shoulder: a systematic review with meta-analysis of individual tests. Br J Sports Med. 2008;42:80-92; discussion 92.
- 43. Ebinger N, Magosch P, Lichtenberg S, Habermeyer P. A new SLAP test: the supine flexion resistance test. Arthroscopy. 2008;24:500-505.
- 44. Holtby R, Razmjou H. Accuracy of the Speed's and Yergason's tests in detecting biceps pathology and SLAP lesions: comparison with arthroscopic findings. Arthroscopy. 2004;20:231-236.
- 45. Kim YS, Kim JM, Ha KY, et al. The passive compression test: a new clinical test for superior labral tears of the shoulder. *Am J Sports Med.* 2007;35:1489-1494.
- 46. Kim SH, Park JS, Jeong WK, et al. The Kim test: a novel test for posteroinferior labral lesion of the shoulder—a comparison to the jerk test. Am J Sports *Med.* 2005;33:1188-1192.
- 47. Kim SH, Ha KI, Ahn JH, et al. Biceps load test II: a clinical test for SLAP lesions of the shoulder. Arthroscopy. 2001;17:160-164.
- 48. Kim SH, Ha KI, Han KY. Biceps load test: a clinical test for superior labrum anterior and posterior lesions in shoulders with recurrent anterior dislocations. AmJ Sports Med. 1999;27:300-303.
- 49. Johansson K, Ivarson S. Intra- and interexaminer reliability of four manual shoulder maneuvers used to identify subacromial pain. Man Ther. 2009;14:231-239.

- 50. Silva L, Andreu JL, Munoz P et al. Accuracy of physical examination in subacromial impingement syndrome. Rheumatology (Oxford). 2008;47:679-683.
- 51. Park HB, Yokota A, Gill HS, et al. Diagnostic accuracy of clinical tests for the different degrees of subacromial impingement syndrome. J Bone Joint Surg Am. 2005;87:1446-1455.
- 52. Calis M, Akgun K, Birtane M, et al. Diagnostic values of clinical diagnostic tests in subacromial impingement syndrome. Ann Rheum Dis. 2000;59:44-47.
- 53. Zaslav KR. Internal rotation resistance strength test: a new diagnostic test to differentiate intra-articular pathology fropm outlet (Neer) impingement syndrome in the shoulder. J Shoulder Elbow Surg. 2001;10:23-27.
- 54. Miller CA, Forrester GA, Lewis JS. The validity of the lag signs in diagnosing full-thickness tears of the rotator cuff: a preliminary investigation. Arch Phys Med Rehabil. 2008;89:1162-1168.
- 55. Walch G, Boulahia A, Calderone S, et al. The "dropping" and "hornblower's" signs in evaluation of rotator-cuff tears. J Bone Joint Surg Br. 1998;80:624-628.
- 56. Holtby R, Razmjou H. Validity of the supraspinatus test as a single clinical test in diagnosing patients with rotator cuff pathology. J Orthop Sports Phys Ther. 2004;34:194-200.
- 57. Hertel R, Ballmer FT, Lombert SM, Gerber C. Lag signs in the diagnosis of rotator cuff rupture. J Shoulder Elbow Surg. 1996;5:307-313.
- 58. Barth JR, Burkhart SS, De Beer JF. The bear-hug test: a new and sensitive test for diagnosing a subscapularis tear. Arthroscopy. 2006;22:1076-1084.
- 59. Bertelli JA, Ghizoni MF. Use of clinical signs and computed tomography myelography findings in detecting and excluding nerve root avulsion in complete brachial plexus palsy. J Neurosurg. 2006;105:835-842.
- 60. Walton J, Mahajan S, Paxinos A, et al. Diagnostic values of tests for acromioclavicular joint pain. J Bone Joint Surg Am. 2004;86-A:807-812.
- 61. Stratford PW, Binkley JM, Stratford DM. Development and initial validation of the upper extremity functional index. Physiotherapy Canada. 2001;53:259-263.
- 62. Roy JS, MacDermid JC, Woodhouse LJ. Measuring shoulder function: a systematic review of four questionnaires. Arthritis Rheum. 2009;61:623-632.
- 63. Mintken PE, Glynn P, Cleland JA. Psychometric properties of the shortened disabilities of the Arm, Shoulder, and Hand Questionnaire (QuickDASH) and Numeric Pain Rating Scale in patients with shoulder pain. J Shoulder Elbow Surg. 2009
- 64. Li L, Liu X, Herr K. Postoperative pain intensity assessment: a comparison of four scales in Chinese adults. Pain Med. 2007;8:223-234.
- 65. Farrar JT, Berlin JA, Strom BL. Clinically important changes in acute pain outcome measures: a validation study. J Pain Symptom Manage. 2003;25:406-411.
- 66. Farrar JT, Portenov RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. Pain. 2000;88:287-294.

- 67. Lyons AR, Tomlinson JE. Clinical diagnosis of tears of the rotator cuff. *J Bone Joint Surg Br.* 1992;74:414-415.
- 68. Kibler WB. Specificity and sensitivity of the anterior slide test in throwing athletes with superior glenoid labral tears. *Arthroscopy*. 1995;11:296-300.
- Leroux JL, Thomas E, Bonnel F, Blotman F. Diagnostic value of clinical tests for shoulder impingement syndrome. *Rev Rhum Engl Ed.* 1995;62:423-428.
- Gross ML, Distefano MC. Anterior release test. A new test for occult shoulder instability. *Clin Orthop Relat Res.* 1997;105-108.
- 71. O'Brien SJ, Pagnani MJ, Fealy S, et al. The active compression test: a new and effective test for diagnosing labral tears and acromioclavicular joint abnormality. *Am J Sports Med.* 1998;26:610-613.
- 72. Itoi E, Kido T, Sano A, et al. Which is more useful, the "full can test" or the "empty can test" in detecting the torn supraspinatus tendon? *Am J Sports Med.* 1999;27: 65-68.

- Mimori K, Muneta T, Nakagawa T, Shinomiya K. A new pain provocation test for superior labral tears of the shoulder. *Am J Sports Med.* 1999;27:137-142.
- 74. Murrell GA, Walton JR. Diagnosis of rotator cuff tears. *Lancet*. 2001;357:769-770.
- Wolf EM, Agrawal V. Transdeltoid palpation (the rent test) in the diagnosis of rotator cuff tears. *J Shoulder Elbow Surg.* 2001;10:470-473.
- 76. Kibler WB, Sciascia AD, Hester P, et al. Clinical utility of traditional and new tests in the diagnosis of biceps tendon injuries and superior labrum anterior and posterior lesions in the shoulder. *Am J Sports Med*. 2009;37:1840-1847.
- Levy O, Relwani JG, Mullett H, et al. The active elevation lag sign and the triangle sign: new clinical signs of trapezius palsy. *J Shoulder Elbow Surg*. 2009;18:573-576.




CLINICAL SUMMARY AND RECOMMENDATIONS	440
Anatomy	441
Osteology	441
Arthrology	442
Ligaments	443
Muscles	445
Nerves	448
Patient History	449
Initial Hypotheses Based on History	449
Physical Examination Tests	450
Range of Motion	450
End-Feel Classification	452
Assessing Strength	452
Special Tests	453
Interventions	456
Outcome Measures	457
Appendix	458
Quality Assessment of Diagnostic Studies Using QUADAS	458
References	459

CLINICAL SUMMARY AND RECOMMENDATIONS

Patient History	
Complaints	Little is known about the utility of subjective complaints with elbow pain.
Physical Examination	
Range of Motion	Measuring elbow range of motion (ROM) has consistently been shown to exhibit good to high reliability for flexion, extension, supination, and pronation.
Strength Assessment	Grip strength testing in patients with lateral epicondylalgia exhibits high inter-rater reliability.
Special Tests	In general few studies have examined the diagnostic utility for special tests of the elbow. The elbow extension test has been consistently been shown to be an excellent test to rule out the presence of bony or joint injury (sensitivity values between .91 and .97 and —LR values between exhibit .04 and .13). The pressure provocation test, the flexion test, and the Tinel sign at the elbow have been found to be useful tests for identifying the presence of cubital tunnel syndrome. The moving valgus stress test has been shown to exhibit superior diagnostic accuracy when compared with the valgus stress test for identifying a medial collateral tear. No studies to date have examined the utility of the varus stress test for identifying the presence of a lateral collateral tear.

Osteology

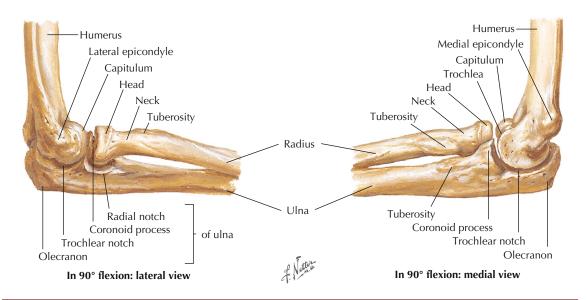


Figure 10-1 Bones of elbow.

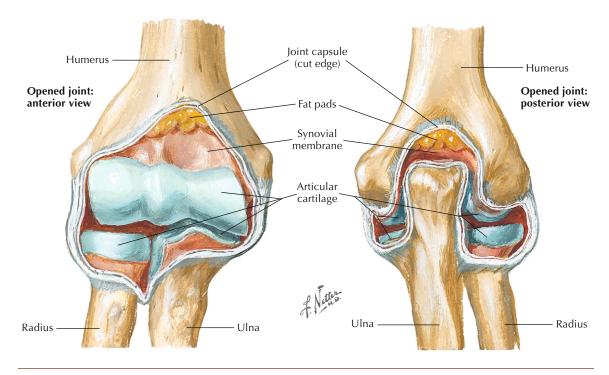


Figure 10-2
Anterior and posterior opened elbow joint.

Joint	Type and Classification	Closed Packed Position	Capsular Pattern
Humeroulnar	Synovial: hinge	Elbow extension	Flexion is limited more than extension
Humeroradial	Synovial: condyloid	0° of flexion, 5° of supination	Flexion is limited more than extension
Proximal radioulnar	Synovial: trochoid	5° of supination	Pronation = supination
Distal radioulnar	Synovial: trochoid	5° of supination	Pronation = supination

Ligaments

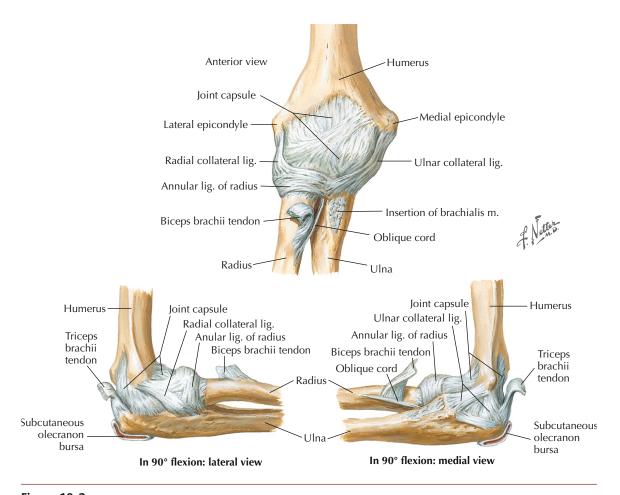


Figure 10-3 Ligaments of the elbow.

Ligaments	Attachments	Function
Radial collateral	Lateral epicondyle of humerus to annular ligament of radius	Resists varus stress
Annular ligament of radius	Coronoid process of ulna, around radial head to lateral border of radial notch of ulna	Holds head of radius in radial notch of ulna and allows forearm supination and pronation
Ulnar collateral	Medial epicondyle of humerus to coronoid process and olecranon of ulna	Resists valgus stress

Ligaments (continued)

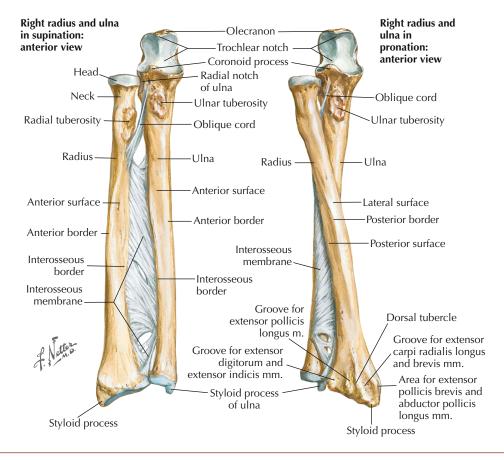


Figure 10-4 Ligaments of the forearm.

Ligaments	Attachments	Function
Oblique cord	Tuberosity of ulna to just distal to tuberosity of radius	Transfers forces from radius to ulna and reinforces proximity of ulna to radius
Interosseous membrane	Lateral border of ulna to medial border of radius	Transfers force from radius to ulna and reinforces proximity of ulna to radius

Muscles

Anterior and Posterior Muscles of Arm

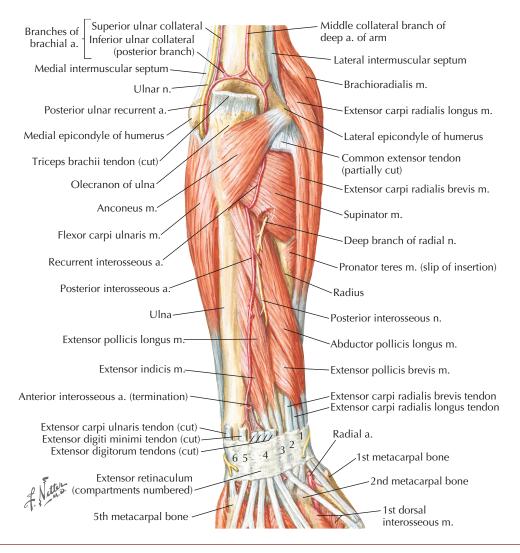


Figure 10-5 Muscles of forearm: posterior view.

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Triceps brachii				
Long head	Infraglenoid tubercle of scapula	Olecranon process of ulna	Radial nerve (C6, C7, C8)	Extends elbow
Lateral head	Superior to radial groove of humerus			
Medial head	Inferior to radial grove of humerus			
Anconeus	Lateral epicondyle of humerus	Superoposterior aspect of ulna	Radial nerve (C7, C8, T1)	Assists in elbow extension, stabilizes elbow joint

Muscles (continued)

Anterior and Posterior Muscles of Arm

Figure 10-6 Muscles of forearm: anterior view.

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Biceps brachi	i			
Short head	Coronoid process of scapula	Radial tuberosity and fascia of forearm	Musculocutaneus nerve (C5, C6)	Supinates forearm and flex elbow
Long head	Supraglenoid tubercle of scapula			
Brachialis	Distal aspect of humerus	Coronoid process and tuberosity of ulna	Musculocutaneus nerve (C5, C6)	Flexes elbow

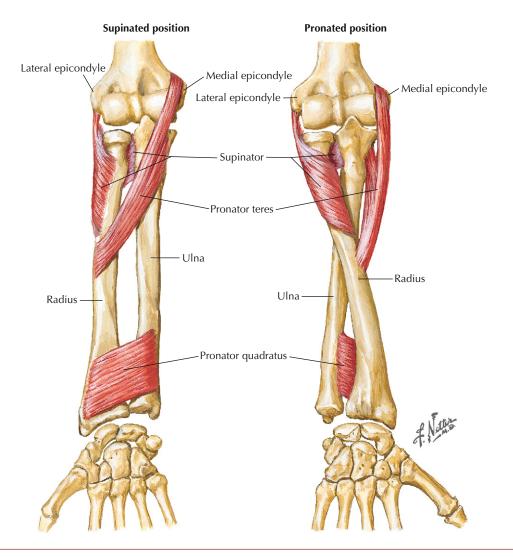


Figure 10-7 Individual muscles of forearm: rotators of radius.

Muscle	Proximal Attachment	Distal Attachment	Nerve and Segmental Level	Action
Supinator	Lateral epicondyle of humerus, supinator fossa, and crest of ulna	Proximal aspect of radius	Deep branch of radial nerve (C5, C6)	Supinates forearm
Pronator teres	Medial epicondyle of humerus and coronoid process of ulna	Lateral aspect of radius	Median nerve (C6, C7)	Pronates forearm and flexes elbow
Pronator quadratus	Distal anterior aspect of ulna	Distal anterior aspect of radius	Anterior interosseus nerve (C8, T1)	Pronates forearm

Nerves

Brachialis m. Ulnar n. Musculocutaneous n Median n. (becomes) Lateral cutaneous n. of forearm Brachial a. Lateral intermuscular septum Medial intermuscular septum Radial n. Pronator teres m. Lateral epicondyle -(cut and reflected) Anterior ulnar recurrent a. Biceps brachii tendon (cut) Medial epicondyle of humerus Radial recurrent a. Flexor carpi radialis, palmaris Radial a. longus, flexor digitorum superficialis (humeroulnar Supinator m. head) and flexor carpi ulnaris Posterior and anterior mm. (cut) interosseous aa. Posterior ulnar recurrent a. Flexor digitorum superficialis Ulnar a. m. (radial head) (cut) Pronator teres m. Common interosseous a. (cut and reflected) Pronator teres m. (ulnar head) (cut) Radial a.-Flexor pollicis longus Median n. (cut) m. and tendon (cut) Flexor digitorum profundus m. Radius Anterior interosseous a. and n. Pronator quadratus m. Ulnar n. and dorsal branch Brachioradialis tendon (cut) Palmar carpal branches of radial and ulnar aa. Radial a. and superficial palmar branch Flexor carpi ulnaris tendon (cut) Flexor pollicis longus tendon (cut) Flexor carpi radialis tendon (cut) Deep palmar branch of ulnar a. Abductor pollicis longus tendon and deep branch of ulnar n. Hook of hamate Extensor pollicis brevis tendon 5th metacarpal bone 1st metacarpal bone

Figure 10-8 Nerves of forearm: anterior view.

Nerves	Segmental Levels	Sensory	Motor
Musculocutaneus	C5, C6, C7	Lateral antebrachial cuta- neous nerve	Coracobrachialis, biceps brachii, brachialis
Lateral cutaneous of forearm	C5, C6, C7	Lateral forearm	No motor
Median	C6, C7, C8, T1	Palmar and distal dorsal aspects of lateral 3½ digits and lateral palm	Flexor carpi radialis, flexor digitorum superficialis, lateral ½ of flexor digitorum profundus, flexor pollicis longus, pronator quadratus, pronator teres, most thenar muscles, and lateral lumbricales
Anterior interosseous	C6, C7, C8, T1	No sensory	Flexor digitorum profundus, flexor pollicis longus, pronator quadratus
Ulnar	C7, C8, T1	Medial hand including medial ¹ / ₂ of 4th digit	Flexor carpi ulnaris, medial $^{1}/_{2}$ of flexor digitorum profundus, and most small muscles in hand
Radial	C5, C6, C7, C8, T1	Posterior aspect of forearm	Triceps brachii, anconeus, brachioradialis, extensor muscles of forearm
Posterior interosseous	C5, C6, C7, C8, T1	None	Abductor pollicis longus, extensor pollicis brevis and longus, extensor digitorum communis, extensor indicis, extensor digiti minimi

PATIENT HISTORY

Initial Hypotheses Based on History

History	Initial Hypothesis
Pain over lateral elbow during gripping activities	Possible lateral epicondylitis ¹⁻⁴ Possible radial tunnel syndrome ⁵⁻⁷
Pain over medial elbow during wrist flexion and pronation	Possible medial epicondylitis ^{8,9}
Reports of numbness and tingling in ulnar nerve distribution distal to elbow	Possible cubital tunnel syndrome ^{9,10}
Pain in anterior aspect of elbow and forearm that is exacerbated by wrist flexion combined with elbow flexion and forearm pronation	Possible pronator syndrome ¹¹
Reports of pain during movement with sensations of catching or instability	Possible rotatory instability ¹¹
Reports of posterior elbow pain during elbow hyperextension	Possible valgus extension overload syndrome ¹¹

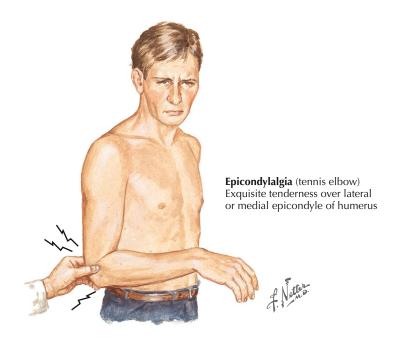


Figure 10-9 Palpation of lateral epicondyle.

PHYSICAL EXAMINATION TESTS

Range of Motion

Reliability of Elbow Flexion and Extension Measurements

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 10-10 Measurement of elbow flexion.

Test and Measure	Instrumentation	Population	Reliability ICC	
			Intra-examiner	Inter-examiner
Active ROM (AROM)	12-inch metal goniometer		.94	.89
elbow flexion ¹²	10-inch plastic goniometer	24 6 1. 1 .	.97	.96
	6-inch plastic goniometer	24 patients referred to physical therapy in whom ROM	.96	.90
AROM elbow	12-inch metal goniometer	measurements of elbow were appropriate	.86	.96
extension ¹²	10-inch plastic goniometer	арргорпасе	.96	.94
	6-inch plastic goniometer		.99	.93
AROM elbow flexion ¹³	Universal standard goniometer	38 patients who had under-	.5598	.5862
AROM elbow extension ¹³		gone a surgical procedure for injury at elbow, forearm, or wrist	.4598	.5887
AROM elbow flexion ¹⁴	Universal plastic goniometer	30 healthy subjects	Not reported	.53
	Fluid-filled bubble inclinometer		Not reported	.92

Range of Motion		Interpretation
		Substantial agreement
Reliability of Forearm Supination and Pronation Measurements	.6180	Moderate agreement
		Fair agreement
		Slight agreement
		No agreement

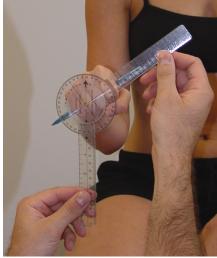


Figure 10-11 Forearm supination and pronation measurements.

Measurement of forearm supination

Measurement of forearm pronation

Test and Measure		Instrumentation	Population		Reliability ICC	
					Intra-examiner	Inter-examiner
	Supination	Universal standard	38 patients who had undergone a surgical procedure for elbow, forearm, or wrist injury		.9699	.9093
AROM ¹³	Pronation	goniometer			.9699	.8386
	Supination			injured	.98	.96
		14.5-cm plastic		non-injured	.96	.94
	Pronation	goniometer		injured	.9597	.95
AROM ¹⁵			40 subjects, 20 injured and 20 non-injured	non-injured	.8698	.92
AROM ¹⁻⁵	Supination	Plumb line goniometer: a 14.5-cm single arm plastic goniometer with a plumb line attached to the center of its 360°		injured	.98	.96
				non-injured	.9498	.96
	Pronation			injured	.9698	.92
				non-injured	.9597	.91
AROM Supination/	pronation ¹⁶	8-inch steel goniometer	31 asymptomatic	subjects	.8197	Not reported
	Supination	Plumb line goniometer	30 hand therapy patients		.95	Not reported
Passive	Pronation	Franto line gomometer			.87	Not reported
ROM (PROM) ¹⁷	Supination				.95	Not reported
	Pronation	Standard goniometer			.79	Not reported
ICC, Intraclass correlation coefficient.						

End-Feel Classification

Reliability of Classification on End-Feel for Elbow Flexion and Extension

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Assessment of flexion end-feel

Assessment of extension end-feel

Figure 10-12 End-feel for elbow flexion and extension assessment.

Test and Measure	Test Procedure	Population	Inter-examiner Reliability
Flexion/extension ¹⁸	With patient standing, examiner stabilizes humerus with one hand and maintains forearm in neutral with the other hand. Examiner extends or flexes elbow and assesses end-feel. End-feel is graded as "soft tissue approximation," "muscular," "cartilage," "capsule," or "ligament"	20 asymptomatic subjects	Flexion $\kappa = .40$ Extension $\kappa = .73$

Assessing Strength

Reliability of Grip Strength Testing in Patients with Lateral Epicondylalgia

Grip Strength	Test Procedure	Population	Inter-examiner Reliability
Pain-free ¹⁹	With patient standing with elbow extended and forearm in neutral, patient squeezes dynamometer until discomfort is felt	50 patients diagnosed with lateral epicondylalgia on	ICC = .97
Maximum ¹⁹	As above except patient is instructed to squeeze dynamometer as hard as possible	clinical examination	ICC = .98

Special Tests

Indication of Bony or Joint Injury: Elbow Extension Test

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test	Test Procedure	Determination of Findings	Population	Reference Standard	Sens (95% CI)	Spec (95% CI)	+LR	-LR
Elbow extension test ²²	With patient seated with arms supinated, patient flexes shoulders to 90° then extends both elbows	Positive if the involved elbow has less exten- sion than the contralateral side	2127 adults and children presenting to the emergency department	Radio- graphic evaluation and/or a 7-to 10- day phone call follow-up	96.8 (95.0, 98.2)	48.5 (45.6, 51.4)	1.88 (1.78, 1.99)	.06 (.04, .10)
Elbow extension test ²⁰	Supine patient fully extends elbow	Positive if patient is unable to fully extend elbow	114 patients with acute elbow injuries	Radio- graphic evaluation	.97	.69	3.13	.04
Elbow extension test ²¹	As above except patient is standing	As above	100 patients pre- senting to an emergency depart- ment with elbow injury	As above	.91 (.81, 1.0)	.70 (.61, .78)	3.03	.13

Special Tests

Detecting Cubital Tunnel Syndrome

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0



Figure 10-13 Tinel's sign.

Test and Measure	Test Procedure	Determination of Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Pressure provoca- tive test ²³	With patient's elbow in 20° of flexion and forearm supination, examiner applies pressure to ulnar nerve just proximal to cubital tunnel for 60 sec	Positive if patient reports symptoms in distribution of ulnar nerve			.89	.98	44.5	.11
Flexion test ²³	Patient's elbow is placed in maximum flexion with full supination of forearm and wrist in neutral. Posi- tion is held for 60 sec	As above	55 subjects, 32 with cubital tunnel syn-	Electro- diagnosti- cally	.75	.99	75	.25
Combined pressure and flexion provocative test ²³	Patient's arm is in maximum elbow flexion and forearm supination. Examiner applies pressure on ulnar nerve just proximal to cubital tunnel. Pressure is held for 60 sec	As above	drome and 33 asymptomatic subjects	proven cubital tunnel syndrome	.98	.95	19.6	.02
Tinel's sign ²³	Examiner applies 4 to 6 taps to patient's ulnar nerve just proximal to cubital tunnel	Positive if tin- gling sensation in distribution of ulnar nerve			.70	.98	35	.31

Special Tests

Detecting Medial Collateral Tears

With the shoulder at 90 degrees of abduction and full external rotation, the clinician maximally flexes the patient's elbow while simultaneously applying a valgus

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

The clinician quickly extends the patient's elbow.

Figure 10-14 Moving valgus stress test.

Test and Measure	Test Procedure	Determination of Positive Findings	Patient Population	Reference Standard	Sens	Spec	+LR	-LR
Moving valgus stress test ²⁴	Patient's shoulder is abducted to 90° with maximal external rotation. Clinician maximally flexes the elbow and applies a valgus stress. The clinician quickly extends the elbow to 30°	If patient experiences maximal medial elbow pain between 120° and 70° of elbow flexion, test is considered positive	21 patients re- ferred with chronic medial collateral liga- ment injuries	Surgical visualization	1.0 (81,100)	.75 (.19, .99)	4.0 (.73, 21.8)	.04 (.00, .72)
Valgus stress test at 30°, 60°, 70°, or 90° of elbow flexion ²⁴	Valgus stress is applied to the elbow at 30°, 60°, 70°, and 90° of elbow flexion	If the clinician identifies laxity or the patient reports pain, the test is considered positive	21 patients re- ferred with chronic medial collateral liga- ment injuries	Surgical visualization	Pain .65 (.38, .86) Laxity .19 (.04, .46)	Pain .50 (.70, .93) Laxity 1.0 (.40, 1.0)	Pain 1.3 Laxity Unde- fined	Pain .70 Laxity .81

Interventions

Diagnostic Utility of History and Physical Examination Findings for Predicting Favorable Short-Term Response to Mobilization with Movement and Exercise in Patients with Lateral Epicondylalgia

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Vicenzino and colleagues²⁵ have developed a preliminary clinical prediction rule to identify individuals with lateral epicondylalgia who are likely to benefit from mobilization with movement and exercise. The study identified a number of predictor variables.

Test and Study Quality	Population	Reference Standard	Sens	Spec	+LR
Age < 49 years ²⁵	62 patients with lateral epicondylalgia	A global perceived effect of improved, much im- proved, or completely recovered	.61 (.46, .74)	.77 (.46, .94)	2.6 (.96, 7.3)
Affected pain-free grip > 112 N ²⁵			.53 (.38, .67)	.77 (.46, .93)	2.3 (.82, 6.4)
Unaffected pain-free grip < 336 N ²⁵			.49 (.35, .63)	.77 (.46, .94)	2.1 (.76, 6.0)
Change in pain-free grip following the mobilization with movement > 25% ²⁵			.75 (.58, .87)	.5 (.78, 2.9)	1.5 (.78, 2.9)

The following three variables formed the clinical prediction rule:

- 1. < 49 years
- 2. Affected pain free grip > 112 N
- 3. Unaffected pain free grip < 336 N

Diagnostic accuracy for the clinical prediction rule is as follows:						
Number of variables present	Sens	Spec	+LR			
3	.01 (.03, .20)	1.0 (.7, 1.0)	Undefined			
2	.57 (.42, .71)	.85 (.54, .97)	3.7 (1.0, 13.6)			
1	.98 (.88, .99)	.46 (.20, .74)	1.8 (1.1, 3.0)			

OUTCOME MEASURES

Outcome Measure	Scoring and Interpretation	Test-Retest Reliability	MCID
Upper Extremity Functional Index	Users are asked to rate the difficulty of performing 20 functional tasks on a Likert-type scale ranging from 0 (extremely difficult or unable to perform activity) to 4 (no difficulty). A total score out of 80 is calculated by summing each score. The answers provide a score between 0 and 80, with lower scores representing more disability	ICC = .95 ²⁶	Not reported; however, the MDC has been determined. MDC = 9.1 points ²⁶
Patient-Rated Tennis Elbow Evaluation	Users are asked to rate their levels of pain and function on two subscales. The pain subscale includes five questions and each is scored from 0 to 10 (0 = no pain, 10 = worst pain imaginable). The sum of the score on the five items is recorded as the pain score with a maximum of 50 with higher scores indicating greater levels of pain. The function subscale has 10 items and each is scored from 0 to 10 (0 = no difficulty, 10 = unable to do). The sum of the 10 items is divided by 2 and the patient can score a maximum of 50 on the functional scale with higher scores representing greater disability. To compute a total score (out of a 100) the sum of the pain and functional scales are computed	Pain ICC = .8999 ²⁷⁻²⁹ Function ICC = .8399 ²⁷⁻²⁹ Total ICC = .8999 ²⁷⁻²⁹	Not reported
Numeric Pain Rating Scale (NPRS)	Users rate their level of pain on an 11-point scale ranging from 0 to 10, with high scores representing more pain. Often asked as "current pain" and "least," "worst," and "average" pain in the past 24 hours	ICC = . 72 ³⁰	2 ^{31,32}

APPENDIX

Quality Assessment of Diagnostic Studies Using QUADAS

	Hawksworth 1991	Novak 1994	O'Driscoll 1995	Docherty 2002	Appelboam 2008
1. Was the spectrum of patients representative of the patients who will receive the test in practice?	Υ	U	Y	Y	Υ
2. Were selection criteria clearly described?	N	N	Υ	Υ	Υ
3. Is the reference standard likely to correctly classify the target condition?	Υ	Υ	Υ	Υ	Υ
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	U	U	Y	Y	Y
5. Did the whole sample, or a random selection of the sample, receive verification using a reference standard of diagnosis?	Υ	Υ	Y	N	Υ
6. Did patients receive the same reference standard regardless of the index test result?	U	Υ	Y	N	N
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Y	Υ	Y	Υ	Y
8. Was the execution of the index test described in sufficient detail to permit replication of the test?	Y	Υ	Y	Υ	Y
9. Was the execution of the reference standard described in sufficient detail to permit its replication?	N	Υ	Y	N	N
10. Were the index test results interpreted without knowledge of the results of the reference test?	Y	U	U	Υ	Υ
11. Were the reference standard results interpreted without knowledge of the results of the index test?	Y	U	U	Υ	Υ
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	Y	Υ	Y	Υ	Υ
13. Were uninterpretable/ intermediate test results reported?	Υ	U	Υ	Υ	Υ
14. Were withdrawals from the study explained?	Υ	U	Υ	Υ	Υ
Quality summary rating:			\Diamond		\Diamond
Y = yes, N = no, U = unclear. Good quality $(Y - N = 10 to 14)$. Fair quality $(Y - N = 5 to 9)$.					

REFERENCES

- 1. Baquie P. Tennis elbow. Principles of ongoing management. Aust Fam Physician. 1999;28:724-725.
- 2. Borkholder CD, Hill VA, Fess EE. The efficacy of splinting for lateral epicondylitis: a systematic review. I Hand Ther. 2004;17:181-199.
- 3. Vicenzino B. Lateral epicondylalgia: a musculoskeletal physiotherapy perspective. Man Ther. 2003;8:66-79.
- 4. Vicenzino B, Wright A. Lateral epicondylalgia I: epidemiology, pathophysiology, aetiology and natural history. Phys Ther Rev. 1996;1:23-34.
- 5. Pecina MM, Bojanic I. Overuse Injuries of the Musculoskeletal System, CRC Press. 1993.
- 6. Ellenbecker TS, Mattalino AJ. The Elbow in Sport, Human Kinetics. 1997.
- 7. Ekstrom R, Holden K. Examination of and intervention for a patient with chronic lateral elbow pain with signs of nerve entrapment. Phys Ther. 2002;82:1077-1086.
- Pienimäki TT, Siira PT, Vanharanta H. Chronic medial and lateral epicondylitis: a comparison of pain, disability, and function. Arch Phys Med Rehabil. 2002;83:317-321.
- 9. Hertling D, Kessler RM. The elbow and forearm. In: Management of Common Musculoskeletal Disorders: *Physical Therapy Principles and Methods.* (3rd ed). Lippincott; 1990:217-242.
- 10. Kingery WS, Park KS, Wu PB, Date ES. Electromyographic motor Tinel's sign in ulnar mononeuropathies at the elbow. Am J Phys Med Rehabil. 1995;74:419-426.
- 11. Ryan J. Elbow. In Current Concepts of Orthopaedic Physical Therapy, Orthopaedic Section, American Physical Therapy Association. 2001.
- 12. Rothstein JM, Miller PJ, Roettger RF. Goniometric reliability in a clinical setting. Elbow and knee measurements. Phys Ther. 1983;63:1611-1615.
- 13. Armstrong AD, MacDermid JC, Chinchalkar S, et al. Reliability of range-of-motion measurement in the elbow. J Elbow Shoulder Surg. 1998;7:573-580.
- 14. Petherick M, Rheault W, Kimble S, et al. Concurrent validity and intertester reliability of universal and fluid-based goniometers for active elbow range of motion. Phys Ther. 1988;68:966-969.
- 15. Karagiannopoulos C, Sitler M, Michlovitz S. Reliability of 2 functional goniometric methods for measuring forearm pronation and supination active range of motion. J Orthop Sports Phys Ther. 2003;33:523-531.
- 16. Gajdosik RL. Comparison and reliability of three goniometric methods for measuring forearm supination and pronation. Percept Mot Skills. 2001;93:353-355.
- 17. Flowers KR, Stephens-Chisar J, LaStayo P, Galante BL. Intrarater reliability of a new method and instrumentation for measuring passive supination and pronation. J Hand Ther. 2001;14:30-35.
- 18. Patla C, Paris S. Reliability of interpretation of the Paris classification of normal end feel for elbow flexion and extension. J Man Manipulative Ther. 1993;1:60-66.

- 19. Smidt N, van der Windt DA, Assendelft WJ, et al. Interobserver reproducibility of the assessment of severity of complaints, grip strength, and pain pressure threshold in patients with lateral epicondylitis. Arch Phys Med Rehabil. 2002;83:1145-1150.
- 20. Docherty MA, Schwab RA, Ma OJ. Can elbow extension be used as a test of clinically significant injury? South Med I. 2002;95:539-541.
- 21. Hawksworth CR, Freeland P. Inability to fully extend the injured elbow: an indicator of significant injury. Arch Emerg Med. 1991;8:253-256.
- 22. Appelboam A, Reuben AD, Benger JR, et al. Elbow extension test to rule out elbow fracture: multicentre, prospective validation and observational study of diagnostic accuracy in adults and children. Br Med J. 2008;337:a2428.
- 23. Novak CB, Lee GW, Mackinnon SE, Lay L. Provocative testing for cubital tunnel syndrome. J Hand Surg Am. 1994;19:817-820.
- 24. O'Driscoll SW, Lawton RL, Smith AM. The "moving valgus stress test" for medial collateral ligament tears of the elbow. *Am J Sports Med.* 2005;33:231-239.
- 25. Vicenzino B, Smith D, Cleland J, Bisset L. Development of a clinical prediction rule to identify initial responders to mobilisation with movement and exercise for lateral epicondylalgia. Man Ther. 2009;14:550-554.
- 26. Stratford PW, et al. Development and initial validation of the upper extremity functional index. Physiotherapy Canada. 2001;259-267.
- 27. Leung HB, Yen CH, Tse PY. Reliability of Hong Kong Chinese version of the Patient-rated Forearm Evaluation Questionnaire for lateral epicondylitis. Hong Kong Med J. 2004;10:172-177.
- 28. Newcomer KL, Martinez-Silvestrini JA, Schaefer MP, et al. Sensitivity of the Patient-Rated Forearm Evaluation Questionnaire in lateral epicondylitis. J Hand *Ther.* 2005;18:400-406.
- 29. Overend TJ, Wuori-Fearn JL, Kramer JF, MacDermid JC. Reliability of a patient-rated forearm evaluation questionnaire for patients with lateral epicondylitis. J Hand Ther. 1999;12:31-37.
- 30. Li L, Liu X, Herr K. et al. Postoperative pain intensity assessment: a comparison of four scales in Chinese adults. Pain Med. 2007;8:223-234.
- 31. Farrar JT, Young JP Jr, LaMoreaux L, et al. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94:149-158.
- 32. Farrar JT, Portenoy RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. Pain. 2000;88:287-294.

CLINICAL SUMMARY AND RECOMMENDATIONS	462
Anatomy	463
Osteology	463
Arthrology	465
Ligaments	466
Muscles	470
Nerves	475
Patient History	478
Initial Hypotheses Based on Patient History	478
Reliability of the Historical Examination	478
Diagnostic Utility of the Patient History in Identifying Carpal Tunnel	
Syndrome	479
Physical Examination Test	481
Screening	481
Range of Motion	484
Assessing Strength	487
Assessing Wrist Anthropometry	490
Assessing Swelling	491
Testing Sensation	492
Special Tests	494
Combinations of Tests	502
Outcome Measures	503
Appendix	504
Quality Assessment of Diagnostic Studies Using QUADAS	504
References	506

CLINICAL SUMMARY AND RECOMMENDATIONS

Patient History	
Complaints	Overall subjective complaints do not appear useful in identifying carpal tunnel syndrome. Only reports of "dropping objects" and "shaking hand improves symptoms" statistically altered the probability of diagnosis, and then only minimally ($+LR=1.7$ to 1.9 , $-LR=.34$ to $.47$).
Physical Examination	
Screening	Scaphoid fractures can effectively be both ruled in and ruled out by testing for snuff box tenderness, pain with resisted supination, and pain with longitudinal compression after an injury, suggesting possible fracture (each approximately $+LR = 50$, $-LR = 0.0$).
	The physical examination appears less effective at identifying other wrist fractures, at least in children.
Range of Motion, Strength, and Sensation Assessment	Measuring wrist range of motion (ROM) appears to be highly reliable but is of unknown diagnostic utility. Measuring finger and thumb ROM is less reliable even when performed by the same examiner.
	Assessing strength with dynamometry has consistently been shown to be highly reliable, but again, is of unknown diagnostic utility. Manual muscle testing of the abductor pollicis brevis muscle does not appear to be very helpful in identifying carpal tunnel syndrome.
	Sensory testing of the hand is of poor to moderate reliability. Only sensory loss at the pad of the thumb appears helpful in identifying carpal tunnel syndrome, and then only minimally $(+LR = 2.2, -LR = .49)$.
Special Tests	Evidence on the diagnostic utility of Tinel's sign, Phalen's test, and carpal tunnel compression test is highly variable. The highest quality studies of each suggest that none of the three tests is particularly helpful in identifying carpal tunnel syndrome. Additionally, one study found all three tests to be both more sensitive and more specific in identifying tenosynovitis than carpal tunnel syndrome.
	A new test, the ulnar fovea sign, appears to be very good at both ruling in and ruling out foveal disruption of the distal radioulnar ligaments and ulnotriquetral ligament injuries ($+LR=7.1,-LR06$).
Combinations of Findings	Although not yet validated, a clinical prediction rule appears to be very effective at identifying carpal tunnel syndrome. The presence of 5 variables (a Hand Severity Scale score of > 1.9 , a wrist ratio index $> .67$, a patient report of shaking the hand for symptom relief, diminished sensation on the thumb pad, and age older than 45) was found to be associated with a $+$ LR of 18.3.

Osteology

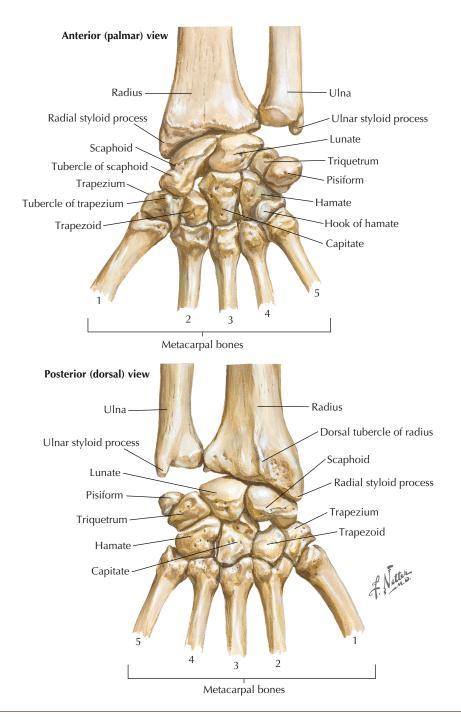
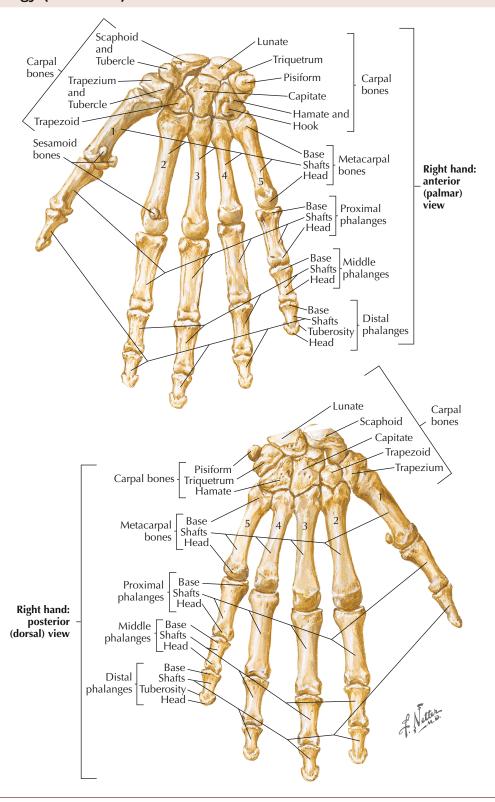
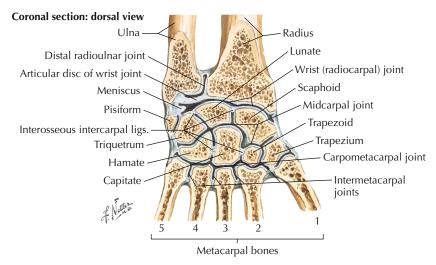




Figure 11-1 Carpal bones.

Osteology (continued)

Figure 11-2Bones of wrist and hand.

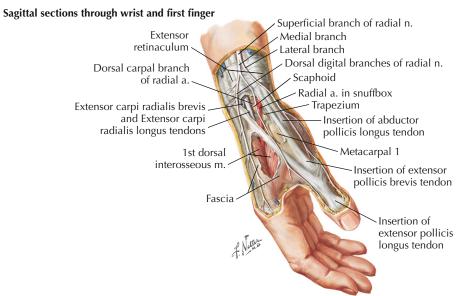
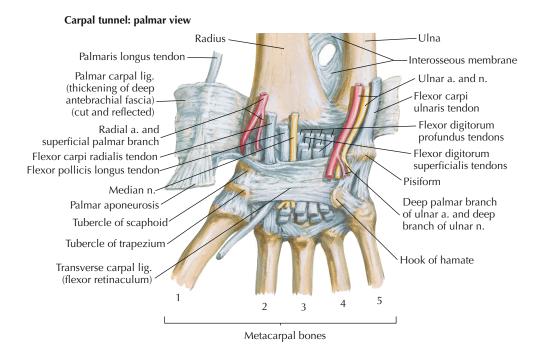


Figure 11-3 Wrist joint.

Joints	Type and Classification	Closed Packed Position	Capsular Pattern
Radiocarpal	Synovial: condyloid	Full extension	Limitation equal in all directions
Intercarpal	Synovial: plane	Extension	Limitation equal in all directions
Carpometacarpal (CMC)	Synovial: plane, except for 1st CMC, which is sellar	Full opposition	Limitation equal in all directions
Metacarpophalangeal (MCP)	Synovial: condyloid	Extension except for 1st digit	Limitation equal in all directions
Interphalangeal (IP)	Synovial: hinge	Extension	Flexion greater than extension


Ligaments

Palmar Ligaments of Wrist

Ligaments	Attachments	Function
Transverse carpal	Hamate and pisiform medially, and scaphoid and trapezium laterally	Prevents bowstringing of finger flexor tendons
Palmar radiocarpal (radioscapholunate and radiocapitate portions)	Distal radius to both rows of carpal bones	Reinforces fibrous capsule of wrist volarly
Palmar ulnocarpal (ulnolunate and ulnotriquetral portions)	Distal ulna to both rows of carpal bones	Reinforces fibrous capsule of wrist volarly
Palmar radioulnar	Distal radius to distal ulna	Reinforces volar aspect of distal radioulnar joint
Radial collateral	Radial styloid process to scaphoid	Reinforces fibrous capsule of wrist laterally
Ulnar collateral	Ulnar styloid process to triquetrum	Reinforces fibrous capsule of wrist medially
Pisometacarpal	Pisiform to base of 5th metacarpal	Reinforces 5th carpometacarpal joint
Pisohamate	Pisiform to hook of hamate	Maintains proximity of pisiform and hamate
Capitotriquetral	Capitate to triquetrum	Maintains proximity of capitates and triquetrum
Palmar carpometacarpal	Palmar aspect of carpals to bases of metacarpals 2-5	Reinforces volar aspect of carpometacarpal joints 2-5
Palmar metacarpal	Attaches bases of metacarpals 2-+5	Maintains proximity between metacarpals

Ligaments (continued)

Palmar Ligaments of Wrist

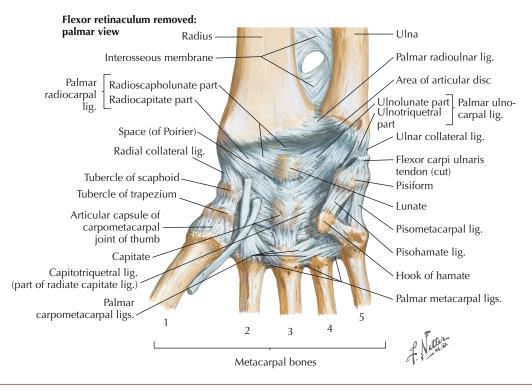
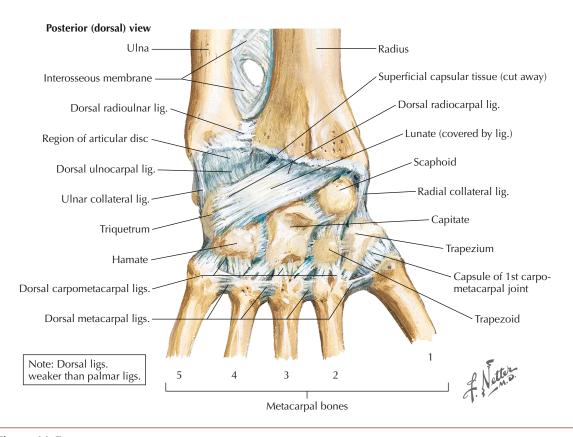



Figure 11-4 Palmar ligaments of wrist.

Figure 11-5Posterior ligaments of wrist.

Ligaments	Attachments	Function
Dorsal radioulnar	Distal radius to distal ulnar	Reinforces dorsal aspect of distal radioulnar joint
Dorsal radiocarpal	Distal radius to both rows of carpal bones	Reinforces fibrous capsule of wrist dorsally
Dorsal carpometacarpal	Dorsal aspect of carpals to bases of meta- carpals 2-5	Reinforces dorsal aspect of carpometacarpal joint 2-5
Dorsal metacarpal	Attaches bases of metacarpals 2-5	Maintains proximity between metacarpals

Ligaments (continued)

Metacarpophalangeal and Interphalangeal Ligaments

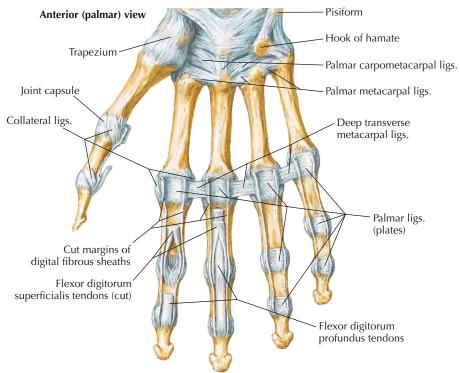
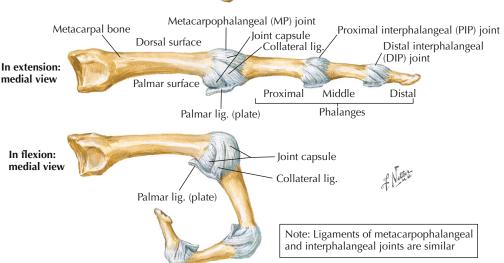
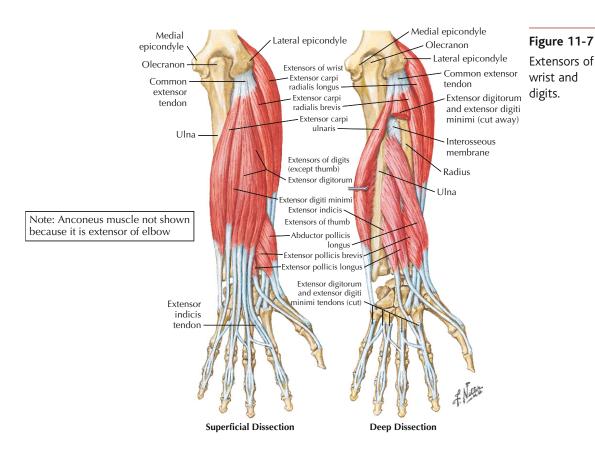




Figure 11-6 Metacarpophalangeal and interphalangeal ligaments.

Ligaments	Attachments	Function
Collateral ligaments of IP joints	Sides of distal aspect of proximal phalanx to proximal aspect of distal phalanx	Reinforces medial and lateral capsules of IP joints
Deep transverse metacarpal ligaments	Connects adjacent MCP joints	Reinforces MCP joints
Palmar ligament (volar plate)	Individual plates attach to palmar aspect of MCP and IP joints	Reinforces palmar aspect of MCP and IP joints

Extensor of Wrist and Digits

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental level	Action
Extensor carpi radialis longus	Lateral supracondylar ridge of humerus	Base of 2nd metacarpal	Radial nerve (C6, C7)	Extends and radially deviates wrist
Extensor carpi radialis brevis	Lateral epicondyle of humerus	Base of 3rd metacarpal	Deep branch of radial nerve (C7, C8)	Extends and radially deviates wrist
Extensor carpi ulnaris	Lateral epicondyle of humerus	Base of 5th metacarpal	Radial nerve (C6, C7, C8)	Extends and ulnarly deviates wrist
Extensor digitorum	Lateral epicondyle of humerus	Extensor expansions of digits 2-5	Posterior interosse- ous nerve (C7, C8)	Extends digits 2-5 at MCP and IP joints
Extensor digits minimi	Lateral epicondyle of humerus	Extensor expansion of 5th digit	Posterior interosse- ous nerve (C7, C8)	Extends 5th digit at MCP and IP joint
Extensor indicis	Posterior aspect of ulna and interosseous membrane	Extensor expansion of 2nd digit	Posterior interosse- ous nerve (C7, C8)	Extends 2nd digit and assists with wrist extension
Abductor pol- licis longus	Posterior aspect of ulnar, radius, and interosseous membrane	Base of 1st metacarpal	Posterior interosse- ous nerve (C7, C8)	Abducts and extends thumb
Extensor pol- licis brevis	Posterior aspect of radius and interosseous membrane	Base of proximal phalanx of thumb	Posterior interosse- ous nerve (C7, C8)	Extends thumb
Extensor pol- licis longus	Posterior aspect of ulnar and interosseous membrane	Base of distal phalanx of thumb	Posterior interosseous nerve (C7, C8)	Extends distal phalanx of thumb at MCP and IP joints

Muscles (continued)

Flexors of Wrist and Digits

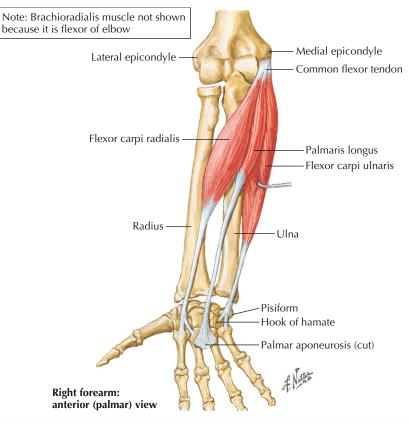


Figure 11-8 Flexors of wrist and digits.

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental Level	Action
Flexor carpi radialis	Medial epicondyle of humerus	Base of 2nd metacarpal bone	Median nerve (C6, C7)	Flexes and radially deviates hand
Flexor carpi ulnaris	Medial epicondyle of humerus and olecranon and posterior border of ulna	Pisiform, hook of hamate and 5th metacarpal	Ulnar nerve (C7, C8)	Flexes and ulnarly deviates hand
Palmaris longus	Medial epicondyle of humerus	Distal aspect of flexor reti- naculum and palmar aponeurosis	Median nerve (C7, C8)	Flexes hand and tightens palmar aponeurosis
Flexor digitorum superficialis				
Humeroulnar head	Medial epicondyle of humerus, ulnar collateral ligament, coro- noid process of ulna	Bodes of middle phalanges of digits 2-5	Median nerve (C7. C8, T1)	Flexes digits at proximal IP joints 2-5 and at MCP
Radial head	Superoanterior border of radius			joints 2-5
Flexor digitorum	profundus			
Median portion	Proximal anteromedial aspect of ulnar and interosseous	Bases of distal phalanges of digits 2-5	Ulnar nerve (C8, T1)	Flexes digits at distal IP joints 2-5
Lateral portion	membrane		Median nerve (C8, T1)	and assists with flexion of hand
Flexor pollicis longus	Anterior aspect of radius and interosseous membrane	Base of distal phalanx of thumb	Anterior interosseous nerve (C8, T1)	Flexes phalanges of 1st digit

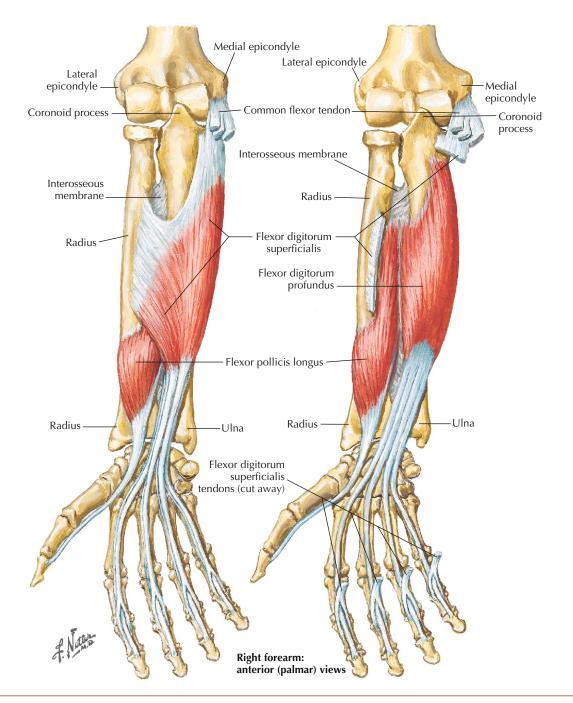
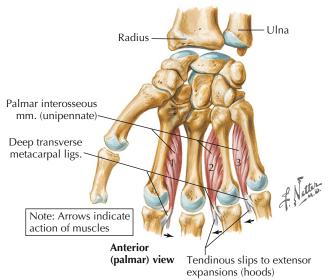
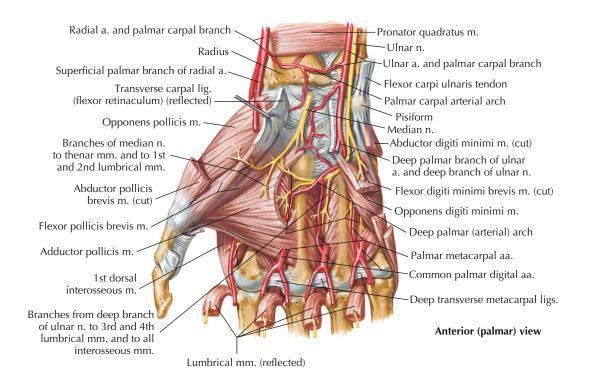
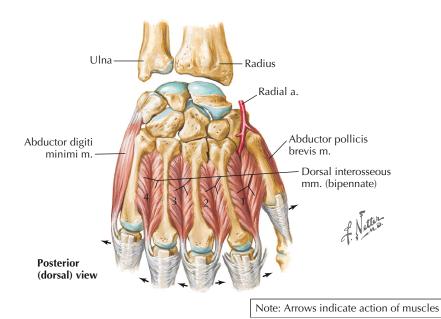
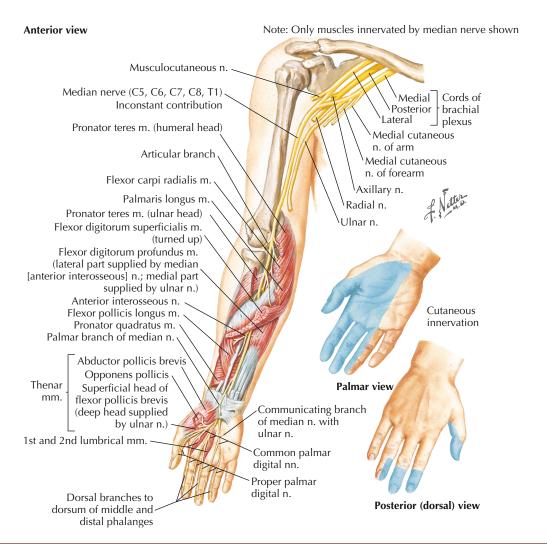


Figure 11-9 Flexors of wrist and digits.

Muscles (continued)

Intrinsic Muscles of Hand


Figure 11-10 Intrinsic muscles of hand.

Muscles	Proximal Attachments	Distal Attachments	Nerve and Segmental Level	Action	
Opponens pollicis	Flexor retinaculum.	Lateral aspect of 1st metacarpal	Median nerve (C8, T1)	Opposes and medially rotates thumb	
Abductor pollicis brevis	scaphoid, and trapezium	Lateral aspect of base of proximal phalanx of		Abducts thumb and assists in thumb opposition	
Flexor pollicis brevis		thumb		Flexes thumb	
Adductor pollicis					
Oblique head	Bases of metacarpals 2 and 3 and capitates	Medial aspect of base of proximal phalanx of		Adducts thumb	
Transverse head	Anterior aspect of 3rd metacarpal	thumb			
Abductor digit minimi	Pisiform	Medial aspect of base of proximal phalanx of 5th	Deep branch of ulnar nerve (C8, T1)	Abducts 5th digit	
Flexor digiti minimi	Hook of hamate and	digit		Flexes proximal phalanx of 5th digit	
Opponens digit minimi	flexor retinaculum	Medial aspect of 5th metacarpal		Draws 5th digit at MCP joints, and extends IP joints	
Lumbricals					
Lateral	Tendons of flexor	Lateral sides of extensor	Median nerve (C8, T1)	El	
Medial	digitorum profundus	expansions 2-5	Deep branch of ulnar nerve (C8, T1)	Flexes digits at MCP joints, and extends IP joints	
Doral interosseous	Adjacent sides of two metacarpals	Bases of proximal pha- langes 2-4 and extensor expansion	Deep branch of ulnar	Abducts digits and assists with action of lumbricals	
Palmar interosseous	Palmar aspect of metacarpals 2, 4, and 5	Bases of proximal phalanges 2, 4, and 5 and extensor expansion	nerve (C8, T1)	Adducts digits and assists with action of lumbricals	

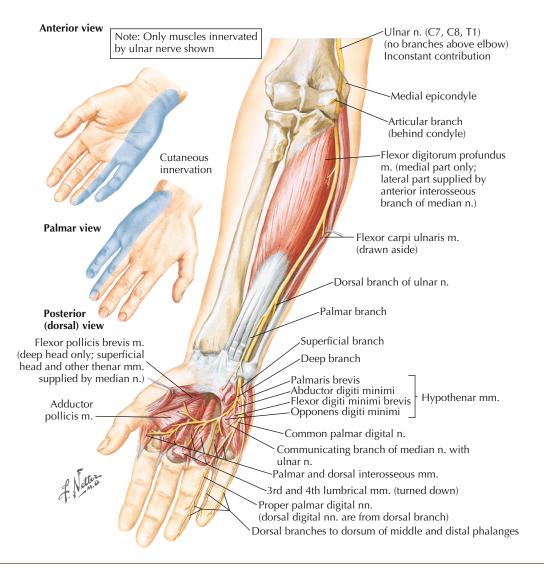
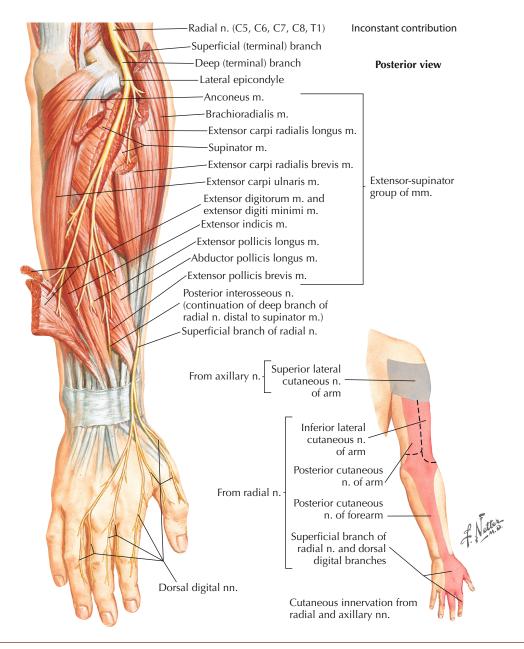


Figure 11-11 Intrinsic muscles of hand.


Figure 11-12 Median nerve.

Nerves	Segmental Level	Sensory	Motor
Median nerve	C6, C7, C8, T1	Palmar and distal dorsal aspects of lateral 31/2 digits and lateral palm	Abductor pollicis brevis, opponens pollicis, flexor pollicis brevis, lateral lumbricals

Figure 11-13 Ulnar nerve.

Nerves	Segmental Level	Sensory	Motor
Ulnar nerve	C7, C8, T1	Palmar and distal dorsal aspects of medial 1 ¹ / ₂ digits and medial palm	Interosseous, adductor pollicis, flexor pollicis brevis, medial lumbricals, abductor digiti minimi, flexor digit minimi brevis, opponens digit minimi

Figure 11-14 Radial nerve.

Nerves	Segmental level	Sensory	Motor
Radial nerve	C5, C6, C7, C8, T1	Dorsal aspect of lateral hand, excluding digits	No motor in hand

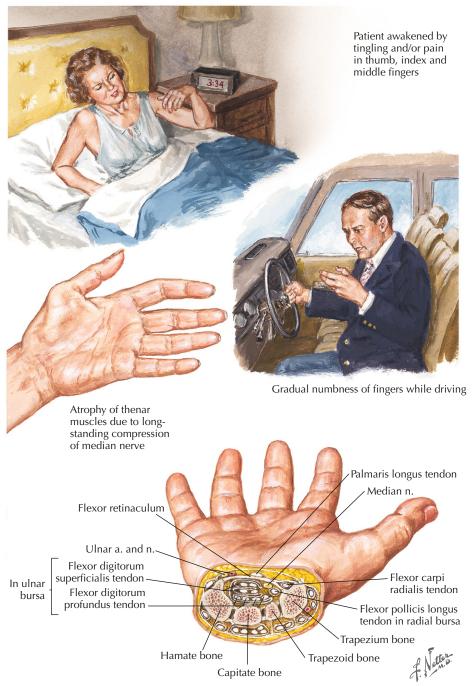
PATIENT HISTORY

Initial Hypotheses Based on Patient History

History	Initial Hypothesis
Pain over radial styloid process with gripping activities	Possible de Quervain's syndrome ²
Reports of an insidious onset of numbness and tingling in 1st three fingers; may complain of worse pain at night	Possible carpal tunnel syndrome ³⁻⁵
Reports of paresthesias over dorsal aspect of ulnar border of hand and fingers 4-5	Possible ulnar nerve compression at canal of Guyon ⁶⁻⁸
Patient reports inability to extend metacarpophalangeal of IP joints	Possible Dupuytren's contracture ⁸ Possible trigger finger ⁹
Reports of falling on hand with wrist hyperextended; complains of pain with loading of wrist	Possible scaphoid fracture ^{10,11} Possible carpal instability ⁹

Reliability of the Historical Examination

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement


History	Population	Inter-examiner Reliability
Most bothersome symptom pain, numbness, tingling, loss of sensation? ¹²		к = .74 (.55, .93)
Location of most bothersome symptom? ¹²		к = .82 (.68, .96)
Symptoms intermittent, variable, or constant? ¹²		к = .57 (.35, .79)
Hand swollen? ¹²	82 patients presenting to primary care clinic, orthopaedic	к = .85 (.68, 1.0)
Dropping objects? ¹²	department, or electrophysiology laboratory with sus- pected cervical radiculopathy or carpal tunnel syndrome	к = .95 (.85, 1.0)
Entire limb goes numb? ¹²	pected cervical radiculopatity of carpat turnet syndrome	к = .53 (.26, .81)
Nocturnal symptoms wake patient? ¹²		к = .83 (.60, 1.0)
Shaking hand improves symptoms? ¹²		к = .90 (.75, 1.0)
Symptoms exacerbated with activities that require gripping? ¹²		к = .72 (.49, .95)

Diagnostic Utility of the Patient History in Identifying Carpal Tunnel Syndrome

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

History	Population	Reference Standard	Sens	Spec	+LR	-LR
Age > 45 ¹²			.64 (.47, .82)	.59 (.47, .72)	1.58 (.46, 2.4)	.60 (.35, 1.0)
Most bothersome symptom pain, numbness, tingling, loss of sensation ¹²			.04 (04, .11)	.91 (.83, .98)	.42 (.05, 3.4)	1.1 (.94, 1.2)
Location of most bothersome symptom ¹²			.35 (.16, .53)	.40 (.27, .54)	.58 (.33, 1.0)	1.6 (1.1, 2.5)
Symptoms intermittent, variable, or constant 12	82 patients pre- senting to a primary care		.23 (.07, .39)	.89 (.81, .97)	2.1 (.74, 5.8)	.87 (.69, 1.4)
Reports of hand becoming swollen ¹²	clinic, orthopaedic department, or electrophysiology	Needle electro- myography and nerve conduc- tion studies	.38 (.20, .57)	.63 (.50, .76)	1.0 (.57, 1.9)	.98 (.68, 1.4)
Dropping objects ¹²	laboratory with suspected cervical radiculopathy or		.73 (.56, .90)	.57 (.44, .71)	1.7 (1.2, 2.5)	.47 (.24, .92)
Entire limb goes numb ¹²	carpal tunnel syndrome		.38 (.20, .57)	.80 (.69, .90)	1.9 (.92, 3.9)	.77 (.55, 1.1)
Nocturnal symp- toms wake patient ¹²			.73 (.56, .90)	.31 (.19, .44)	1.1 (.79, 1.4)	.86 (.41, 1.8)
Shaking hand im- proves symp- toms ¹²			.81 (.66, .96)	.57 (.43, .70)	1.9 (1.3, 2.7)	.34 (.15, .77)
Symptoms exacer- bated with activi- ties that require gripping ¹²			.77 (.61, .93)	.37 (.24, .50)	1.2 (.91, 1.6)	.62 (.28, 1.4)
Age ≥ 40 years ¹³	110 patients re-		.80	.42	1.38	.48
Nocturnal symp- toms ¹³	ferred to labora- tory for electro- physiologic	rred to labora- ry for electro-	.77	.28	1.07	.82
Bilateral symp- toms ¹³	examination		.61	.58	1.45	.67

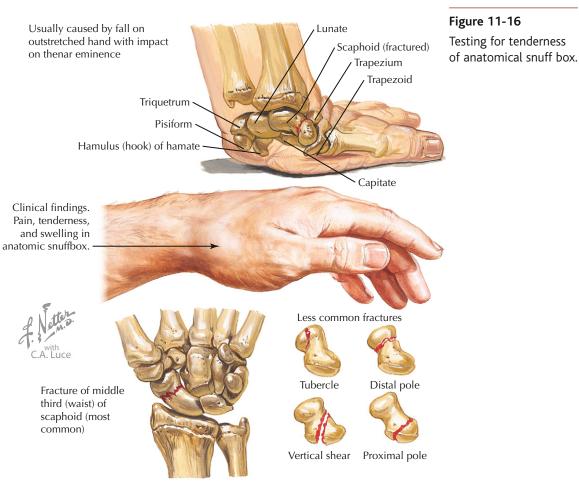
Diagnostic Utility of the Patient History in Identifying Carpal Tunnel Syndrome (continued)

Section through wrist at distal row of carpal bones shows carpal tunnel. Increase in size of tunnel structures caused by edema (trauma), inflammation (rheumatoid disease); ganglion, amyloid deposits, or diabetic neuropathy may compress median nerve

Figure 11-15Carpal tunnel syndrome.

Physical Examination Test

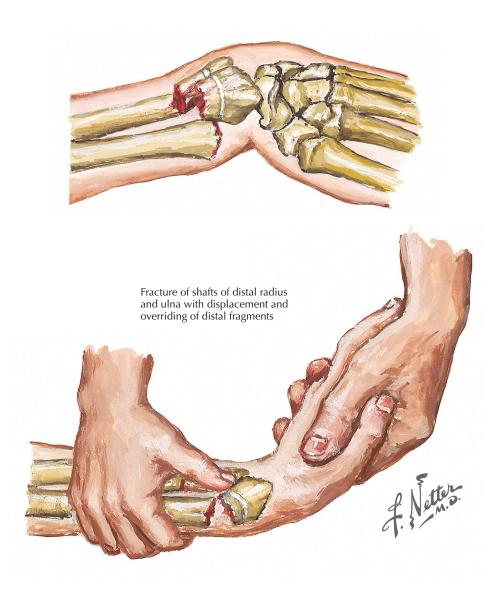
Screening


Diagnostic Utility of Tests to Identify Scaphoid Fractures

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Snuff box tenderness ¹⁴	Examiner palpates anatomical snuff box. Positive if pain is elicited		art- iism	1.0	.98	50.0	.00
Pain with supination against resistance 14	Examiner holds patient's hand in hand-shake position and directs patient to resist supination of forearm. Positive if pain is elicited	85 patients presenting to emergency department with mechanism of injury suggesting possible scaphoid		1.0	.98	50.0	.00
Pain with longitudinal compression of thumb ¹⁴	Examiner holds patient's thumb and applies long axis compression through metacarpal bone into scaphoid. Positive if pain is elicited	fracture		.98	.98	49.0	.02
Anatomical snuff box tenderness ¹⁵	Examiner palpates ana- tomical snuff box. Positive if pain is elicited			1.0	.29 (.23, .35)	1.41	.00
Scaphoid tubercle ten- derness ¹⁵	Examiner applies pressure to scaphoid tubercle. Positive if pain is elicited	221 patients with a suspected scaphoid injury		.83 (.70, .96)	.51 (.44, .58)	1.69	.33
Scaphoid compression tenderness ¹⁵	Examiner holds patient's thumb and applies long axis compression through metacarpal bone into scaphoid. Positive if pain is elicited			1.0	.80 (.74, .86)	5.0	.00

Screening (continued)


Diagnostic Utility of Tests to Identify Scaphoid Fractures

Testing for tenderness of anatomical snuff box

Screening (continued)

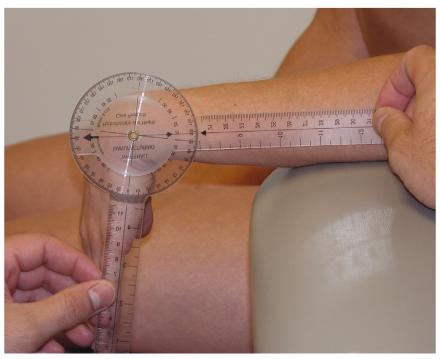

Acute Pediatric Wrist Fractures: Clinical Prediction Rule

Figure 11-17 Fracture of forearm bones in children.

Pershad and colleagues¹⁶ developed a clinical prediction rule to identify acute pediatric wrist injuries. Predictor variables included reduction in grip strength ≥ 20% compared with the opposite side and distal radius point tenderness. The rule exhibited a sensitivity of 79%, a specificity of 63%, a +LR of 2.14, and a -LR of .33.

Range of Motion		Interpretation
		Substantial agreement
Reliability of Wrist Range of Motion Measurements		Moderate agreement
	.4160	Fair agreement
	.1140	Slight agreement
	.010	No agreement

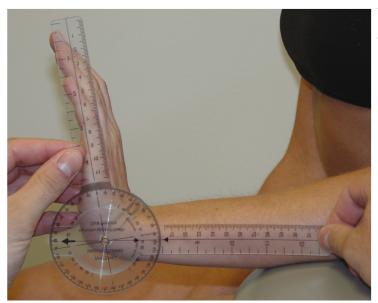
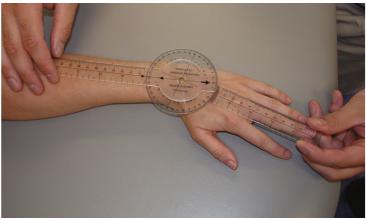

Measurement of wrist flexion

Figure 11-18 Wrist range of motion.

Test and	Instrumentation	Population	Reliability			
Measure			Intra-examiner	ICC	Inter-examiner	ICC
Active ROM			Wrist flexion	.96	Wrist flexion	.90
(AROM) ¹⁷			Wrist extension	.96	Wrist extension	.85
	8 in plastic		Radial deviation	.90	Radial deviation	.86
		48 patients in whom measure- ments of the wrist would nor-	Ulnar deviation	.92	Ulnar deviation	.78
Passive ROM goniometer (PROM) ¹⁷	mally be included in examination	Wrist flexion	.96	Wrist flexion	.86	
			Wrist extension	.96	Wrist extension	.84
			Radial deviation	.91	Radial deviation	.66
			Ulnar deviation	.94	Ulnar deviation	.83
			Radial flexion	.86	Radial flexion	.88
		140 patients in whom passive	Ulnar flexion	.87	Ulnar flexion	.89
10	Alignment of		Dorsal flexion	.92	Dorsal flexion	.93
PROM ¹⁸	plastic 6 in goniometer	ROM of wrist would be included in standard evaluation	Radial extension	.80	Radial extension	.80
			Ulnar extension	.80	Ulnar extension	.80
			Dorsal extension	.84	Dorsal extension	.84
ICC, Intraclass corre	lation coefficient.					


Range of Motion (continued)

Reliability of Wrist Range of Motion Measurements

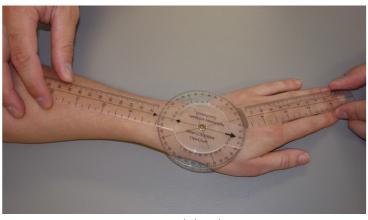


Figure 11-19 Wrist range of motion.

Measurement of wrist extension

Measurement of radial deviation

Measurement of ulnar deviation

Range of Motion (continued)

Reliability of Finger and Thumb Range of Motion Measurements

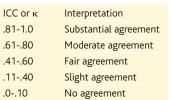


Figure 11-20 Measurement of proximal interphalangeal joint flexion.

Test and Measure	Instrumentation	Population	Test-Retest	t Reliability I	сс	
Metacarpophalangeal joints ¹⁹			Flexed posit Extended po	tion = .74 osition = .83		
Proximal interphalangeal joints ¹⁹	Goniometer		Flexed position = .80 Extended position = .80			
Distal interphalangeal joints ¹⁹		20 healthy subjects	Flexed posit Extended po	tion = .58 osition = .63		
Metacarpophalangeal joints ¹⁹		1 week apart	Flexed position = .76 Extended position = .83			
Proximal interphalangeal joints ¹⁹	Compangle		Flexed posit Extended po	tion = .89 osition = .90		
Distal interphalangeal joints ¹⁹			Flexed position = .73 Extended position = .71			
Total AROM of IP flexion and extension ²⁰	Finger goniometer	30 patients with hand injuries	Intra-examiner = .9798 Inter-examiner = .97			
Palmar abduction ²¹		25 healthy subjects	Intra-examiner Inter-examiner			
	 Goniometer Pollexograph-thumb Pollexograph-metacarpal American Medical Association method American Society of Hand Therapists method Intermetacarpal distance 		Active .55 (.34, .87) .71 (.62, .93) .82 (.78, .96) .72 (.63, .92) .78 (.72, .94) .95 (.95,	Passive .76 (.69, .94) .82 (.78, .96) .81 (.76, .95) .65 (.51, .90) .72 (.63, .93) .92 (.90, .98)	Active .31 (18, .77) .66 (.53, .91) .57 (.38, .88) .24 (40, .73) .55 (.34, .87) .82 (.79,	Passive .37 (42, .79) .59 (.42, .89) .61 (.45, .89) .52 (.28, .86) .52 (.29, .86) .79 (.78,

Assessing Strength		Interpretation
		Substantial agreement
Intra-examiner Reliability of Assessing Strength		Moderate agreement
		Fair agreement
	.1140	Slight agreement
	.010	No agreement

Figure 11-21 Measurement of grip strength.

Procedure Performed	Instrumentation	Population	Test-Retest Reliability (ICCs)
Wrist extensors (mean of two efforts) ²²		40 patients with suspected myopathy	Dominant side = .88 (.79, .94) Non-dominant side = .94 (.90, .97)
Wrist extensors (max of two efforts) ²²		40 patients with suspected myopathy	Dominant side = .87 (.76, .93) Non-dominant side = .94 (.88, .97)
Grip ²³		21 healthy older volunteers	Left = .95 (.89, .98) Right = .91 (.78, .96)
Grip ²⁴	Grip ²⁴ Dynamometer	22 asymptomatic subjects	One trial: .95 (.89, .98) Mean of three trials: .85 (.67, .94) Highest of three trials: .95 (.89, .98)
		22 patients after carpal tunnel decompression	One trial: .97, (.94, .99) Mean of three trials: .94 (.80, .98) Highest of three trials: .97 (.92, .99)
		22 patients after carpal tunnel decompression	One trial: .96 (.91, .98) Mean of three trials: .98 (.96, .99) Highest of three trials: .97 (.90, .99)
Grip ²⁵		104 healthy primary school children	Dominant side = .97 (.95, .98) Non-dominant side = .95 (.92, .96)
	Vigorimeter		Dominant side = .84 (.77, .89) Non-dominant side = .86 (.80, .90)

Assessing Strength (continued)

Figure 11-22 Measurement of pinch strength.

Measurement of tip pinch strength

Measurement of key pinch strength

Measurement of tripod pinch strength

Assessing Strength (continued)		Interpretation
		Substantial agreement
Inter-examiner Reliability of Assessing Strength		Moderate agreement
, ,		Fair agreement
		Slight agreement
	.010	No agreement

Procedure Performed	Instrumentation	Population	Inter-Examiner Reliability (ICCs)	
Grip Palmar pinch Key pinch Tip pinch ²⁶	Pinch gauge	27 healthy volunteers	Right .99 .98 .99	Left .99 .99 .98 .99
Grip Tip pinch Key pinch ²⁷	Hand and pinch grip dynamometers	33 patients with a unilateral hand injury	Injured .9397 .89 .94	Non-injured .9294 .84 .86
Grip Tip pinch Jaw pinch ²⁰	Grip dynamometer and pinch gauge	30 patients with hand injuries	Intra-examiner .96 .8694 .8893	Inter-examiner .95 .91 .89
Grip Tripod Key pinch ²⁸	Dynamometer and pinch gauge	38 patients receiving physical therapy for hand impairments	Symptomatic .93 (.86, .96) 88 (.78, .96) .94 (.88, .97)	Asymptomatic .94 (.89, .97) .87 (.74, .93) .93 (.86, .96)
Abductor pollicis strength ¹²	Examiner performs manual muscle testing of abductor pollicis. Graded as "markedly reduced," "reduced," or "normal" compared with contralateral extremity	82 patients with suspected cervical radiculopathy or carpal tunnel syndrome	к = .39 (.00, .80)	
Wrist extensors ²	Dynamometer	30 patients presenting to a physical therapy clinic	.94	
Wrist flexion Wrist extension ²⁹	Dynamometer	20 healthy subjects	Wrist flexion .85 Wrist extension .91	

Diagnostic Utility of Weakness in Identifying Carpal Tunnel Syndrome

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Strength of abductor pollicis brevis ¹²	Strength of abductor pollicis brevis is tested by placing thumb in a position of abduction and applying a force in direction of adduction at proximal phalanx. Positive if strength is reduced or markedly reduced compared with contralateral extremity	82 patients with suspected cervical radiculopathy or carpal tunnel syndrome	Needle elec- tromyography and nerve conduction studies	.19 (.04, .34)	.89 (.81, .90)	1.7 (.58, 5.2)	.91 (.74, 1.1)
Abductor pollicis brevis weak-ness ³⁰	Patient is instructed to touch pads of thumb and 5th digit together. Exam- iner applies posteriorly directed force over thumb IP joint towards palm. Positive if weakness is detected	228 hands referred for electrodiagnostic consultation with suspected carpal tunnel syndrome	Nerve con- duction studies	.66	.66	1.94	.52

Assessing Wrist Anthropometry

Reliability of Measuring Wrist Anthropometry

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Measure	Test Procedure and Determination of Positive Findings	Population	Inter-examiner Reliability
Wrist anterior-posterior width ¹²	Width of wrist is measured in	82 patients with suspected cervical ra-	ICC = .77 (.62, .87)
Wrist medial-lateral width ¹²	centimeters with pair of calipers	diculopathy or carpal tunnel syndrome	ICC = .86 (.75, .92)

Diagnostic Utility of Wrist Anthropometry in Identifying Carpal Tunnel Syndrome

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Wrist-ratio index greater than .67 ¹²	Anteroposterior width of wrist is measured and divided by medio- lateral width. Positive if ratio is greater than .67	82 patients with suspected cervical radiculopathy or carpal tunnel syndrome	Needle electromy- ography and nerve conduction studies	.93 (.83, 1.0)	.26 (.14, .38)	1.3 (1.0, 1.5)	.29 (.07, 1.2)
The square- shaped wrist ³⁰	Anteroposterior and mediolateral dimensions of wrist are measured at distal flexor wrist crease using standard caliper. Positive if wrist ratio (anteroposterior dimension divided by mediolateral dimension) is ≥ .70	228 hands referred for electrodiag- nostic consulta- tion with sus- pected carpal tunnel syndrome	Nerve conduction studies	.69	.73	2.56	.42

Assessing Swelling

Reliability of Assessing Swelling

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

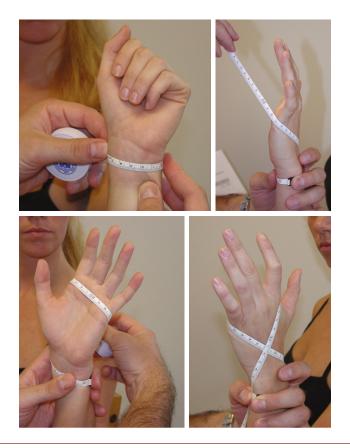


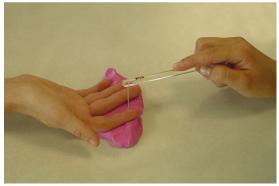
Figure 11-23 Figure-of-eight measurement.

Test and Measure	Test Procedure	Population	Reliability	
			Intra-examiner	Inter-examiner
Figure-of-eight ³¹	Examiner places zero mark on distal aspect of ulnar styloid process. Tape measure is then brought across ventral surface of wrist to most distal aspect of radial styloid process. Next, tape is brought diagonally across dorsum of hand and over 5th MCP joint line, brought over ventral surface of MCP joints, and wrapped diagonally across dorsum to meet start of tape	24 individuals (33 hands) with pathologies af- fecting hand	ICC = .99	ICC =.99
Volumetric ³¹	Hand is placed vertically in standard volumeter		ICC = .99	Not reported

Testing Sensation

Reliability of Sensory Testing

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement


Test and Measure	Test Procedure and Determination of Positive Findings	Population	Inter-examiner Reliability
Semmes-Weinstein monofila- ment test ²⁸	Sensory test is performed on pulp of thumb, index, long, and small fingertips	36 hands with carpal tunnel syndrome	κ = .22 (.26, .42)
Median sensory field deficit of thumb pad ¹²	Sensation is tested with straight end of paper clip. Graded as "absent," "reduced," "normal," or "hyperesthetic"	82 patients presenting to a primary care clinic, orthopaedic department, or electro-	к = .48 (.23, .73)
Median sensory field deficit of index finger pad ¹²		physiology laboratory with suspected cer- vical radiculopathy or carpal tunnel	κ = .50 (.25, .75)
Median sensory field deficit ¹²		syndrome	к = .40 (.12, .68)

Diagnostic Utility of Diminished Sensation in Identifying Carpal Tunnel Syndrome


+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Sensory loss at pad of thumb ¹²	Sensation is tested with straight end of a paper clip. Positive if sensation is absent or reduced	82 patients presenting to a primary care clinic, orthopaedic department, or electrophysiology laboratory with suspected cervical radiculopathy or carpal tunnel syndrome	Needle elec- tromyography and nerve con- duction studies	.65 (.47, .84)	.70 (.47, .84)	2.2 (1.3, 3.6)	.49 (.28, .46)
Sensory loss at pad of index finger ¹²				.52 (.32, .72)	.67 (.32, .72)	1.6 (.92, 2.7)	.72 (.86, 1.1)
Sensory loss at pad of medial finger ¹²				.44 (.26, .63)	.74 (.26, .63)	1.7 (.58, .52)	.75 (.86, 1.1)
Moving two-point discrimination ¹³	Examiner strokes tip of index and 5th finger five times with either one or two caliber tips. Positive if patient is unable to identify number of tips performed on at least one stroke	110 patients referred to laboratory for electrophysiologic examination	Nerve conduction tests	.32	.81	1.68	.84

Testing Sensation (continued)

Semmes-Weinstein monofilament testing

Two-point discrimination

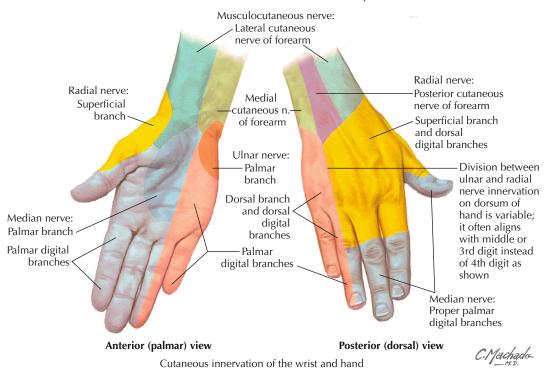


Figure 11-24 Testing sensation.

Special Tests

Reliability of Tinel's Sign

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Figure 11-25 Tinel's sign.

Test and Measure	Test Procedure	Population	Inter-examiner Reliability
Tinel A ¹²	With patient seated with elbow flexed 30°, forearm supinated, and wrist in neutral, examiner allows a reflex hammer to fall from a height of 6 inches along median nerve between tendons at proximal wrist crease. Positive if patient reports a nonpainful tingling sensation along course of median nerve	82 patients with sus- pected cervical radic- ulopathy or carpal	$\kappa = .47 \text{ (.21, .72)}$
Tinel B ¹²	As Tinel A above except examiner attempts to elicit symptoms using mild-moderate force with reflex hammer. Positive if pain is exacerbated along course of median nerve	tunnel syndrome	к = .35 (.10, .60)
Tinel's sign ²⁸	Examiner percusses over palm from proximal palmar crease to distal wrist crease. Positive if symptoms are elicited in distribution of median nerve	36 hands with carpal tunnel syndrome	к = .81 (.66, .98)

Diagnostic Utility of Tinel's Sign in Identifying Carpal Tunnel Syndrome

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Tinel's sign ³²	Examiner taps median nerve at wrist with fingers. Positive if patient reports pain or paresthesias in distri-	142 patients re- ferred for electrodi- agnostic testing	Electrodiag- nostic testing	.27 (.18, .36)	.91 (.84, 1.0)	3.0	.80
Tinel's sign ³⁰	bution of median nerve	228 hands referred for electrodiagnostic consultation with suspected carpal tunnel syndrome	Nerve con- duction studies	.23	.87	1.77	.89
Tinel A ¹²	With patient seated with elbow flexed 30°, forearm supinated, and wrist in neutral, examiner allows reflex hammer to fall from height of 6 inches along median nerve between tendons at proximal wrist crease. Positive if patient reports nonpainful tingling sensation along course of median nerve	82 patients with suspected cervical radiculopathy or carpat tunnel	Needle electromyography and nerve conduction	.41 (.22, .59)	.58 (.45, .72)	.98 (.56, 1.7)	1.0 (.69, 1.5)
Tinel B ¹²	As Tinel A above except examiner at- tempts to elicit symptoms using mild-to-moderate force with reflex hammer. Positive if pain is exacer- bated along course of median nerve	syndrome	studies	.48 (.29, .67)	.67 (.54, .79)	1.4 (.84, 2.5)	.78 (.52, 1.2)
Tinel's test ³³	Positive if percussion of the median nerve at the wrist caused tingling in the median nerve distribution	162 hands from 81 patients seeking treatment for carpal tunnel syndrome	Electrodiag- nostic testing*	.90	.81	4.7	.12
Tinel's test ¹	Percussion of the median nerve at the wrist (no other details)	232 patients with carpal tunnel syndrome manifesta-	Carpal tunnel syndrome via clinical examination	.30 (.24, .36)	.65 (.58, .71)	.9	1.10
	the wist (no other details)	tions and 182 controls	Tenosynovitis via ultrasono- graphy	.46 (.41, .53)	.85 (.80, .89)	3.1	.64
Tinel's sign ¹³	Examiner drops square end of reflex hammer on distal wrist crease from height of 12 cm. Positive if patient reports pain or paresthesias in at least one finger innervated by median nerve	110 patients re- ferred to laboratory for electrophysio- logic examination	Nerve con- duction tests	.60	.67	1.82	.60

^{*}Also used latent class analysis to define reference standard diagnosis of carpal tunnel syndrome, but doing so resulted in study being excluded for poor quality because the reference standard was then not independent of index tests.

Reliability of Phalen's Test

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Phalen's test

Reverse Phalen's test

Figure 11-26 Phalen's test.

Test and Measure	Test Procedure	Population	Inter-examiner Reliability
Phalen's test ²⁸	Patient places dorsal aspects of hands together, maintaining maximal wrist flexion for 60 seconds. Positive if symptoms are elicited in distribution of median nerve	36 hands with carpal tunnel syndrome	к = .88 (.7798)
Phalen's test ¹²	With patient seated with elbow flexed 30° and forearm supinated, examiner places the wrists in maximal flexion for 60 sec. Positive if patient experiences exacerbation of symptoms in median nerve distribution	82 patients with suspected cervical radiculopathy or carpal tunnel syndrome	к = .79 (.59. 1.0)
Wrist extension test ²⁸	Patient places palmar aspects of hands together maintaining maximal wrist extension for 60 sec. Positive if symptoms are elicited in distribution of median nerve	36 hands with carpal tunnel syndrome	κ = .72 (.55, .88)

Diagnostic Utility of Phalen's Test in Identifying Carpal Tunnel Syndrome

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Phalen's test ¹²	With patient seated with elbow flexed 30° and forearm supinated, examiner places wrist in maximal flexion for 60 sec. Positive if patient experiences exacerbation of symp- toms in median nerve distribution	82 patients with sus- pected cervical radic- ulopathy or carpal tunnel syndrome	Needle elec- tromyography and nerve conduction studies	.77 (.61, .93)	.40 (.26, .53)	1.3 (.94, 1.7)	.58 (.27, 1.3)
Phalen's test ³²		142 patients referred for electrodiagnostic testing	Electrodiag- nostic testing	.34 (.24, .43)	.74 (.62, .87)	1.31	.89
Phalen's test ³⁰	Patient maximally flexes wrist and holds position for 60 sec. Positive if symptoms are produced	228 hands referred for electrodiagnostic consultation with suspected CTS	Nerve conduction studies	.51	.76	2.13	.64
Phalen's test ³³		162 hands from 81 patients seeking treatment for CTS	Electrodiag- nostic testing*	.85	.79	4.0	.19
Phalen's test ¹			Carpal tunnel syndrome via clinical examination	.47 (.41, .54)	.17 (.13, .23)	.6	3.12
		232 patients with carpal tunnel syndrome manifesta-	Tenosynovitis via ultrason- ography	.92 (.36, .49)	.87 (.82, .91)	7.1	.09
Reverse Phalen's test ¹	Complete wrist extension for 60 sec (no other details)	tions and 182 controls	Carpal tunnel syndrome via clinical examination	.42 (.36, .49)	.35 (.29, .42)	.6	1.66
			Tenosynovitis via ultrasonog- raphy	.75 (.69, .80)	.85 (.80, .89)	5.0	.29
Phalen's test ¹³	Patient flexes both wrists to 90° with dorsal aspects of hands held in opposi- tion for 60 sec. Positive if patient reports pain or paresthesias in at least one finger innervated by median nerve	110 patients referred to laboratory for electrophysiologic examination	Nerve conduction tests	.74	.47	1.4	.55
Phalen's test ³⁴	Patient holds forearms in pronation with elbows resting on examination table, forearms vertical, and wrists in gravity-assisted flexion. Positive if symptoms are produced	132 patients with pain of upper limb	Electrophysio- logic confir- mation	.79	.92	9.88	.23

^{*}Also used latent class analysis to define reference standard diagnosis of carpal tunnel syndrome, but doing so resulted in study being excluded for poor quality because the reference standard was then not independent of index tests.

Special Tests (continued)		Interpretation
		Substantial agreement
Reliability of Carpal Compression Test		Moderate agreement
rectability of earpat compression rest		Fair agreement
	.1140	Slight agreement
	0-10	No agreement

Test and Measure	Test Procedure	Population	Inter-examiner Reliability
Carpal compression test ¹²	With patient seated with elbow flexed 30°, forearm supinated, and wrist in neutral, examiner places both thumbs over transverse carpal ligament and applies 6 lb of pressure for 30 sec maximum. Positive if patient experiences exacerbation of symptoms in median nerve distribution	36 hands with carpal tunnel syndrome	κ = .77 (.58, .96)

Diagnostic Utility of Carpal Compression Test in Identifying Carpal Tunnel Syndrome

Figure 11-27Carpal compression test.

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Carpal compression test 12	With patient seated with elbow flexed 30°, forearm supinated, and wrist in neutral, examiner places both thumbs over transverse carpal ligament and applies 6 lb of pressure for 30 sec maximum. Positive if patient experiences exacerbation of symptoms in median nerve distribution	82 patients present- ing to a primary care clinic, orthopaedic de- partment, or electro- physiology laboratory with suspected cervi- cal radiculopathy or carpal tunnel syndrome	Needle electromyography and nerve conduction studies	.64 (.45, .83)	.30 (.17, .42)	.91 (.65, 1.3)	1.2 (.62, 2.4)
Carpal compression test ³⁰	Examiner applies moderate pressure over median nerve just distal to distal flexor wrist crease for 5 sec. Considered positive if pain, paresthesia, or numbness is reproduced	228 hands referred for electrodiagnostic consultation with suspected carpal tunnel syndrome	Nerve con- duction studies	.28	.74	1.08	.97
Carpal tunnel com- pression	Examiner exerts even pressure on the space between the thenar and hypothenar eminence for 30 sec while arm is supinated. Patient is	232 patients with carpal tunnel syndrome manifesta-	Carpal tunnel syndrome via clinical examination	.46 (.40, .53)	.25 (.20, .31)	.6	2.16
test ¹	questioned regarding symptoms every 15 sec	tions and 182 controls	Tenosynovitis via ultraso- nography	.95 (.91, .97)	.97 (.94, .99)	31.7	.05
Carpal compression test ³⁴	Examiner applies moderate pressure with thumbs over transverse carpal ligament with wrist in neutral for 30 sec. Considered positive if pain, paresthesia, or numbness is reproduced	132 patients with pain of upper limb	Electrophysio- logic confir- mation	.83	.92	10.38	.18

Special Tests

Reliability of Upper Limb Tension Tests

ICC or ĸ	Interpretation
.81-1.0	Substantial agreement
.6180	Moderate agreement
.4160	Fair agreement
.1140	Slight agreement
.010	No agreement

Test and Measure	Description and Positive Findings	Population	Inter-examiner Reliability				
Upper limb tension test A ¹²	See below	82 patients with suspected cervical ra-	$\kappa = .76$ (.51, 1.0)				
Upper limb tension test B ¹²		diculopathy or carpal tunnel syndrome	к = .83 (.65, 1.0)				

Diagnostic Utility of Upper Limb Tension Tests in Identifying Carpal Tunnel Syndrome

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
10-20	Rarely important	5-1.0

Figure 11-28 Upper limb tension test A.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Upper limb tension test A ¹²	Patient is supine. Examiner performs scapular depression, shoulder abduction, forearm supination, wrist and finger extension, shoulder lateral rotation, elbow extension, and contralateral/ipsilateral cervical sidebending. Positive if symptoms are reproduced, side-to-side difference in elbow extension greater than 10°, contralateral neck sidebending increases symptoms or ipsilateral sidebending decreases symptoms	82 patients with sus- pected cervi- cal radiculop-	Needle elec- tromyogra- phy and	.75 (.58, .92)	.13 (.04, .22)	.86 (.67, 1.1)	1.9 (.72, 5.1)
Upper limb tension test B ¹²	With patient supine with shoulder abducted 30°, examiner performs scapular depression, shoulder medial rotation, full elbow extension, wrist and finger flexion, and contralateral/ipsilateral cervical sidebending. Positive if symptoms are reproduced, side-to-side difference in wrist flexion > 10°, contralateral neck sidebending increases symptoms, or ipsilateral sidebending decreases symptoms	athy or carpal tunnel syndrome	nerve con- duction studies	.64 (.45, .83)	.30 (.17, .42)	.91 (.65, 1.3)	1.2 (.62, 2.4)

Diagnostic Utility of Special Tests in Identifying Carpal Instability

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 11-29 Scaphoid shift test.

Test and Measure	Test Procedure	Determination of Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
Scaphoid shift test ³⁵	With patient's elbow stabilized on table with forearm in slight pronation, with one hand, examiner grasps radial side of patient's wrist with thumb on palmar prominence of scaphoid. With other hand, examiner grasps patient's hand at metacarpal level to stabilize wrist. Examiner maintains pressure on scaphoid tubercle and moves patient's wrist into ulnar deviation with slight extension and then radial deviation with slight flexion. Examiner releases pressure on scaphoid while wrist is in radial deviation and flexion	Positive for in- stability of scaphoid if scaphoid shifts, test elicits a "thunk," or pa- tient's symp- toms are repro- duced when scaphoid is released			.69	.66	2.03	.47
Ballotte- ment test ³⁵	Examiner stabilizes patient's lunate bone between thumb and index finger of one hand while other hand moves pisotriquetral complex in a palmar and dorsal direction	Positive for in- stability of luno-triquetral joint if patient's symptoms are reproduced or excessive laxity of joint is revealed	50 painful wrists un- dergoing arthroscopy	Arthroscopic visualization	.64	.44	1.14	.82
Ulnome- niscotrique- tral dorsal glide ³⁵	With patient seated with elbow on table and forearm neutral, examiner places thumb over head of distal ulna. Examiner then places radial side of index PIP joint over palmar surface of patient's pisotriquetral complex. Examiner squeezes thumb and index finger together, creating a dorsal glide of pisotriquetral complex	Considered positive for ul- nomeniscotri- quetral complex insta- bility if the pa- tient's symp- toms are reproduced or excessive laxity of the joint is revealed			.66	.64	1.69	.56

Special Tests (continued)	ICC or ĸ	Interpretation
special rests (continued)	.81-1.0	Substantial agreement
bility of Miscellaneous Special Tests .81-1.0 Substant .6180 Moderate .4160 Fair agree .1140 Slight ag	Moderate agreement	
	.4160	Fair agreement
	.1140	Slight agreement
	.010	No agreement

Test and Measure	Test Procedure and Determination of Positive Findings	Population	Inter-examiner Reliability
Tethered median nerve test ²⁸	Examiner passively extends patient's index finger while patient's forearm is in supination and wrist is in full extension. Position is maintained for 15 sec. Positive if symptoms are elicited in distribution of median nerve	36 hands with carpal tunnel syndrome	к = .49 (.26, .71)
Pinch test ²⁸	Patient actively pinches a piece of paper between tip of thumb, index, and long fingers using MP flexion and IP extension. Positive if symptoms are elicited in distribution of median nerve	36 hands with carpal tunnel syndrome	к = .76 (.62, .91)

Diagnostic Utility of Miscellaneous Special Tests

+LR	Interpretation	-LR
>10	Large	<.1
5.0-10.0	Moderate	.12
2.0-5.0	Small	.25
1.0-2.0	Rarely important	.5-1.0

Figure 11-30 Ulnar fovea sign.

Test and Study Quality	Description and Positive Findings	Population	Reference Standard	Sens	Spec	+LR	-LR
The flick maneuver ³²	Patient demonstrates hand motions or positions patient uses when pain is most severe. Positive if patient demonstrates a flicking down of hands similar to shaking a thermometer	142 patients re- ferred for elec- trodiagnostic testing	Carpal tunnel syndrome via electrodiagnostic testing	.37 (.27, .46)	.74 (.62, .87)	1.42	.85
Lumbrical provocation test ³⁶	Patient makes a fist for 60 sec. Considered positive if the patient reports paresthesia in the distri- bution of the median nerve	96 consecutive patients referred for electrodiagnostic testing	agnostic testing	.37	.71	1.28	.89
Ulnar fovea sign ³⁷	Examiner presses thumb distally and deep into the "soft spot" between the ulnar styloid process and flexor carpi ulnaris tendon. Positive if exquisite tenderness similar to experienced wrist pain	272 consecutive patients under- going wrist arthroscopy	Foveal disruption of the distal radioulnar ligaments and ul- notriquetral ligament injuries observed arthroscopy	.95 (.90, .98)	.87 (.79, .92)	7.1 (4.5, 11.0)	.06 (.03, .11)

Combinations of Tests

Carpal Tunnel Syndrome: Clinical Prediction Rule

Wainner and colleagues¹² developed a clinical prediction rule for detecting carpal tunnel syndrome. The result of their study demonstrated that if 5 variables (a Brigham and Women's Hospital Hand Severity Scale score of > 1.9, a wrist ratio index > .67, a patient report of shaking the hand for symptom relief, diminished sensation on the thumb pad, and age older than 45) were present, the +LR was 18.3 (95% CI 1.0, 328.3). This clinical prediction rule results in a post-test probability of 90% that the patient has carpal tunnel syndrome.

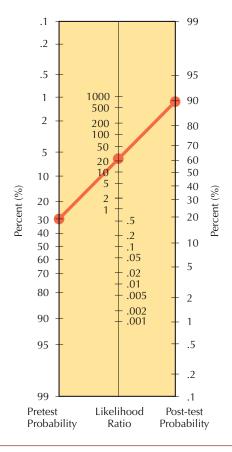


Figure 11-31

Nomogram representing the change in pretest (34% in this study) to post-test probability given the clinical prediction rule. (Adapted with permission from Fagan TJ. Nomogram for Bayes' theorem. N Engl J Med. 1975;293:257. Copyright 2005, Massachusetts Medical Society. All rights reserved.)

OUTCOME MEASURES

Outcome Measure	Scoring and Interpretation	Test-Retest Reliability	MCID
Upper Extremity Functional Index	Users are asked to rate the difficulty of performing 20 functional tasks on a Likert-type scale ranging from 0 (extremely difficult or unable to perform activity) to 4 (no difficulty). A total score out of 80 is calculated by summing each score. The answers provide a score between 0 and 80, with lower scores representing more disability	ICC = .95 ³⁸	Unknown (MDC = 9.1) ³⁸
Disabilities of the Arm, Shoulder, and Hand (DASH)	Users are asked to rate the difficulty of performing 30 functional tasks on a Likert-type scale; 21 items relate to physical function, 5 items relate to pain symptoms, and 4 items related to emotional and social functioning. A total score out of 100 is calculated with higher scores representing more disability ichigan Hand Consists of 37 items on 6 scales: (1) overall hand function,		10.2 ³⁹
,		ICC = .95 ⁴⁰	Pain = 23 Function = 13 ADL = 11 Work = 8 ⁴¹
Numeric Pain Rating Scale (NPRS)	Users rate their level of pain on an 11-point scale ranging from 0 to 10, with high scores representing more pain. Often asked as "current pain" and "least," "worst," and "average" pain in the past 24 hours	ICC = .72 ⁴²	2 ^{43,44}

MCID, Minimum clinically important difference; MDC, minimal detectable change.

APPENDIX

Quality Assessment of Diagnostic Studies Using QUADAS

	Heller 1986 ⁴⁵	Gellman 1986 ⁴⁶	Waeckerle 1987	Powell 1988 ⁴⁷	Katz 1990	Koris 1990 ⁴⁸	Durkan 1991 ⁴⁹	Williams 1992 ⁵⁰	LaStayo 1995	Grover 1996	Gonzalez del Pino 1997 ⁵¹	Gunnarsson 1997 ⁵²	Kuhlman 1997	Fertl 1998
Was the spectrum of patients representative of the patients who will receive the test in practice?	Y	N	Υ	Υ	Υ	N	N	N	Υ	Υ	N	Υ	Υ	N
2. Were selection criteria clearly described?	Ν	N	Υ	N	Ν	N	N	U	Υ	Υ	N	U	Υ	N
3. Is the reference standard likely to correctly classify the target condition?	Υ	Υ	Υ	Y	Υ	U	Υ	U	Υ	U	Y	Y	Y	Υ
4. Is the time period between reference stan- dard and index test short enough to be rea- sonably sure that the target condition did not change between the two tests?	U	U	Υ	U	U	U	U	U	U	Y	U	U	Υ	U
5. Did the whole sample or a random selection of the sample, receive verification using a reference standard of diagnosis?	Y	N	Υ	U	Υ	Υ	Y	N	Υ	Y	Y	N	Y	Υ
Did patients receive the same reference standard regardless of the index test result?	Υ	N	Υ	U	Y	N	Υ	N	Υ	Υ	U	U	Y	Υ
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Y	Υ	Υ	Υ	Υ	U	Υ	U	Υ	N	Υ	U	Υ	Υ
Was the execution of the index test described in sufficient detail to permit replication of the test?	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Y	Υ	Y	Υ
9. Was the execution of the reference stan- dard described in sufficient detail to permit its replication?	Υ	Υ	Υ	N	Υ	N	N	N	Υ	Y	Y	Y	Y	Υ
10. Were the index test results interpreted without knowledge of the results of the reference test?	U	U	Υ	Y	Y	U	U	Y	U	Υ	Y	Υ	Υ	Υ
11. Were the reference standard results interpreted without knowledge of the results of the index test?	U	U	N	U	Y	U	U	Y	U	Υ	U	U	U	U
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	U	U	U	Y	U	U	U	Υ	U	U	Υ	U	Υ
13. Were uninterpretable/ intermediate test results reported?	U	U	U	U	U	U	U	U	U	U	U	U	Υ	Υ
14. Were withdrawals from the study explained?	U	U	Υ	U	U	U	U	U	U	U	N	N	Υ	Υ
Quality summary rating:			\Diamond										\rightarrow	0

APPENDIX (continued)

Quality Assessment of Diagnostic Studies Using QUADAS

	Tetro 1998 ⁵³	Szabo 1999	Pershad 2000	Ahn 2001 ⁵⁴	Karl 2001	Mondelli 2001 ⁵⁵	Hansen 2004	Lajoie 2005	Wainner 2005	Amirfeyz 2005 ⁵⁶	Tay 2007	El Miedany 2008	Cheng 2008 ⁵⁷
Was the spectrum of patients representative of the patients who will receive the test in practice?	N	N	Υ	N	Υ	N	Υ	Υ	Υ	N	Υ	N	N
2. Were selection criteria clearly described?	Υ	N	Υ	Ν	Υ	U	Υ	U	Υ	Υ	U	Υ	Υ
3. Is the reference standard likely to correctly classify the target condition?	Υ	U	Υ	U	Υ	Y	Υ	Υ	Y	Y	Y	Υ	Y
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?	U	U	Y	U	U	U	Y	Y	Y	Y	U	U	U
5. Did the whole sample, or a random selection of the sample, receive verification using a reference standard of diagnosis?	N	N	Υ	Υ	Υ	N	Υ	Υ	Y	N	Y	Υ	Y
6. Did patients receive the same reference standard regardless of the index test result?	N	N	Υ	U	Υ	N	Υ	Υ	Y	N	U	Υ	N
7. Was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?	Y	U	Υ	U	Υ	U	Υ	Υ	Y	Y	Y	Υ	Y
8. Was the execution of the index test described in sufficient detail to permit replication of the test?	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Y	Y	Υ	Y
9. Was the execution of the reference standard described in sufficient detail to permit its replication?	Υ	Υ	Υ	N	Υ	N	Υ	N	Y	Y	N	Υ	Y
10. Were the index test results interpreted without knowledge of the results of the reference test?	U	U	Υ	U	Υ	U	Υ	U	U	Y	Y	U	U
11. Were the reference standard results interpreted without knowledge of the results of the index test?	U	U	U	U	U	U	U	U	Y	U	U	U	U
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?	U	Υ	Υ	U	U	U	U	U	Y	U	Y	Υ	U
13. Were uninterpretable/ intermediate test results reported?	U	U	Υ	U	U	U	U	U	Υ	U	U	U	U
14. Were withdrawals from the study explained?	U	U	Υ	U	U	U	Υ	U	Υ	U	U	U	U
Quality summary rating:			\langle				\Diamond		\rightarrow				
Y = yes, N = no, U = unclear. Good quality $(Y - N = yes)$	10 to 1	4).	Fa	air qual	ity (Y -	N = 5	5 to 9).		Poo	or quali	ty (Y -	N ≤ 4).

REFERENCES

- 1. El Miedany Y, Ashour S, Youssef S, et al. Clinical diagnosis of carpal tunnel syndrome: old tests-new concepts. Joint Bone Spine. 2008;75:451-457.
- 2. Bohannon RW, Andrews AW. Interrater reliability of hand-held dynamometry. Phys Ther. 1987;67:931-933.
- 3. D'Arcy CA, McGee S. The rational clinical examination. Does this patient have carpal tunnel syndrome? JAMA. 2000;283:3110-3117.
- 4. MacDermid JC, Wessel J. Clinical diagnosis of carpal tunnel syndrome: a systematic review. I Hand Ther. 2004;17:309-319.
- 5. Szabo RM, Slater RRJ, Farver TB, et al. The value of diagnostic testing in carpal tunnel syndrome. J Hand Surg Am. 1999;24:704-714.
- 6. Skirven T. Tendon and nerve injuries of the wrist and hand. The Wrist and Hand. La Crosse, WI: Orthopaedic Section, American Physical Therapy Association; 1995.
- 7. Wadsworth C. Cumulative trauma disorders of the wrist and hand. The Wrist and Hand. La Crosse, WI: Orthopaedic Section, American Physical Therapy Association; 1995.
- 8. Wadsworth C. Current concepts in orthopaedic physical therapy. The Wrist and Hand. La Crosse, WI: Orthopaedic Section, American Physical Therapy Association; 2001.
- 9. Placzek JD, Boyce DA. Orthopaedic Physical Therapy Secrets. Philadelphia: Hanley and Belfus; 2001.
- 10. Cole IC. Fractures and ligament injuries of the wrist and hand. The Wrist and Hand. La Crosse, WI: Orthopaedic Section, American Physical Therapy Association; 1995.
- 11. Hartley A. Practical Joint Assessment. St. Louis: Mosby; 1995.
- 12. Wainner RS, Fritz JM, Irrgang JJ, et al. Development of a clinical prediction rule for the diagnosis of carpal tunnel syndrome. Arch Phys Med Rehabil. 2005;86:609-618.
- 13. Katz JN, Larson MG, Sabra A et al. The carpal tunnel syndrome: diagnostic utility of the history and physical examination findings. Ann Intern Med. 1990;112: 321-327.
- 14. Waeckerle JF. A prospective study identifying the sensitivity of radiographic findings and the efficacy of clinical findings in carpal navicular fractures. Ann Emerg Med. 1987;16:733-737.
- 15. Grover R. Clinical assessment of scaphoid injuries and the detection of fractures. J Hand Surg Br. 1996;21:341-343.
- 16. Pershad J, Monroe K, King W, et al. Can clinical parameters predict fractures in acute pediatric wrist injuries? Acad Emerg Med. 2000;7:1152-1155.
- 17. Horger MM. The reliability of goniometric measurements of active and passive wrist motions. Am J Occup Ther. 1990;44:342-348.
- 18. LaStayo PC, Wheeler DL. Reliability of passive wrist flexion and extension goniometric measurements: a multicenter study. Phys Ther. 1994;74:162-176.

- 19. Stam HJ, Ardon MS, den Ouden AC, et al. The compangle: a new goniometer for joint angle measurements of the hand. A technical note. Eura Medicophys. 2006;42:37-40.
- 20. Brown A, Cramer LD, Eckhaus D, et al. Validity and reliability of the dexter hand evaluation and therapy system in hand-injured patients. J Hand Ther. 2000;13:37-45.
- 21. de Kraker M, Selles RW, Schreuders TA, et al. Palmar abduction: reliability of 6 measurement methods in healthy adults. J Hand Surg Am. 2009;34:523-530.
- 22. van den Beld WA, van der Sanden GA, Sengers RC, et al. Validity and reproducibility of hand-held dynamometry in children aged 4-11 years. J Rehabil Med. 2006;38:57-64.
- 23. Bohannon RW, Schaubert KL. Test-retest reliability of grip-strength measures obtained over a 12-week interval from community-dwelling elders. J Hand Ther. 2005;18:426-428.
- 24. Coldham F, Lewis J, Lee H. The reliability of one vs. three grip trials in symptomatic and asymptomatic subjects. J Hand Ther. 2006;19:318-327.
- 25. Molenaar HM, Zuidam JM, Selles RW, et al. Agespecific reliability of two grip-strength dynamometers when used by children. J Bone Joint Surg Am. 2008;90:1053-1059.
- 26. Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg Am. 1984;9:222-226.
- 27. Schreuders TA, Roebroeck ME, Goumans J, et al. Measurement error in grip and pinch force measurements in patients with hand injuries. Phys Ther. 2003;83:806-815.
- 28. MacDermid JC, Kramer JF, Woodbury MG, et al. Interrater reliability of pinch and grip strength measurements in patients with cumulative trauma disorders. J Hand Ther. 1994;7:10-14.
- 29. Rheault W, Beal JL, Kubik KR, et al. Intertester reliability of the hand-held dynamometer for wrist flexion and extension. Arch Phys Med Rehabil. 1989;70:907-910.
- 30. Kuhlman KA, Hennessey WJ. Sensitivity and specificity of carpal tunnel syndrome signs. Am J Phys Med Rehabil. 1997;76:451-457.
- 31. Leard JS, Breglio L, Fraga L, et al. Reliability and concurrent validity of the figure-of-eight method of measuring hand size in patients with hand pathology. J Orthop Sports Phys Ther. 2004;34:335-340.
- 32. Hansen PA, Micklesen P, Robinson LR. Clinical utility of the flick maneuver in diagnosing carpal tunnel syndrome. Am J Phys Med Rehabil. 2004;83:363-367.
- 33. LaJoie AS, McCabe SJ, Thomas B, Edgell SE. Determining the sensitivity and specificity of common diagnostic tests for carpal tunnel syndrome using latent class analysis. Plast Reconstr Surg. 2005;116:502-507.
- 34. Fertl E, Wober C, Zeitlhofer J. The serial use of two provocative tests in the clinical diagnosis of carpal tunnel syndrome. Acta Neurol Scand. 1998;98:328-332.

- 35. LaStayo P, Howell J. Clinical provocative tests used in evaluating wrist pain: a descriptive study. *J Hand Ther*. 1995;8:10-17.
- Karl AI, Carney ML, Kaul MP. The lumbrical provocation test in subjects with median inclusive paresthesia. Arch Phys Med Rehabil. 2001;82:935-937.
- Tay SC, Tomita K, Berger RA. The "ulnar fovea sign" for defining ulnar wrist pain: an analysis of sensitivity and specificity. J Hand Surg Am. 2007;32:438-444.
- Stratford PW, Binkley JM, Riddle DL. Development and initial validation of the upper extremity functional index. *Physiother Can.* 2001;53:259-263.
- Roy JS, MacDermid JC, Woodhouse LJ. Measuring shoulder function: a systematic review of four questionnaires. *Arthritis Rheum*. 2009;61:623-632.
- Massy-Westropp N, Krishnan J, Ahern M. Comparing the AUSCAN Osteoarthritis Hand Index, Michigan Hand Outcomes Questionnaire, and Sequential Occupational Dexterity Assessment for patients with rheumatoid arthritis. *J Rheumatol*. 2004;31:1996-2001.
- 41. Shauver MJ, Chung KC. The minimal clinically important difference of the Michigan hand outcomes questionnaire. *J Hand Surg Am.* 2009;34:509-514.
- Li L, Liu X, Herr K. Postoperative pain intensity assessment: a comparison of four scales in Chinese adults. *Pain Med.* 2007;8:223-234.
- Farrar JT, Berlin JA, Strom BL. Clinically important changes in acute pain outcome measures: A validation study. J Pain Symptom Manage. 2003;25:406-411.
- 44. Farrar JT, Portenoy RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. *Pain*. 2000;88:287-294.
- Heller L, Ring H, Costeff PS. Evaluation of Tinel's and Phalen's sign in diagnosis of the carpal tunnel syndrome. Eur Neurol. 1986;25:40-42.
- Gellman H, Gelberman RH, Tan AM, Botte MJ.
 Carpal tunnel syndrome. An evaluation of the pro-

- vocative diagnostic tests. *J Bone Joint Surg Am*. 1986;68:735-737.
- 47. Powell JM, Lloyd GJ, Rintoul RF. New clinical test for fracture of the scaphoid. *Can J Surg.* 1988;31:237-238.
- Koris M, Gelberman RH, Duncan K, et al. Carpal tunnel syndrome. Evaluation of a quantitative provocational diagnostic test. *Clin Orthop Relat Res.* 1990;157-161.
- 49. Durkan JA. A new diagnostic test for carpal tunnel syndrome. *J Bone Joint Surg Am*. 1991;73:535-538.
- 50. Williams TM, Mackinnon SE, Novak CB, et al. Verification of the pressure provocative test in carpal tunnel syndrome. *Ann Plast Surg.* 1992;29:8-11.
- 51. Gonzalez del Pino J, Delgado-Martinez AD, Gonzalez Gonzalez I, Lovic A. Value of the carpal compression test in the diagnosis of carpal tunnel syndrome. *J Hand Surg Br.* 1997;22:38-41.
- Gunnarsson LG, Amilon A, Hellstrand P, et al. The diagnosis of carpal tunnel syndrome. Sensitivity and specificity of some clinical and electrophysiological tests. *J Hand Surg Br*. 1997;22:34-37.
- 53. Tetro AM, Evanoff BA, Hollstien SB, Gelberman RH. A new provocative test for carpal tunnel syndrome. Assessment of wrist flexion and nerve compression. *J Bone Joint Surg Br.* 1998;80:493-498.
- 54. Ahn DS. Hand elevation: a new test for carpal tunnel syndrome. *Ann Plast Surg.* 2001;46:120-124.
- 55. Mondelli M, Passero S, Giannini F. Provocative tests in different stages of carpal tunnel syndrome. *Clin Neurol Neurosurg.* 2001;103:178-183.
- 56. Amirfeyz R, Gozzard C, Leslie IJ. Hand elevation test for assessment of carpal tunnel syndrome. *J Hand Surg Br.* 2005;30:361-364.
- Cheng CJ, Mackinnon-Patterson B, Beck JL, Mackinnon SE. Scratch collapse test for evaluation of carpal and cubital tunnel syndrome. *J Hand Surg Am*. 2008;33:1518-1524.

Index

vote: Page numbers tonowed by t	Abductor politicis longus tendon,	Actonnociaviculai (AC) joint
ndicate figures; page numbers fol-	insertion of, 465f	(Continued)
owed by t indicate tables.	AC joint. See Acromioclavicular	in physical examination, 411t-412
	(AC) joint.	sprains of, 389t
A	Accuracy of diagnostic test, 2, 3-7	Acromioclavicular ligament, 382f,
A angle, in knee, 311, 311f, 311t	Acetabular fossa, fat in, 247f	382t
Abdomen, bony framework of, 201f	Acetabular labrum, 247f	tears of, 417
Abdominal endurance test, 162t	tears of, 244	Acromion, 379f, 380f, 382f, 383f,
Abdominal wall muscles, 142f	patient history in, 254t, 255, 255t	384f, 385f, 386f, 388f
anterior, 143		
Abduction/abduction tests	Acetabular ligament, transverse,	in AC joint lesions, 426f, 426t
of hand, 486t	247f	in physical examination, 393t,
	Acetabular notch, 203f, 245f	395t
of hip. See Hip abduction/	Acetabulum, 203f, 245f	Acronyms
abduction tests.	advanced degenerative changes	SnNout, 5, 5f
of palm, 486t	in, 259f	SpPin, 6, 6f
of sacroiliac joint, 232t	lunate surface of, 203f, 245f, 247f	Activity modification, for patello-
of shoulder. See Shoulder abduc-	margin (limbus) of, 203f, 206f,	femoral pain syndrome
tion/abduction tests.	245f	284, 325, 325f, 325t
of thumb, for carpal tunnel syn-	Achilles reflex, with lumbar spinal	Activity of Daily Living Scale (ADLS)
drome, 489t	stenosis, 158t	in knee outcomes, 327t
Abductor digiti minimi brevis ten-	Achilles tendon, 340f, 342f, 346f,	Adduction angle, of hip, 268t
don, 344f	347f	Adduction/adduction tests
Abductor digiti minimi muscle	neurological examination of, 156t	of hip. See Hip adduction/
in foot, 348f, 349f, 349t, 350f,	in physical examination, 368t	adduction tests.
351f, 352f, 354f	rheumatoid arthritis involvement	of knee
nerve to, 350f, 354f	of, 369f	end-feel with, 302t
in hand, 473t, 474f	rupture of, 355t	pain during, 303t
innervation of, 476f	-	1 0
Abductor hallucis brevis muscle, 354f	Achilles tendonitis, 355t	of shoulder. See Shoulder
Abductor hallucis brevis nerve, 354f	ACL. See Anterior cruciate ligament	adduction/adduction
Abductor hallucis brevis tendon, 344f	(ACL).	tests.
	Acoustic meatus. See External	Adductor brevis muscle, 250t, 253f,
Abductor hallucis longus muscle,	acoustic/auditory	292f
349f, 349t	meatus.	Adductor hallucis brevis tendon,
Abductor hallucis muscle, 348f,	Acromial angle, of scapula, 379f,	344f
349f, 350f, 351f	380f	Adductor hallucis muscle, 354f
insertion of, 352f	Acromial branch, of thoracoacro-	insertion of, 352f
Abductor hallucis tendon, 349f, 350f	mial artery, 388f	oblique head of, 351f, 351t
Abductor pollicis brevis muscle,	Acromial end, of clavicle, 379f	transverse head of, 351f, 351t
473t, 474f	Acromial facet, of clavicle, 379f	Adductor hiatus, 253f, 292f
innervation of, 475f	Acromioclavicular (AC) joint, 136t,	Adductor longus muscle, 250t, 251f
manual testing of, 462	383f, 386f	253f, 292f
for cervical radiculopathy, 88t,	capsule of, 382f	Adductor magnus muscle, 249f,
489t	injury mechanisms of, 426f	250t, 253f, 292f
strength testing of, 489t	integrated movements of, 381,	obturator nerve to, 294f
Abductor pollicis brevis tendon, 448f	381f	sciatic nerve to ischiocondylar
Abductor pollicis longus muscle,	lesions of, tests for, 426, 426f,	part of, 249f, 250t
445f, 470f, 470t	426t	Adductor magnus tendon, 253f,
area on radius for, 444f	pain syndrome of, 397t	287f, 291f
innervation of, 477f	palpation of, 426t	Adductor minimus muscle, 249f
	r · r · · · · · · · · · · · · · · · ·	

250t, 251f patella and patellar tenof ankle, 372, 372f length assessment of, 270t don (A angle), 311, of knee, 284, 314, 314f, 314t 311f, 311t Adductor pollicis muscle, 473t, 474f of shoulder, 401, 401f, 401t Ankle, 335-376. See also Foot and innervation of, 476f Anterior relocation test, of shoulder, oblique head of, 473t ankle. combined with other tests, 378, transverse head of, 473t anterolateral impingement in, 336 detection of, 370, 370f, 370t Adductor tubercle, of femur, 285f 427t pain in. See Foot and ankle pain. on medial epicondyle, 253f, 287f Anterior slide test, for glenoid labral ROM measurements of, 359-360 tears, 409, 409f, 409t Adhesions trauma to in shoulder joint, 397f combined with other tests, 427t in temporomandibular joint fractures as, 358f, 358t Anterior view arthrosis, 32f of axis, 68f patient report of, 355t Adhesive capsulitis, of shoulder, screening for, 356, 358 of carpal bones, 463f 389t, 397f, 397t x-rays of. See Ottawa Ankle Rule of cervical spine arthrology, 69f ADLS (Activity of Daily Living Scale), for Radiography. of cervical spine ligaments, 71f in knee outcomes, 327t Ankle flexibility angle, 360f of elbow bones, in extension, 441f Afferent nerves, somatic, lumbar disc Ankle-hindfoot, AOFAS scale for, of elbow joint, opened, 442f herniation and, 179f of elbow ligaments, 443f 373t Ankylosing spondylitis of female pelvic inlet, 204f Ala (wing) of ilium, 201f, 202f, 246f of sacroiliac joint, 216t, 217t, of female pelvis, 204f female vs. male, 204f 218t, 225t of femur, 245f gluteal surface of, 201f, 203f of thoracolumbar spine, 149, of fibular nerves, 353f, 353t iliac fossa, 203f, 245f of forearm ligaments, in supinaof sphenoid bone, greater, 19f patient history in, 154, 154t, tion vs. pronation, 444f Alar ligament, 70f, 70t 155f of forearm nerves, 448f Algometer, for TMJ pressure pain Annular ligament of radius, 443f, of hip and pelvis ligaments, 247f 443t of humerus, 379f thresholds, 38t Annulus fibrosus, of lumbar interof knee muscles, 289f Alignment assessment of bones. See Bony alignment vertebral disc, 133f of male pelvic inlet, 204f assessment. fissure in, 179f of male pelvis, 204f nociceptors in, disc herniation dynamic. See Dynamic of metacarpophalangeal and inmovements. and, 179f terphalangeal ligaossification of, in ankylosing ments, 469, 469f, 469t static. See Static alignment. Alveolar artery, inferior, 25f spondylitis, 155f of rotator cuff muscles, 386f mylohyoid branch of, 21f Anococcygeal nerve, 148f, 208t, 209f of sacroiliac region ligaments, 206f Alveolar nerve, inferior, 21f, 23f, Anserine bursa, 289f, 291f of scapula, 379f 25f, 26f Anterior apprehension test, of of shoulder ligaments, 382f, 383f entering mandibular foramen, 26f shoulder, 399f, 399t of shoulder muscles, 385, 385f, Alveolar process, of maxilla, 19f, 67f combined with other tests, 427t, American Orthopaedic Foot and 428t of sternocostal articulations, 134f Ankle Society (AOFAS) Anterior cruciate ligament (ACL), of thigh nerves and arteries, 253f of tibia and fibula, 285f scale, 373t 287f, 288f, 288t American Shoulder and Elbow Surdegrees of sprain of, 315f of tibial nerves, 353f, 353t geons (ASES) score, 429t ruptures of, 295f, 295t of wrist and hand bones, 464f Anal (rectal) nerve, inferior, 148f, tears of, 284, 313t, 314t of wrist and hand muscles, 471f, 472f, 473f, 474f 252f combination of tests for, 324t Anconeus muscle, 445f, 445t pivot shift test for, 315, 315f, of wrist and hand nerves, 475f. innervation of, 477f Anesthetic injection, for sacroiliac Anterior disc displacement, in TMJ Anterior-posterior width, of wrist, disorders pain, 211t, 213t 490t double-block, referral patterns deviation tests of, 46, 46t, 55t, 57t in carpal tunnel syndrome, 490t with, 212, 212f diagnostic criteria for, 31, 32f Anterior-superior iliac spine (ASIS) motion testing and, 227t, 228t, 233t reliability and utility of, 33t, in hip testing, 274t provocative testing and, 216t, 217t, 40t, 45t as sacroiliac bony landmark, 214t 218t, 219t, 220t, 223t in sacroiliac pain provocation, patient history in, 21, 29 Anesthetic-steroid injection, for range of motion and, 45, 45f, 45t 216t, 218t, 223t with reduction, 33t, 54, 58t, 59t Anteroinferior view, of mouth floor intra-articular hip pain, 273t, 274t, 275t without reduction, 33t, 56 muscles, 25f

Angle between longitudinal axis of

Anterior drawer test

Adductor muscles, of hip and thigh,

Anteroposterior diameter, of pelvic	Arthralgia, in TMJ disorders, 31, 33t	Articular facets (Continued)
outlet, 204f	Arthrography, of rotator cuff tears,	anterior, for atlas, 68f
Anteroposterior glide technique, for	422t	inferior, for C3, 68f
hip mobilization, 326f	Arthrology	posterior, for atlas, 68f
Anthropometry measurements, of	of cervical spine, 69	superior, for atlas, 68f
wrist, 490, 490t	of elbow, 442	of C4, superior, 68f
carpal tunnel syndrome identifica-	of foot and ankle, 339	of C7, superior, 68f
tion with, 490, 490f, 490t	of hip and pelvis, 246	of cervical spine, tenderness with
AOFAS (American Orthopaedic	of knee, 286	palpation of, 105t
Foot and Ankle Soci-	of lumbar spine, 136	for dens, 68f
ety) scale, 373t	of sacroiliac region, 205, 205f,	of dens, posterior, 70f
Apical ligament, 70f, 70t	205t	of lumbar vertebrae, in physical
Apley's grinding test, of knee, 318,	of shoulder, 380	examination, 167t
318f, 318t	integrated movements in, 381,	of rib head, superior, 135f, 137f
combined with other tests, 322t,	381f	for sacrum, 136f, 202f
323t	of temporomandibular, 20	of thoracic vertebrae
Aponeuroses	jaw closed, 20, 20f	inferior, 133f, 138f
epicranial, 77f	jaw slightly opened, 20f	superior, 133f, 134f
gluteal, 140f, 249f	jaw widely opened, 20f	Articular nerve, recurrent, 353f
palmar, 467f, 471f	of thoracic spine, 134	articular branches of, 353f
plantar, 349f, 350f, 351f	1st, 136t	Articular pillar, of cervical
Apophyseal joints	2nd-7th, 136t	vertebrae, 69f
cervical spine, 69t	joint classifications, 136t	Articular processes
lumbar, ossification of, 155f	of wrist and hand, 465	of axis, inferior, 68f
lumbosacral, 205t	Arthroscopic view, of ACL rupture,	of C4, inferior, 68f
Apprehension test(s)	295f	of C7, inferior, 68f
moving patellar, 284, 321, 321f,	Arthroscopy	of cervical vertebrae, 69f
321t	of rotator cuff tears, 422t	of lumbar vertebrae
of shoulder, 378, 399, 399f	of shoulder	inferior, 136f, 138f
anterior, 399t	combination of tests vs., 427t,	superior, 133f, 136f, 138f
combined with other tests,	428t	of sacrum and coccyx, superior,
378, 427t	IRRS test following, 408, 417,	202f
bony, 399t	417f	facets of, 202f
relocation, 400t	physical examination vs., 394t,	of T9 vertebra, inferior, 134f
Arc of pain sign. See Painful arc sign.	399t, 400t, 403t, 404t,	of thoracic vertebrae, inferior vs.
Arch angle, 363f, 363t	405t, 406t, 407t, 408t,	superior, 133f, 134f, 138f
Arch drop, longitudinal, 369f	409t, 410t, 411t-412t	Articular surfaces
Arch height test, 363f	of wrist and hand, 500t, 501t	of acetabulum, 247f
medial, 362, 363t	Arthrosis. See Osteoarthrosis.	of atlas, inferior vs. superior, for
Arcuate artery, 348f, 352f	Articular cartilage	occipital condyle, 69f
posterior perforating branches of,	in elbow, 442f	lateral mass, 68f
348f, 352f	in hip and pelvis, 247f	of femur, medial vs. lateral, 287f,
Arcuate line, 201f, 203f, 206f, 245f,	erosion of, 259f, 296f	288f
246f	in knee, 286f	of sacrum and coccyx, 202f
Arm. See Forearm/arm.	erosion of, 296f	lumbosacral, 202f
Arteries. See also Named artery, e.g.,	in shoulder, 397f	facets of, 202f
Carotid artery(ies).	Articular cavities	of tibia, superior, 285f, 288f
of foot and ankle, 346f, 347f, 348f	of knee, 286f	Articular tubercles
of forearm, 445f	of sternoclavicular joint, 380f sternocostal, 134f	of mandible, 20f, 23f
of hip and pelvis, 247f	Articular discs	of radius, dorsal, 444f
of leg, 347f of mandible, 21f, 22f, 23f	of mandible, 20, 20f, 22f, 23f	of temporal bone, 19f
of neck, 68f, 71f, 72f, 73f, 75f, 77f	of sternoclavicular joint, 380f	Articularis genus muscle, 286f, 289t, 293f
	sternocostal, 134f	
of sacroiliac region, 209f of shoulder, 385f, 388f	Articular facets	Articulations. See Joints; specific ar-
of skull, 19f	of atlas	ticulation, e.g., Sterno- costal articulations.
of sole of foot, 349f, 350f, 351f, 352f	for dens, 68f	ASES (American Shoulder and
of thigh, 253f	posterior, 69f	Elbow Surgeons) score,
of wrist and hand, 467f, 474f	of axis	429t
or wrist and name, 70/1, 7/71	or axis	7471

ASIS. See Anterior-superior iliac	Auscultation	Ballottement test
spine (ASIS).	of temporomandibular joint, 40f	for carpal instability, 500t
Atlantoaxial joint, 69t	triangle of, in shoulder, 384t	for knee inflammation, 300t
instability of, 115t	Avascular necrosis (AVN), of hip	Bankart lesion, of shoulder, 399t,
lateral	and pelvis	400t, 401t
capsule of, 70f, 71f	detection with limited ROM, 262,	Basilic vein, 388f
medial tubercle of, 344f	262f, 262t	Bear-hug test, for subscapularis
median, ligaments of, 71f	patient history in, 254t	tears, 378, 423t
Atlanto-occipital joint	Avulsions	Behavior rating scale, for pain, 28t
arthrology of, 69t	humeral, of glenohumeral liga-	Belly-press test, for subscapularis
	ments, 399t, 400t, 401t	
capsule of, 70f, 71f		tears, 378, 423t
ligaments of, 70f, 70t	nerve root, of brachial plexus,	Bend/bending tests. See also Lateral
Atlanto-occipital membrane, ante-	378, 425, 425t	bending; Sidebending.
rior vs. posterior, 71f	Axillary nerve, 72t, 78t, 79f, 386f,	of cervical spine, 95t, 96t, 97t, 102t
Atlanto-odontoid/dens joint, 69t	386t	of knee, prone, 232, 232f, 232t
ligaments of, 70f, 70t	anterior, 387t, 388f	of thoracolumbar spine, 106f,
Atlas (C1)	in brachial plexus schema, 425f,	152t
anterior arch of, 68f	475f	forward vs. lateral, 159t
arthrology of, 69f	branches to arm/forearm, 477f	Bent knee fall out test, 270t
groove for vertebral artery on,	Axillary recess, 383f	Bernese ankle rules, 358t
68f	Axis (C2)	Biceps brachii muscle, 388f, 446f,
ligaments of, 70f, 70t, 71f, 71t	arthrology of, 69f	446t
nerves of, dorsal ramus of, 71f,	congenital fusion of, 103t	long head of, 385f, 386f, 446t
77f	interarticular parts of, 68f	manual testing of, 87f
osteology of, 68f	ligaments of, 70f, 71f, 71t	for cervical radiculopathy, 88t
articular facet for axis	nerves of, 77f, 384t	muscle stretch reflex testing of,
anterior, 68f	dorsal ramus of, 77f	89f
posterior, 68f	osteology of, 68f	for cervical radiculopathy, 89t
superior, 68f	anterior view of, 68f	palpation of, 394t
inferior view of, 68f	posterosuperior view of, 68f	short head of, 385f, 446t
in relation to head and neck,	in relation to head and neck,	tendonitis of, 389t
17f, 67f	17f, 67f	Biceps brachii tendon, 443f, 446f,
superior view of, 68f	rotation testing of, 100f, 100t	448f
		long head of, 382f, 383f
pain during flexion-extension, 97t	limited and painful passive,	
posterior arch of, 68f, 77f	101t, 102t	palpation of, 408t
rotation testing of, 100f, 100t	spinous process of, 68f, 140f, 142f	oblique cord of, 443f, 444f, 444t
limited and painful passive, 101t	tenderness with palpation of, 105t	in rotator cuff tears, 418f, 422t
transverse process of, 68f, 71f,	transverse process of, 68f	tears of, 394t, 403t, 405t, 407t,
75f, 142f	posterior tubercle of, 75f	409t, 415t-416t
tubercles of	in upper limb dermatomes, 85f	Biceps femoris muscle
anterior, 68f	in zygapophyseal pain referral	long head of, 248t, 249f, 252f,
posterior, 68f, 141f, 142f	pattern, 80f, 81f	290t, 291f, 294f, 346f
for transverse ligament, 68f	В	tendon of, 206f, 346f
in zygapophyseal pain referral	_	short head of, 248t, 249f, 290t,
pattern, 81f	Back muscles	291f, 294f, 346f
Atrophy. See Muscle atrophy.	deep layer of, 142	Biceps femoris tendon, 347f, 353f
Auditory meatus. See External	intermediate layer of, 141	and bursa beneath it, 287f, 289f
acoustic/auditory	superficial layer of, 139	and inferior subtendinous bursa,
meatus.	Back pain	291f
Auditory (pharyngotympanic) tube,	cervical. See Cervical (neck) pain.	Biceps load test I/II, for glenoid
cartilaginous part of, 23f	lumbar. See Low back pain.	labral tears, 378, 403t,
Auricular artery, posterior, 77f	sacral. See Sacroiliac pain.	411t-412t
Auricular nerve	thoracic. See Thoracolumbar	combined with other tests, 378,
great, 77f	pain.	427t, 428t
posterior, 26f	Balance assessment/tests	Bicipital groove, tenderness of, 394t,
Auricular surface, of hip bone, for	foot and ankle in, 365, 365f, 365t	405t
sacrum, 203f, 245f	hip and pelvis in, 267f, 267t, 272t	Biering-Sorensen test, modified, of
Auriculotemporal nerve, 21f, 23f,	single leg, 365t	thoracolumbar spine,
26f	for pelvic pain, 272t	162f, 162t
201	r r,	1021, 1021

Bifurcate ligaments, 341f, 341t Bowel movements, sacroiliac pain C2 vertebra. See Axis (C2). Bigelow, Y ligament of, 247f aggravated by, 211t C3 vertebra Biopsychosocial model, of TMJ Brachial artery, 388f, 446f, 448f arthrology of, 69f disorders, 31 branches of, 445f congenital fusion of, 103t Blunt trauma, to cervical spine Brachial plexus, 75f, 388f disc herniation of, 116f clinical examination for, 92t-93t, compression of, for cervical cord limited and painful passive mo-92f compression diagnosis, tion of, 100t, 101t 116, 116f, 116t nerves of, 77f, 384t Glasgow Coma Score with, 85t, 87t, 96t, 104t medial vs. posterior vs. lateral dorsal ramus of, 77f Bohler test, for meniscal tears, 322t cords of, 475f osteology of, in relation to head nerve root avulsions of, 378, 425, Bone anatomy. See Osteology. and neck, 17f, 67f, 68f Bone pain, in thoracolumbar spine, 425t tenderness with palpation of, 105t neural tension test of, 112t transverse process of, of tubercles 172t Bone spurs schema of, 425f of, anterior vs. posteon acetabulum margins, 259f tenderness with palpation of, 105t rior, 75f on metatarsals, 369f Brachial plexus palsy, 378, 425, 425t in upper limb dermatomes, 85f Bone tenderness Brachial veins, 388f in zygapophyseal pain referral Brachialis muscle, 388f, 446f, 446t, pattern, 80f, 81f in foot and ankle impingement sign with, 370t 448f C4 vertebra insertion of, 443f patient report of, 355t arthrology of, 69f disc herniation of, 116f with trauma screening, 356t, Brachialis tendon, oblique cord of, 443f, 444f, 444t 358t groove for spinal nerve on, 68f Brachioradialis muscle, 445f, 446f limited and painful passive moin knee, with trauma screening, 298f, 299t innervation of, 477f tion of, 101t, 102t in thoracolumbar spine, 172t muscle stretch reflex testing of, 89t nerves of, 78t, 79f, 384t, 386t Brachioradialis tendon, 448f Bony alignment assessment dorsal ramus of, posterior cutain foot and ankle, 362 Buccal nerve, 26f, 26t neous branches of, 77f forefoot position, 364, 364f, Buccinator muscle, 22f, 23f, 26f, 35f osteology of, superior view of, 364t Bucket handle tear, of meniscus, 323f tenderness with palpation of, 105t medial arch height, 362, 363f, Bunions, 369f transverse process of, 68f Bursa beneath biceps femoris tendon, tubercles of, anterior vs. posterior, navicular height, 362, 362f, 287f, 289f 68f in knee, 306-307, 308-309, 310iliopectineal, 247f in upper limb dermatomes, 85f of knee. See Knee bursa. in zygapophyseal pain referral 311 A angle measurement, 311, of olecranon, subcutaneous, 443f pattern, 80f, 81f radial, in carpal tunnel syndrome, 311f, 311t C5 vertebra 480f lateral pull test, 311, 311t arthrology of, 69f mediolateral patellar tilt, 306, subacromial, 383f, 415t-416t congenital fusion of, 103t 306f, 306t subdeltoid, 383f disc herniation of, 116f subtendinous. See Subtendinous limited and painful passive mopatellar orientation, 307, 307f, tion of, 100t, 101t, 102t 307t (deep) bursa. ulnar, in carpal tunnel syndrome, nerves of, 78t, 79f, 384t, 386t, patellar rotation, 309, 309f, 309t quadriceps angle measurement, 480f 446t, 447t, 448t, 477t 310, 310f, 310t Bursitis brachial plexus schema, 425f ischial, 254t superoinferior patellar tilt, 308, dorsal ramus of, posterior cutain shoulder, 389t, 397t, 415t-416t neous branches of, 77f 308f, 308t in lumbar spine, 166t subacromial, 415t-416t, 422t tenderness with palpation of, in shoulder, 395 Burst fracture, of cervical spine, 90f type III fracture of, 90f lateral slide test positions for, **Buttocks** 395t, 396f falling and landing on, 210f in upper limb dermatomes, 85f, 86t Bony apprehension test, of shoulder, nerves of, 252, 252f, 252t in zygapophyseal pain referral pain in. See Gluteal (buttock) pain. pattern, 80f, 81f 399t Bony landmark symmetry, in sacro-C6 vertebra C iliac region arthrology of, 69f C0 vertebra, pain during flexioncongenital fusion of, 103t motion assessment and, 226t extension, 97t palpation for, 214, 214f, 214t, 215f disc herniation of, 116f limited passive, 101t Boots, sacroiliac pain aggravated by, limited and painful passive mo-C1 vertebra. See Atlas (C1). 211t tion of, 100t, 101t, 102t

C6 vertebra (Continued) Calcaneofibular ligament, 340f, Carpal ligaments nerves of, 78t, 79f, 384t, 386t, instability of. See Carpal bones. 341f, 341t anterior, tears of, 372f palmar, 446f, 467f 445t, 446t, 447t, 448t, 470t, 471t, 477t Calcaneonavicular ligament, 341f, transverse, 446f, 466t, 467f, 474f in physical examination, 498t brachial plexus schema, 425f 341t dorsal ramus of, posterior cuta-Carpal tunnel syndrome plantar, 342f, 342t, 343t, 344f, 352f carpal bones in, 480f neous branches of, 77f Calcaneus, 337f, 344f body of, 337f, 338f clinical prediction rule for, 462, tenderness with palpation of, 105t tubercles of, anterior, 71f 502, 502f erosion of, 369f type IV fracture of, 90f fibular trochlea of, 337f neurological examination for, 88t, 109t, 112t, 489t, in upper limb dermatomes, 85f, 86t groove for fibularis longus tendon in zygapophyseal pain referral on, 337f 490t, 497t pattern, 80f, 81f groove for flexor hallucis longus patient history in, 82t, 84t, 478t C7 vertebra tendon on, 337f, 338f physical examination for arthrology of, 69f lateral process of, 338f, 344f, 349f cervical spine in, 95t, 110t, groove for spinal nerve on, 68f ligaments of, 340, 340f, 340t 111t, 117t limited and painful passive momedial process of, 338f, 344f, 349f wrist and hand in, 462, 489 tuberosity of, 337f, 338f, 350f, 351f thumb pad sensation testing for, tion of, 100t, 101t, 102t nerves of, 78t, 79f, 384t, 445t, medial vs. lateral process of, 462, 492, 492t, 502 344f, 349f Tinel's sign/test in, 494f, 494t, 447t, 448t, 470t, 471t, 476t, 477t Calcar, of femur, 245f 495, 495t brachial plexus schema, 425f Calf pain, 149t, 157f upper limb tension tests for, 499, Calf strength, 336 osteology of 499f, 499t in relation to head and neck, Calf stretch position, for ankle dorweakness with, testing for, 465t, 17f, 67f siflexion measurement, 487t, 489, 489t superior view of, 68f 359t Carpometacarpal (CMC) joint, 465f, spinous process of, 71f, 140f, Calipers, in wrist anthropometry, 490t 465t 141f, 142f, 384f Callouses, on metatarsals, 369f articular cascade of, 467f tenderness with palpation of, 105t Canadian C-Spine Rule (CCR), 66, Carpometacarpal ligament in thoracic kyphosis, 106t, 163t 91, 92t-93t dorsal, 468f, 468t transverse process of, 68f, 75f Canal of Guyon, ulnar nerve compalmar, 466t, 467f, 469f pression at, 478t, 480f tubercles of, anterior vs. posterior, Cartilage. See specific type, e.g., Ar-68f Capitate, 463f, 464f, 465f, 467f, 468f ticular cartilage. in upper limb dermatomes, 85f, 86t in carpal tunnel syndrome, 480f Caudal glide technique, for hip moin zygapophyseal pain referral in scaphoid fractures, 482f bilization, 326f pattern, 80f, 81f Capitotriquetral ligament, 466t, 467f CCR (Canadian C-Spine Rule), 66, Capitulum, of humerus, 379f, 441f 91, 92-93t C8 vertebra nerves of, 78t, 79f, 384t, 445t, Capsular ligaments Centralization phenomena 447t, 448t, 470t, 471t, of knee, rupture of, 297f in cervical pain, 97t of shoulder, 383f 476t, 477t in lumbar pain, 132, 235 Capsular syndrome, of shoulder, 397t brachial plexus schema, 425f diagnostic utility of, 174, 174f, Capsule. See Joint capsule(s). in thoracic kyphosis, 106t, 163t 174t Capsulitis, adhesive, of shoulder, in upper limb dermatomes, 85f, 86t patient history in, 149t Calcaneal artery, lateral vs. medial, 389t, 397f, 397t reliability of, 173, 173f, 173t 350f, 351f Carotid artery(ies) Cephalic vein, 385f, 388f Calcaneal nerve, lateral vs. medial, common, 75f Cervical artery, transverse, 388f 350f, 351f external, 72f, 73f Cervical curvature, 69f Calcaneal stance, relaxed vs. neutral Carotid sheath, 72f Cervical flexor endurance tests, 99f, measurement of, 360f, Carotid tubercle, 71f 99t 360t Carpal arterial arch, palmar, 474f Cervical fusion, congenital, 103t Calcaneal tendon, 340f, 342f, 346f, Cervical manipulation, for cervical Carpal bones in carpal tunnel syndrome, 480f 347f radiculopathy, 119, rheumatoid arthritis involvement of hand, 464f 119f, 119t of, 369f instability of Cervical myelography, 104t, 110t, Calcaneocuboid joint, 339f, 339t patient history in, 478t, 480f 111t, 112t Calcaneocuboid ligament, 341f, tests for, 500, 500f, 500t Cervical myelopathy, 80t 341t, 352f of wrist joint, 463f Cervical (neck) pain, 66, 80-83 dorsal, 341f Carpal compression test, 498, 498f, interventions for, 118t, 119t, 120t, plantar, 343t, 344f 121t, 122t, 123t, 124t

Cervical (neck) pain (Continued) Cervical spine (Continued) Cervical spine (Continued) during limited passive interverteclinical summary and recommenneurological examination of, 85dations, 66-127 86, 87-88, 89 bral motion, 101, 101t, diagnostic utility of examination of osteology of, 67-68 102f, 102t brachial plexus compression, in relation to head and neck, mechanical, 80t, 82t, 95t, 97t, 116, 116f, 116t 67f 101t, 102t, 106t, 107t cluster of tests, 117, 117f, 117t postural assessment for, 163t vertebral, 68f limited and painful passive inin relation to TMJ, 17f patient report of, 80, 80t, 82t, 83t, tervertebral motion, outcome measures of, 125, 125t 84t 103, 103f, 103t patient history and, 66, 80-83 physical examination for, 66t, 95, manual muscle testing, 88f, 88t initial hypotheses based on, 80, 95t, 96t, 97-98, 98f, 104-105, 112, 114, 114t muscle stretch reflex testing, 80t 89f, 89t radiculopathy and, 66, 80t, 82t, report of pain, 80, 82t, 83t, 84t 83f, 83t, 84t neural tension tests, 114, 114f, physical examination of, 66t, 85-114t during range of motion, 97t, 98f, 98t pain during active ROM, 98f, 98t to identify radiographic needs palpation assessment of pain, following trauma, 66, thoracic manipulation for, 66 zygapophyseal referral patterns 105, 105f, 105t 90t, 91, 92t-93t patient history, 83f, 83t, 84f, 84t quality assessment of diagnostic of, 66, 80, 82t pin prick sensation testing, 86f, Cooper description of, 81f studies, 126-127 diagnostic nerve block for, 103t 86t range of motion of, 66 radiculopathy intervention Dwyer description of, 80f improvement with intervenoutcomes, 118f, 119f, Cervical plexus, 77f tions, 118t, 120t, 121t, 120f, 121f, 122f, 123f, Cervical radiculopathy, 66 122t, 123t, 124t intervention(s) for, 118 124f limited passive intervertebral, radiography rule for injury, 66, cervical manipulation for im-100, 100f, 100t 91-92, 92t-93t, 92f mediate improvements, pain during, 101, 101t, 102f, Sharp-Purser test, 115, 115f, 115t 102t 119, 119f, 119t Spurling's test(s), 109f, 109t measurements of, 94f, 95t, 96t identifying factors of positive short-term outcomes, A and B, 109f, 109t pain during, 97t, 98f, 98t 118, 118f, 118t fractures of, 66, 91, 92t-93t, 305t in slump test, 178f, 178t mechanical traction as, 124f types of, 90f therapeutic, following spinal improvement after 3 weeks, injury screening, 90-91, 92 manipulation, 121f interarticular parts of, 69f reliability of examination 122, 122f, 122t, 123f, interventions for, 66, 118. See also compression tests, 108f, 108t Cervical (neck) pain; limited and painful passive incluster of findings, 124, 124f, 124t Cervical radiculopathy. tervertebral motion, ligaments of, 68f, 69f 101, 101f, 101t, 102f, summary of, 66 thoracic manipulation for imatlanto-occipital joint, 70, 70f, 102t 70t limited passive intervertebral mediate improvements, neck, 68f, 69f, 73f 120, 120f, 120t motion, 100, 100f, 100t cluster of findings, 121, 121f, spinal, 71, 71f, 71t manual muscle testing, 87f, 87t muscles of, 72-73, 75-76 muscle length assessment, 107, 121t patient history in, 66, 80t, 389t, anterior, 72 107f, 107t deep neck distraction test, 110, 110f, 478t physical examination for, 66t, 86t, investing layer of, 72f 110t pretracheal layer of, 72f 87f, 87t, 88t, 89f, 89t neural tension tests, 112, 112f, combination of tests in, 117, posterior, 76 112t, 113f scalene and prevertebral, 75 117f, 117t pain during active ROM, 97f, tension tests in. See Upper limb suprahyoid and infrahyoid, 73 nerves of, 78-79, 78t, 79f tension tests (ULTTs). palpation assessment of pain, anterior vs. posterior divisions of wrist and hand, 489t, 490t, 104, 104f, 104t of, 79f without patient history, 105, 492t, 494t, 495t, 497t, in brachial plexus schema, 105f, 105t 498t, 499t 425f patient history, 82f, 82t screening for, 66, 95t cords of, 79f postural assessment, 106, 106f, Cervical spine, 65-130 arthrology of, 69 posterior columns of, disc herclinical prediction rule for, 117, niation and, 116f ROM measurements, 95f, 95t, 117f, 117t terminal branches of, 79f 96f, 96t

Cervical spine (Continued)	Circumflex artery(ies) (Continued)	Clinical prediction rule (Continued)
sensation testing, 85, 85f, 85t	osteonecrosis related to disrup-	interpretation of, 7, 8f, 9-10, 9f
shoulder abduction test, 111,	tion of, 262f	for knee fractures, 299f
111f, 111t	humeral, anterior vs. posterior, 388f	for lateral epicondylalgia, 456, 456t
Spurling's A and B tests, 108f,	iliac, deep, 253f	for lumbar spine instability, 185,
108t	scapular, 388f	185f
Spurling's to the right vs. left	groove on scapula for, 380f	for sacroiliac joint/region dys-
tests, 108f, 108t	Clavicle, 72f, 73f, 134f	function, 234f
strength and endurance testing,	in AC joint lesions, 426f, 426t	of spinal manipulation, for low
99, 99f, 99t	acromial end of, 379f	back pain, 236, 237f
traction test, 110, 110f, 110t	acromial facet of, 379f	for wrist fractures, in children, 483
		Clitoris, dorsal nerve of, 148f
segmental mobility testing of,	conoid tubercle of, 379f	
100t, 101t, 102t, 103t	impression for costoclavicular lig-	Clivus of basilar part of occipital
manipulation and, 119f	ament on, 379f	bone, 70f
Cervical traction, for radiculopathy,	ligaments of, 382f	Cluneal nerve, inferior, 252f, 252t,
124f	muscles of, 385f, 386f	294f
improvement after 3 weeks, 122,	in shoulder joint, 379f, 380f, 388f	CMC (carpometacarpal) joint, 465f,
122f, 122t, 123f, 123t	sternal end of, 379f	465t
cluster of findings, 124, 124f,	sternal facet of, 379f	articular cascade of, 467f
124t	subclavian groove of, 379f	Coccygeal cornu (horn), 202f
Cervical vertebrae. See also specific	surfaces of	Coccygeal nerve, 208t, 209f
vertebra, e.g., C3	inferior vs. superior, 379f	herniated lumbar nucleus pulpo-
vertebra.	posterior and anterior, 379f	sus and, 157f
articular facets of, 68f	trapezoid line of, 379f	Coccygeal plexus, 148f
anterior, 68f	Clavicular branch, of thoracoacro-	Coccygeus muscle
inferior vs. superior, 68f	mial artery, 388f	(ischio)-, 209f
posterior, 68f, 69f	Click-clack test, of sacroiliac joint,	nerve to, 208t, 209f
tenderness with palpation of,	232t	nerve to, 148f
105t	Clinical examination, 1-14	Coccyx
articular processes of, 69f	history in. See Patient history.	nerves of, 148f, 208t, 209f
inferior, 68f	physical. See Physical examina-	osteology of, 201f, 202f, 206f, 246f
spinous processes of, 68f, 69f, 71f,	tion.	superior articular processes of,
140f, 141f, 142f	reliability and diagnostic utility	202f
tenderness with palpation of,	of. See also specific	facets of, 202f
104t, 105t	anatomy or test.	surfaces of, dorsal vs. pelvic, 202f
tubercles of, 68f	confidence intervals, 8	tip of, in females, 204f
anterior, 68f, 71f	diagnostic accuracy, 2, 3-7	transverse process of, 202f
posterior, 68f, 141f, 142f	likelihood ratios, 3, 6-7, 8, 9-	transverse ridges of, 202f
Cervical range-of-motion instru-	10, 11-12, 11t	Collateral ligaments
ment (CROM), 96t	overall accuracy, 2, 4, 11t	of ankle, 341f, 341t
Chemical factors, of lumbar pain,	post-test probability, 8f, 9-10, 9f	of elbow, 443f, 443t
179f	predictive values, positive and	tears of, 440
Chest expansion, in ankylosing	negative, 3, 4-5, 4t, 11t	detecting, 455, 455f, 455t
spondylitis,155f, 186t	pretest probability, 8f, 9	of fibula. See Fibular collateral
Children, wrist injuries in, 483,	quality assessment of studies, 2,	ligament.
483f	10-11	of knee, tears of, 284, 295t
Chin, in cervical spine examination,	reliability, 2-3	patient history in, 295t, 297f,
110f, 110t	sensitivity, 3, 5-6, 5f, 8, 11t	297t
Chin tuck neck flexion test, 99t	specificity, 3, 5f, 6, 6f, 8, 11t	valgus stress test for, 316t
Choanae, 23f, 67f	statistical significance, 8	of metacarpohalangeal/interpha-
Chorda tympani nerve, 26f	statistics related to, 11-12, 11t	langeal joints, 469f,
CI (confidence interval), 8	summary of, 2, 11-12	469t
Circumflex artery(ies)	2×2 contingency table, 3, 4t, 11t	of plantar foot, 343f
femoral	Clinical prediction rule	of radius, 443f, 443t, 466t, 467f
lateral, 253f	for ankle fractures, 358f	of tibia. See Tibial collateral
ascending, transverse, and	for carpal tunnel syndrome, 462,	ligament.
descending branches	502, 502f	of ulna, 443f, 443t, 466t, 467f,
of, 253f	for cervical spine radiculopathy,	468f
medial, 253f	117, 117f, 117t	of wrist, 466t, 467f, 468f
	. ,	·

Comminuted fracture, of femur, 277f Computed tomography (CT) my-Costal facets elography, of brachial into shaft, 298f for 1st rib, 69f, 135f, 137f Common extensor tendon, of foreplexus palsy, 425t costovertebral Condylar process, of mandible, 17f, arm, 445f, 470f inferior vs. superior, 137f 18f, 19f, 45t, 67f Common flexor tendon, of forearm, transverse, 137f 471f, 472f of thoracic vertebrae, 133f Condyles in anterior disc displacement, 32f inferior vs. superior, 133f, 135f Compression of cervical cord, 116, 116f, 116t of femur transverse, 133f, 135f of spinal cord, with cervical fraclateral vs. medial, 285f, 287f, Costochondral joints, of thoracic 288f tures, 90f spine, 134f, 136t of spinal nerve roots Costoclavicular ligament, 134f, 380f, in trauma screening, 298f with cervical disc herniation, 83f of humerus, lateral vs. medial, 382t with lumbar disc herniation, 379f, 441f impression on clavicle for, 379f 157f, 179f occipital. See Occipital condyle. Costotransverse joint, of thoracic with thoracolumbar disc deof tibia spine, 136t generation, 183f lateral, 285f, 346f Costotransverse ligaments, 135f, Compression fracture, of cervical medial, 285f, 287f, 288f, 289f 137f, 137t spine, 90f in trauma screening, 298f lateral, 135f, 137f Compression tests Confidence interval (CI), 8 ossification of, 155f Conjugate diameter, of pelvic inlet, of brachial plexus, for cervical superior, 135f, 137f, 145f cord compression, 116, 204f Costovertebral joints, of thoracic Conoid ligament, 382f, 382t, 386f spine, 135f, 136t 116f, 116t Conoid tubercle, of clavicle, 379f of cervical spine Costovertebral ligaments, 137, 137f, Contingency table, 2×2 , 3, 4t, 11t with shoulder, arm, or hand 137t pain, 108f, 108t likelihood ratios and, 7, 8t Costoxiphoid ligament, 134f straight, 108f, 108t Contractures, of hip flexors, Thomas Coughing of foot and ankle, for trauma test for, 269, 269f, 269t sacroiliac pain aggravated by, 211t thoracolumbar pain with, 152t screening, 356t, 357f Coracoacromial ligament, 382f, direct vs. indirect, 358t 382t, 383f, 386f Coxal bone. See Hip (coxal) bone. for glenoid labral tears Coracobrachialis muscle, 388f Cranial nerve(s) active, 406-407, 406f, 406t, 407t Coracoclavicular ligaments, 382f, V₁, 26f, 26t combined with other tests, 382t, 386f V₂, 26f, 26t V₃, 24t, 26f, 26t tears of, 417 427t VII, 26f rotation with, 406f, 407t Coracohumeral ligament, 382f, 382t, combined with other tests, 383f XI, 384t 378, 428t Coracoid process, of scapula, 379f, Craniocervical flexion test, 99t passive, 410t, 411t-412t 380f, 383f, 386f, 388f Crank test, 7, 8t Corns, on metatarsals, 369f rotation, 404, 404f, 404t for glenoid labral tears, 402-403, 402f, 402t, 403t of sacroiliac joint/region, 200, Coronal section/view 218, 221f of shoulder joint capsule, 397f combined with other tests, of shoulder ligaments, 383f combined with other tests, 427t through S2 foramina, 202f Crepitus, in TMJ conditions, 41, 41f, 233t, 235 diagnostic utility of, 218f, 218t of wrist joint, 465f for intra-articular hip pathol-Coronal suture, of mandible, 19f Crescentic defect, with rotator cuff Coronoid fossa, of humerus, 379f, ogy, 275t tears, 418f for pelvic pain, 260t, 272t 441f Cricoid cartilage, 17f, 67f, 72f, 73f reliability of, 218f, 218t Coronoid process Cricothyroid ligament, 73f of temporomandibular joint, biof mandible, 17f, 18f, 19f, 67f Cricothyroid muscle, 73f lateral, 52 temporalis muscle insertion CROM (cervical range-of-motion of wrist and hand into, 22f instrument), 96t carpal, 498, 498f, 498t of ulna, 441f, 444f, 472f Cross 6-meter hop for time, 366t longitudinal, for scaphoid frac-Correlation coefficients, 3 Cross-body adduction test, for subtures, 481t "Corset" concept, dynamic, of lumacromial impingement scaphoid, 500f, 500t bar stability, 143f identification, 415t-416t Computed tomography (CT) Corticospinal tract, lateral, cervical Crossed postural syndrome, upper, of cervical spine injury, 92t-93t disc herniation and, 80t of lumbar spinal stenosis, 153t, Crossed straight-leg raise (CSLR), 116f 158t, 182t Costal cartilage, 134f, 145f, 201f, 380f for lumbar radiculopa-

6th, 385f

of rotator cuff tears, 422t

thy, 132, 177, 177f, 177t

Cruciate/cruciform ligaments, 70f, 70t	Cutaneous nerves (Continued)	Depressor anguli oris muscle, 22f
anterior. See Anterior cruciate lig-	perineal branches of, 252f,	Depressor labii inferioris muscle, 221
ament (ACL).	294f	Derangement syndrome, in low
longitudinal band of, inferior vs.	of upper extremity	back pain, 187t
superior, 70f, 70t	in hand, 475f, 476f	Dermatomes, of upper limb
posterior. See Posterior cruciate	lateral, 446f, 448f, 448t, 477f,	anterior vs. posterior view of, 85f
ligament (PCL).	493f	in cervical radiculopathy testing,
CT. See Computed tomography (CT).	inferior vs. superior, 477f	86f, 86t
Cubital tunnel syndrome, 449t	medial, 78t, 79f, 387t, 388f,	Developmental hip dysplasia, in in-
tests for, 440, 454, 454f, 454t	475f, 493f	fants, 244, 263, 263f,
Cuboid bone, 337f, 338f, 341f, 352f	in brachial plexus schema,	263t
groove for fibularis longus tendon	425f	Deviation tests
on, 337f, 338f	posterior, 477f, 493f	of radius and ulna, 484t, 485f,
tuberosity of, 337f, 338f, 344f,	superficial, 477f	500t
352f	in wrist and hand, 475f, 476f,	of temporomandibular joint
Cuboideonavicular ligament	493f	anterior disc displacement and
dorsal, 341f, 341t	Cyriax's capsular pattern, for detect-	46, 46t, 55t, 57t
plantar, 343t, 344f	ing osteoarthritis, in hip	lateral, 48f, 48t
Cuneiform bones, 337f, 338f	and pelvis, 258, 259f	of toes, lateral, 369f
intermediate, 337f, 338f, 352f	Cysts, of meniscus, 324t	Diagnostic utility of clinical exami
lateral, 337f, 338f, 352f	D	nation, 1-14. See also
medial, 338f, 342f, 344f, 352f	_	Clinical examination;
Cuneocuboid ligament, dorsal, 341f	DASH. See Disabilities of the Arm,	specific anatomy or test
Cuneonavicular ligament	Shoulder, and Hand	Diaphragm, 146f
dorsal, 341f, 341t, 342f	(DASH).	slip of costal part of, 145f
plantar, 344f	de Quervain's syndrome, 478t	Digastric fossa, of mandible, 18f
Cutaneous branches	Deep artery	Digastric muscle
of axillary nerve, 477f	of forearm, 388f	anterior belly of, 24f, 24t, 25f, 26f
of C4-C6 dorsal ramus, posterior,	middle collateral branch of, 445f	35f, 73f, 74t
77f	of thigh, 253f	posterior belly of, 24f, 24t, 25f,
of median nerve, 475f	perforating branches of, 253f	26f, 72f, 73f, 74t
of obturator nerve, 253f	Deep dissection	Digastric tendon, intermediate, fi-
of radial nerve, 477f	of hip and thigh muscles, 248t	brous loop of, 24f, 25f,
of saphenous nerve, medial, 293f	of thigh nerves and arteries, 253f	72f, 73f
of thoracic spine nerve	of wrist and hand muscles, 470f	Digital arteries
anterior, 145f	Degenerative disc disease, in thora-	of foot and toes
lateral, 145f	columbar spine, 183f	common plantar, 350f, 352f
of ulnar nerve, 476f	Degenerative disease	from plantar metatarsal ar-
Cutaneous nerves	of acetabulum, advanced, 259f	tery, 349f
of lower extremity	fatty, with infraspinatus tears, 422t	dorsal, 348f, 352f
dorsal	Deltoid branch, of thoracoacromial	proper plantar, 349f, 352f
intermediate, 353f	artery, 388f	dorsal branches of, 348f
lateral, 294f, 348f, 353f,	Deltoid ligament, of ankle, 340f,	superficial branch from me-
354f	342f, 342t	dial plantar artery, 351f
sural cutaneous nerve via,	tibiocalcaneal part of, 342f, 342t	of hand and fingers
353f	tibionavicular part of, 342f, 342t	common palmar, 474f
medial, 353f	tibiotalar part of, anterior vs. pos-	deep palmar arch, 474f
femoral, lateral, 293f	terior, 342f, 342t	palmar metacarpal, 474f
in foot and ankle, 348f, 353f,	Deltoid muscle, 72f, 140f, 383f, 384f,	Digital fibrous sheaths, 469f
354f	385f, 385t, 388f	Digital nerves/branches
of muscles. See Musculocutane-	manual testing of, 87f	palmar, 493f
ous nerve.	for cervical radiculopathy, 88t	common, 475f, 476f
perforating, 148f, 208t, 209f, 252f	Deltoid tuberosity, of humerus,	dorsal, 476f, 477f, 493f
sural. See Sural cutaneous nerve.	379f, 380f	proper, 475f, 476f, 493f
of thigh. See also Thigh.	Deltopectoral triangle, 385f Dens, 68f, 69f	plantar
lateral, 146f, 147t, 148f, 252f,	articular facet for, 68f	common, 350f, 354f
252t, 253f, 292f, 293f	articular facet for, 681 articular facet of, posterior, 70f	communicating branches of,
posterior, 148f, 208t, 209f, 252f,	ligaments of, 70f, 70t	349f
252t, 292f, 294f	ngamento oi, /oi, /ot	dorsal, 353f

Digital nerves/branches (Continued)	Distraction tests (Continued)	Dynamic movements (Continued)
from deep fibular nerve, 348f	of neck, 66, 110, 110f, 110t, 122t,	for lumbar stability, "corset" con-
from superficial fibular	124t	cept of, 143f
nerve, 348f	combined with other tests, 117,	of shoulder, scapular asymmetry
proper, 354f, 475f	117t	during, 395, 395t, 396f
dorsal branches of, 348f	of sacroiliac joint/region, 200,	of temporomandibular joint, 16t
lateral vs. medial branches	223, 223f	anterior disc displacement and
of, 349f, 350f, 351f	combined with other tests,	46
Digits. See Fingers; Toes.	233t, 235	pain during, 47
Disabilities of the Arm, Shoulder,	diagnostic utility of, 223f, 223t	conditions identified by, 50-
and Hand (DASH)	for pelvic pain, 260t, 272t	51
in shoulder outcomes, 429t	reliability of, 223f, 223t	joint play and, 49
in wrist and hand outcomes, 503t	Dorsal nerve, of penis/clitoris, 148f,	resistance tests and, 48
Disc(s)	252f	Dynamometer, for grip strength
articular. See Articular discs.	Dorsal view	testing, 452t, 462, 487t,
degenerative disease of, in thora-	of carpal bones, 463f	489t
columbar spine, 183f	of deep interosseous muscles of	Dysplasia, hip, 244
displacement of, in temporoman-	sole, 352f	developmental, in infants, 244,
dibular joint. See Ante-	of foot and ankle, 338f	263, 263f, 263t
rior disc displacement,	of wrist and hand bones, 464f	203, 2031, 2031
in TMJ disorders.		E
intervertebral. See Intervertebral	of wrist and hand muscles, 474f	Ecchymosis, foot and ankle, in
	of wrist and hand nerves, 475f, 476f	trauma screening, 356t
discs.	of wrist ligaments, 468, 468f, 468t	Ege's test, for meniscal tears, 319,
Disc herniation	Dorsalis pedis artery, 348f	319f, 319t
cervical	deep plantar artery from, 352f	Elbow and forearm, 439-460
cord compression with, 116f	Dorsiflexion	
nerve root compression with, 83f	of ankle, 359t, 360f	arthrology of, 442
lumbar	impingement sign with, 370f,	clinical summary and recommen
clinical features of, 157f, 178t	370t	dations, 440-458
inflammation with, 179f	in slump test, 178f, 178t	diagnostic utility of examination
nerve root compression with,	of knee, 305t	cubital tunnel syndrome detec-
157f	Dorsiflexion-compression test, for	tion, 454, 454f, 454t
straight-leg raise test detection	ankle trauma, 356t, 357f	extension test, 440, 453, 453f,
of, 176, 176f, 176t	Drawer test, of ankle. See Anterior	453t
crossed, 132, 177, 177f, 177t	drawer test.	medial collateral tears detec-
Discogenic pain	Drop arm test	tion, 455, 455f, 455t
sacroiliac, McKenzie evaluation	for rotator cuff tears, 422t	movement and exercise ther-
rule for, 200, 235, 235f	for subacromial impingement,	apy, 456, 456f, 456t
thoracolumbar, 149t, 179f	415t-416t	ligaments of, 443, 443f, 443t, 444f
Discrimination test, two-point, for	combined with other tests, 428t	444t
carpal tunnel syndrome,	Drop/dropping sign, in rotator cuff	mobilization strategies for, 456,
492t, 493f	tears, 422t	456t
Dislocations. See also Subluxations.	Dropping objects, with wrist and	muscles of, 445, 447
of shoulder, 398f, 399t, 401t,	hand disorders, 478t,	nerves of, 448, 448f, 448t
411t-412t	479t	in neural tension tests, 112t, 114t
Displacements	Drop-test, of sacroiliac joint, 225t	499t
of discs, in temporomandibular	Dupuytren's contracture, in hand,	osteology of, 441, 441f
joint. See Anterior disc	478t	outcome measures of, 457, 457t
displacement, in TMJ	Dynamic movements. See also	patient history and, 440
disorders.	Functional movements.	initial hypotheses based on,
of femur fractures, 277f	aberrant, in lumbar segmental in-	449, 449t
of knee meniscus, anterior, 32f	stability, 180t, 191t	physical examination of, 440t,
of patella	of foot and ankle, assessment of,	450-455
lateral pull test for, 311t		quality assessment of diagnostic
mediolateral, 307t	336, 366, 366f, 366t, 367t	studies, 458, 458t
of wrist fractures, 483f		range of motion of, 450
Distraction tests	of hip and pelvis, pain during,	measurements of, 440, 450-
	272, 272t	451, 450f, 451f
of hip, with knee interventions,	resistance tests and, 264, 264t,	pain during, 449t
326t	265t	Pain daring, 417t

end-feel classification, 452, 452f, 452t flexion and extension measure- ments, 450, 450f, 450t grip strength testing, 452, 452t	elbow. Epicondylitis, of elbow, lateral vs. medial, 449t	in slump test, 178f, 178t of lumbar spine, 159t
flexion and extension measure- ments, 450, 450f, 450t		
ments, 450, 450f, 450t	medial, 449t	
		centralization phenomena and,
grip strength testing 152 152+	Epiglottis, 17f, 67f	173t
grip oriengui woung, 432, 432t	Erector spinae muscle, 140f, 141f,	lying, 171f, 171t
supination and pronation mea-	142f, 145f	radiography with, for instabil-
surements, 451, 451f,	Ethmoid bone, 19f	ity, 184t
451t	Eversion, subtalar joint, 359t	of sacroiliac joint
Elbow pain	Evidence-based practice, 2	lying, 235
epicondylar. See Tennis elbow.	Excursions, of temporomandibular	standing, 235
neuropathic. See Cubital tunnel	joint, 43t, 47t, 48t	of shoulder, 390t
syndrome.	Exercise therapy	for labral tears, 407t
patient history in, 449, 449t	stabilizing, for low back pain. See	of thoracolumbar spine, 159t, 160f
Electrodiagnostics	Stabilization exercises.	in low back pain classifications,
for cervical radiculopathy, 83t,	for strength. See Strengthening	188t
84t, 86t, 88t, 89t, 109t,	exercises.	pain during, 161, 161f, 161t
114t, 117t	for tennis elbow, 456, 456t	of wrist, 484t, 485f, 487t, 489t
for lumbar radiculopathy, 154t,	Extension view	for carpal tunnel syndrome,
156t	of anterior knee muscles, 289f	496t, 497t, 499t, 501t
for wrist and hand disorders, 478t,	of posterior knee ligaments, 287f	Extensor carpi radialis brevis mus-
479t, 489t, 490t, 492t,	Extension/extension tests	cle, 445f, 470f, 470t
495t, 497t, 498t, 501t	of cervical spine, 94f, 95t, 96t	groove on radius for, 444f
Elevation tests, of shoulder, 390t	limited passive, 100t, 103t	innervation of, 477f
for rotator cuff tears, 422t	pain during, 97t, 98t	manual testing of, for cervical ra-
Empty can test, for supraspinatus	in slump test, 178f, 178t	diculopathy, 88t
tears, 418f, 418t, 422t	of elbow, 440, 453, 453t	Extensor carpi radialis brevis ten-
End-feel assessment	for carpal tunnel syndrome,	=
	499t	don, 445f, 465f
of elbow, 452, 452f, 452t		Extensor carpi radialis longus mus-
of hip and pelvis, capsular and	end-feel classification, 452, 452f, 452t	cle, 445f, 470f, 470t
noncapsular, 258, 258f,		groove on radius for, 444f
258t	ROM measurements, 450, 450f,	innervation of, 477f
of knee, capsular and noncapsu-	450t	manual testing of, for cervical ra-
lar, 284, 302	of fingers, for carpal tunnel syn-	diculopathy, 88t
extension vs. flexion, 302f,	drome, 499t	Extensor carpi radialis longus ten-
302t, 326t	of great toe, in predicting success	don, 445f, 465f
of temporomandibular joint, 44,	of patellofemoral pain	Extensor carpi ulnaris muscle, 470f,
44f, 44t	interventions, 325f, 325t	470t
of thoracolumbar spine, 166t	of hip, 256t, 257t, 261f	innervation of, 477f
Endurance testing	in flexor contracture test, 269f,	Extensor carpi ulnaris tendon, 445f
of cervical spine flexors, 99, 99f, 99t	269t	Extensor digiti minimi muscle, 470f,
of serratus anterior muscle, 392t	length assessment with, 268t,	470t
of thoracolumbar spine, 162,	270t	innervation of, 477f
162f, 162t	for lumbar segmental instabil-	Extensor digiti minimi tendon, 445f,
Epicondylalgia. See Tennis elbow.	ity, 180t	470f, 470t
Epicondyles	for lumbar spinal stenosis, 182t	Extensor digitorum brevis muscle,
of femur	mobilizations effect on, 326t	345t, 346f, 347f, 348t,
lateral, 285f, 289f	osteonecrosis detection with,	353f
medial, 285f, 289f, 291f	262t	Extensor digitorum brevis tendon,
adductor tubercle on, 253f,	pain during, 260t, 278t	348f, 352f
287f	strength assessment with, 264t,	Extensor digitorum longus muscle,
in physical examination, 306t,	265t	289f, 345t, 346f, 348f,
307t	of knee	353f
of humerus, lateral vs. medial, 379f,	measurement of	Extensor digitorum longus tendon,
380f, 441f, 443f, 445f,	active vs. passive, 301t	346f, 348f, 352f
446f, 447f, 448f, 470f,	end-feel, 302t, 326t	Extensor digitorum muscle, 470f, 470t
471f, 472f, 476f, 477f	pain during, 303t	groove on radius for, 444f
1/11/1/21/1/01/1/1		_
palpation of, 449f	for strength, 304t	innervation of, 477f

Epicondyles (Continued)

Extension/extension tests (Continued)

Elbow and forearm (Continued)

Extensor digitorum tendon, 445f, Facet syndrome, cervical, 80t Femoral vein, 253f 470f, 470t Facets Femoroacetabular (anterior) im-Extensor expansions articular. See Articular facets. pingement, 254t of fingers, tendinous slips to, 473f Femoroacetabular joint, 246t of clavicle of foot and ankle, 348f, 352f acromial, 379f Femur Extensor hallucis brevis muscle, sternal, 379f adductor tubercle of, 285f 347f, 348t, 353f on medial epicondyle, 253f, 287f costal. See Costal facets. Extensor hallucis brevis tendon, anterior vs. posterior view of, 245f of tibia, lateral vs. medial, 285f, 348f, 352f 288f articular cartilage of, erosion of, Extensor hallucis longus muscle, Facial nerve, 24t, 26f 259f, 296f body (shaft) of, 245f, 285f 345t, 346f, 348f, 353f cervical branch of, 24t neurological examination of, FADIR. See Flexion-internal bursitis of, in greater trochanter, 156t, 158f rotation-adduction 254t Extensor hallucis longus tendon, (FADIR) impingement condyles of, lateral vs. medial, 346f, 348f, 352f 285f, 287f, 288f Extensor indicis muscle, 445f, 470f, Fagan's nomogram, 8f, 117f epicondyles of False-negative result/rate, 3, 4t, 6, 11t lateral, 285f, 289f 470t groove on radius for, 444f False-positive result/rate, 3, 4t, 5, 11t medial, 285f, 289f, 291f Fascia. See specific anatomy, e.g., innervation of, 477f adductor tubercle on, 253f, Thoracolumbar fascia. Extensor indicis tendon, 470f, 470t 287f Fasciitis, plantar, 336, 355t, 371t Extensor muscles in physical examination, 306t, Fat, in acetabular fossa, 247f of anterior abdominal wall, 143f, 307t fibrous capsule of 143t Fat body, suprapatellar, 286f line of attachment of, 245f, 285f of hip and thigh, length assess-Fat pad ment of, 268t, 270t in elbow joint, 442f line of reflection of, 245f, 285f of wrist and digits, 470, 470f, 470t infrapatellar, 286f, 288f unattached, 285f innervation of, 477f Fatty degeneration, with infraspinafractures of Extensor pollicis brevis muscle, tus tears, 422t distal, 298f 445f, 470f, 470t Fear-Avoidance Beliefs Questionintertrochanteric, 277f area on radius for, 444f naire (FABQ) shaft, 277f, 298f innervation of, 477f for cervical spine outcomes, 120t, head of, 245f, 247f Extensor pollicis brevis tendon, 448f erosion of cartilage and defor-121t, 125t insertion of, 465f for sacroiliac region outcomes, 238t mity of, 259f, 296f Extensor pollicis longus muscle, for thoracolumbar spine outosteonecrosis of, 262f 445f, 470f, 470t comes, 189t, 190t, 192t posterior ligament of, 247f, 247t groove on radius for, 444f Female pelvic inlet, anterior view of, fovea for, 245f innervation of, 477f intercondylar fossa of, 285f 204f intercondylar notch of Extensor pollicis longus tendon, in-Female pelvic outlet, inferior view sertion of, 465f of, 204f cartilaginous excrescences at, Extensor retinaculum Female pelvis 285f fracture of, 298f of foot anterior view of, 204f inferior, 346f, 353f inferior view of, 204f in knee joint, 286f, 287f, 289f ligaments of, 247f, 247t superior, 346f sagittal section of, 204f of forearm, 445f, 446f Femoral artery, 253f neck of, 245f, 247f of wrist, 465f circumflex osteology of, 285f Extensor tendon, common, of forelateral, 253f in physical examination, of knee, 306t, 307t, 309t arm, 445f, 470f ascending, transverse, and External acoustic/auditory meatus, descending branches of, combined with other tests, 324t 17f, 19f, 67f trochanters of. See Trochanters, of posterior TMJ palpation through, medial, 253f femur. 36f, 37t FFI (Foot Function Index), 373t osteonecrosis related to disrup-External rotation (ER) lag sign, in tion of, 262f Fibromyalgia, tender point palpashoulder, 378, 422t Femoral nerve, 146f, 147t, 148f, tion for, 172t 252t, 253f, 290t, 292f, External rotation (ER) test, for ankle Fibula trauma, 356t 292t, 293f in ankle joint, 340f, 341f, 346f, 348f articular branch of, 293f anterior border of, 285f apex of, 285f cutaneous branches of FABER test. See Patrick test. anterior, 293f head of, 251f, 285f, 287f, 288f, 289f, FABQ. See Fear-Avoidance Beliefs lateral, 293f 291f, 346f, 347f, 353f Questionnaire (FABQ).

Fibula (Continued)	Fingers (Continued)	Flexion/flexion tests (Continued)
posterior ligament of, 287f,	for carpal tunnel syndrome,	of sacroiliac joint
287t	492, 492t	lying, 235
lateral surface of, 285f	strength testing of, 488f, 489, 489t	sitting, 231, 231f, 231t
neck of, 285f	for carpal tunnel syndrome, 489t	standing, 230, 230f, 230t, 235
osteology of, 285f	Fixations, segmental, of lumbar	of shoulder, 390t
in physical examination, 298f	spine, 166t, 170f	for labral tears, supine resis-
of foot and ankle, 356t, 358t,	Flap tear, of meniscus, 323f	tance with, 405t, 411t-
360f	Flatfoot, 369f	412t
of knee, 298f, 315f	Flexion view, of anterior knee liga-	for muscle assessments, 392t,
Fibular artery, 347f	ments, 288f	393t
communicating branch of, 347f	Flexion/flexion tests	of thoracolumbar spine, 159t,
lateral calcaneal artery from, 350f	of ankle, 359t	160f
lateral calcaneal branch of, 347f	of cervical spine, 94f, 95t, 96t	in low back pain classifications,
perforating branch of, 347f, 348f	limited passive, 100t, 101t,	188t
posterior lateral malleolar branch	102t, 103t	pain during, 161, 161f, 161t
of, 347f	pain during, 97t, 98f, 98t	of wrist, 484f, 484t, 489t
Fibular collateral ligament, 287f,	in slump test, 178f, 178t	for carpal tunnel syndrome,
288f, 288t, 346f, 347f	in straight-leg raise test, 175f	496f, 496t, 497t
and bursa, 289f, 291f	strength and endurance tests	Flexion-internal rotation-adduction
inferior subtendinous bursa of, 287f	of, 99f, 99t	(FADIR) impingement
Fibular nerve. See Peroneal nerve.	of elbow, 440	test, for hip and pelvis
Fibular retinaculum	for cubital tunnel syndrome,	pathology, 244
inferior, 341f, 346f, 347f	454f, 454t	diagnostic utility of, 275, 275f,
fibular tendons in, 340f	pressure provocative test	275t
superior, 341f, 346f, 347f	combined with, 454t	reliability of, 275, 275f, 275t
Fibular tendon, in inferior fibular	end-feel classification, 452,	Flexor carpi radialis muscle, 448f,
retinaculum, 340f	452f, 452t	471f, 471t
Fibular trochlea, of calcaneus, 337f,	ROM measurements, 450, 450f,	innervation of, 475f
338f	450t	manual testing of, for cervical ra-
Fibularis brevis muscle. See Pero-	of hip and pelvis, 256t, 257t, 258t,	diculopathy, 88t
neus brevis muscle.	261f	Flexor carpi radialis tendon, 446f,
Fibularis brevis tendon. See Pero-	contracture test for, 269, 269f,	448f
neus brevis tendon.	269t	in carpal tunnel syndrome, 480f
Fibularis longus muscle. See Pero-	length assessment with, 268t,	Flexor carpi ulnaris muscle, 445f,
neus longus muscle.	270t	446f, 448f, 471f, 471t
Fibularis longus tendon. See Pero-	pain during, 260t, 278t	innervation of, 476f
neus longus tendon.	strength assessment with, 264t,	Flexor carpi ulnaris tendon, 448f,
Fibularis tertius muscle. See Pero-	265t	467f, 474f, 501t
neus tertius muscle.	of interphalangeal joints, 486f, 486t	Flexor digiti minimi brevis muscle
Fibularis tertius tendon. See Pero-	of knee	in foot, 349f, 350f, 351f, 351t,
neus tertius tendon.	hip mobilization effect on, 326t	352f
Figure-of-eight measurement	measurement of	in hand, 474f
of ankle joint swelling, 368, 368f,	active vs. passive, 301f, 301t	innervation of, 476f
368t	end-feel, 302f, 302t, 326t	
of wrist and hand swelling, 491f,		Flexor digiti minimi brevis tendon, 344f
491t	pain during, 303t, 319t, 320t,	
	322t	Flexor digiti minimi muscle, 473t
Finger pad, sensation testing of index, 492t	in pivot shift test, 315f	Flexor digitorum brevis muscle, 349f,
	in slump test, 178f, 178t	349t, 350f, 351f, 354f
medial, 492t	of lumbar spine, 159t	Flexor digitorum brevis nerve, 354f
Fingers	centralization phenomena and,	Flexor digitorum brevis tendon,
muscles of	173t	349f, 350f, 351f
extensor, 470, 470f, 470t	excessive, 171f, 171t	to 2nd toe, 344f
flexor, 471, 471f, 471t, 472f	for instability	fibrous sheaths of, 350f
in neural tension tests, 112t, 114t,	radiography with, 184t, 185,	Flexor digitorum longus muscle,
499t	185f	347f, 347t, 354f
ROM measurements of, 462, 486,	segmental, 180t	Flexor digitorum longus tendon, 344f,
486f, 486t	radiography with, 184t	347f, 349f, 350f, 351f
sensation testing of, 492, 492t, 493f	segmental side vs. ventral, 165t	to 2nd toe, 344f

Flexor digitorum profundus muscle, Flexor tendons Foot and ankle (Continued) of forearm, common, 471f, 472f 448f, 472f medial vs. lateral part of, 471t of sole of foot, fibrous sheaths of, innervation of, 476f Flick maneuver, for carpal tunnel Flexor digitorum profundus tendon, 467f, 469f syndrome, 501t in carpal tunnel syndrome, 480f Fluctuation test, for knee inflamma-Flexor digitorum superficialis mustion, 300f, 300t cle, 446f, 471t, 472f Flynn technique, for spinal manipuhumeroulnar head of, 446f, 448f, lation, 190f, 236, 236f Foot and ankle, 335-376 471t lateral vs. medial part of, innervaarthrology of, 339 tion of, 475f clinical summary and recommenradial head of, 448f, 471t dations, 336-374 Flexor digitorum superficialis tendiagnostic utility of examination, don, 467f, 469f 336 in carpal tunnel syndrome, 480f anterior drawer test, 372, 372f Flexor hallucis brevis muscle, 351f, anterolateral ankle impinge-364t ment detection, 370, 351t, 354f 370f, 370t lateral vs. medial head of, 349f, hallux function during gait, 350f, 351f, 352f 367, 367f, 367t Flexor hallucis brevis nerve, 354f 362t Flexor hallucis brevis tendon strength assessment, 361, 361f, lateral vs. medial head of, 344f 361t lateral vs. medial origin of, 352f talar tilt test, 372, 372f Flexor hallucis longus muscle, 347f, trauma screening, 358, 358f, 347t, 354f 358t Flexor hallucis longus tendon, 344f, Windlass test, 371, 371f, 371t 349f, 350f, 351f, 352f fractures of, 336, 355t groove for screening for, 336, 358f, 358t on calcaneus, 337f, 338f ligaments of, 340-341, 342-343 on talus, 338f lateral, 341, 341f, 341t, 346f medial, 342, 342f, 342t Flexor muscles of anterior abdominal wall, 143f, plantar, 343, 343f, 343f, 344f 143t posterior, 340, 340f, 340t of hip of sole, 352f contractures of, 269, 269f, 269t sprain injuries of, 355t, 372, 372f 360f length assessment of, 268t, 270t lumbar zygapophyseal joint pain neurological examination of, referral to, 149t motion of, during gait, 367 156t muscles of, 348 of wrist and digits, 471, 471f, 471t, 472f dorsum, 348, 348f, 348t Flexor pollicis brevis muscle, 473t, leg vs., 345, 347 474f in sole, 349-350, 351-352 superficial vs. deep head of, deep interosseous, 352, 352f, innervation of, 475f, 352t first layer of, 349, 349f, 349t 476f Flexor pollicis longus muscle, 446f, second layer of, 350, 350f, 448f, 471t, 472f third layer of, 351, 351f, 351t innervation of, 475f Foot and ankle pain Flexor pollicis longus tendon, 448f, nerves of, 353, 353f, 353t, 354f 467f in sole of foot, 349f, 349t, 350f, in carpal tunnel syndrome, 480f 350t, 351f, 351t Flexor pollicis radialis tendon, 467f osteology of, 337 Flexor retinaculum dorsal vs. plantar view of, 338f of foot and ankle, 347f, 350f, 351f, lateral vs. medial view of, 337f Ottawa rules for, 357f 354f of wrist and hand, 474f outcome measures of, 373, 373t in carpal tunnel syndrome, 480f paresthesias in, 355t

patient history and, 336 initial hypotheses based on, 355, 355t report of pain, 355t, 370t report of trauma, 355t physical examination of, 336t, 356-372 quality assessment of diagnostic studies, 374, 374t range of motion examination of, 359-360 reliability of examination balance and proprioception assessment, 365, 365f, 365t bony alignment assessment, 362 forefoot position, 364, 364f, medial arch height, 362, 363f, 363t navicular height, 362, 362f, dynamic performance assessment, 336, 366, 366f, 366t, 367t hindfoot motion during gait, 367, 367f, 367t joint swelling measurements, 368, 368f, 368t ligamentous injury detection after sprains, 372, 372f protective sensation assessment, 369, 369f, 369t range of motion measurements, 355t, 356t, 359, 359f calcaneal position, 336t, 360, lunge, 338f, 360 open kinetic chain, 359 passive vs. active, 359t strength assessment, 361, 361f, 361t trauma screening, 356, 356t, 357f rheumatoid arthritis involvement of, 369f, 369t weakness in, with herniated lumbar nucleus pulposus, 157f impingement detection with, 370t as lumbar zygapophyseal joint pain referral, 149t patient report of, 355t in trauma screening, 356t Foot Function Index (FFI), 373t Foot orthoses, for patellofemoral pain syndrome, 284, 325, 325f, 325t

disorders	of femur	sensory
diagnostic utility of, 53, 53f, 53t	distal, 298f	of lumbar spine nerves, 179f
reliability of, 53, 53f, 53t	intertrochanteric, 277f	of thoracic spine nerves, 145f
Foramen. See specific anatomy, e.g.,	shaft, 277f, 298f	submandibular, 26f
Intervertebral foramen.	of foot and ankle, 336, 355t	Gastrocnemius muscle, 289f, 291f,
Foramen ovale, 26f, 67f	screening for, 336, 358f, 358t	294f, 345t, 346f, 354f
Foramen spinosum, 26f, 67f	of forearm/arm, in children, 483,	atrophy of, with herniated lumbar
Force	483f	nucleus pulposus, 157f
high-velocity thrust, in spinal	of hip, 244	
		lateral head of, 249f, 286f, 287f,
manipulation, for cervi-	patellar-pubic percussion test	290t, 347f
cal radiculopathy, 119f,	for, 276, 276f, 276t	length assessment of, 305t
121f	types of, 277f	medial head of, 249f, 287f, 290t,
mechanical, in lumbar pain, 179f	of knee, 284, 298-299, 299t	347f
posteroanterior, for lumbar pain	distal femur and, 298f	neurological examination of, 156t
provocation, 167t	of wrist and hand, screening for,	plantaris part of, 290t
in shoulder tests	462, 481-483, 481t,	popliteus part of, 290t
for instability, 400t	482f, 483f	subtendinous bursa of
for labral tears, 403t, 404t,	Frontal bone, 19f	lateral, 286f, 287f
407t, 409t, 411t-412t	Functional hallux limitus test, dur-	medial, 287f
transfer of	ing gait, 367, 367f, 367t	Gastroc-soleus complex, neurologi-
in knee injuries, 297f, 297t	Functional impairment, with TMJ	cal examination of, 156t
by thoracolumbar fascia, 144,	disorders, 16t, 31, 31t,	Gemellus muscle, inferior vs. supe-
144f	60t	rior, 248t, 249f, 252f
in wrist and hand tests, for insta-	Functional movements. See also	nerves to, 148f, 208t, 209f, 252f
bility, 494t, 495t	Dynamic movements.	Genicular arteries
Forearm/arm, 439-460. See also El-	of sacroiliac region, 200	articular branch of, 253f
bow and forearm.	assessment tests for, 226-227,	descending, 253f
bones of. See Humerus; Radius;	228-229, 230-231, 232	Č
Ulna.		inferior lateral vs. superior lateral, 346f, 347f
	combinations of, 233-234,	*
fractures of, in children, 483, 483f	235	inferior medial vs. superior me-
ligaments of, 443, 444f, 444t	dysfunction vs. pain de-	dial, 253f, 347f
muscles of, 445	tection with, 234-235,	Genioglossus muscle, superior men-
anterior vs. posterior, 445, 445f	234f, 235f	tal spine for, 25f
anterior view of, 446f, 446t	of shoulder, assessment tests for,	Geniohyoid muscle, 24t, 25f, 35f,
posterior view of, 445f, 445t	391, 391f, 391t	73f, 74t
supinators vs. pronators, 447,	Functional outcomes. See Outcome	Genitofemoral nerve, 146f, 147t,
447f, 447t	measures.	148f, 292f
nerves of, 387t, 388f, 448, 448f,	C	femoral branch of, 146f, 148f
448t	G	genital branch of, 148f
in hand and wrist, 493f	Gaenslen test	Gerber's test, for subacromial im-
in neural tension tests, 112t, 114t,	for pelvic pain, 260t, 272t	pingement, 415t-416t
499t	of sacroiliac joint, 220, 222f	Gerdy's tubercle, 285f, 288f
pain in, with cervical compres-	combined with other tests,	iliotibial tract insertion to, 289f
sion test, 108f, 108t	233t, 235	Gillet test, 226-227, 226t, 227f, 227t
Forefoot alignment/position, 364,	diagnostic utility of, 220f, 220t	Glabella, of frontal bone, 19f
364f, 364t	reliability of, 220f, 220t	Glasgow Coma Score, with cervical
Forward bending, of thoracolumbar	Gait	spine trauma, 85t, 87t,
spine, 159t	characteristic, with hip osteoar-	96t, 104t
Fossa. See specific anatomy, e.g., Iliac	thritis, 259f, 267t	Glenohumeral joint, 136t
fossa.	functional hallux limitus test dur-	
	ing, 367, 367f, 367t	integrated movements of, 381, 381f
Foveal disruption, of radioulnar lig-	hindfoot motion during, dynamic	in neural tension tests, 114t
aments, 462		in physical examination, 395t,
testing for, 501t	assessment of, 367,	400t, 401t
Fractures	367f, 367t	Glenohumeral ligaments, 382f,
of cervical spine	Galea aponeurotica muscle, 77f	382t
screening for, 66, 91, 92t-93t,	Ganglion	avulsions of, 399t, 400t, 401t
305t	otic, 21f, 23f, 26f	inferior vs. middle vs. superior,
types of, 90f	semilunar (trigeminal), 26f	383f

Fractures (Continued)

Foot rotation test, internal, for TMJ

Ganglion (Continued)

Glenohumeral muscles, length-ten-Gluteus medius muscle, 140f, 248t, Hamate, 463f, 464f, 465f, 468f 249f, 251f, 252f, 253f sion relationship of, 381 in carpal tunnel syndrome, 480f Glenoid cavity, of scapula, 379f, 383f resisted, pain during, 266t hook (hamulus) of, 463f, 464f, Glenoid fossa, in scapulohumeral tears of, 244 467f, 469f, 471f rhythm, 381 weakness of, 267f in scaphoid fractures, 482f Gluteus medius tendon, tears of, Glenoid labral tears. See also Supe-Hammertoes, 369f rior labrum anterior 266t, 267t Hamstrings, 248t, 249f Gluteus minimus muscle, 248t, 249f, posterior (SLAP) length assessment of, 305t lesions. sciatic nerve supply to, 249f, 250t, 252f, 253f active compression/O'Brien test resisted, pain with, 266t 292f tears of, 244 strains of, 254t for, 406-407, 406f, 406t, 407t Goniometer Hamulus (hook) combined with other tests, of hamate, 448f, 463f, 464f, 467f, in cervical spine assessment, 95t, 96t 469f, 471f 427t anterior slide/Kibler test for, 409, in elbow and forearm assessment, in scaphoid fractures, 482f 450f, 450t, 451f, 451t 409f, 409t of medial pterygoid plate, 17f, combined with other tests, 427t in foot and ankle assessment. 23f, 26f, 67f 359t, 360f, 360t, 363t of pterygoid process, 67f combination of tests for, 427, 427t compression rotation test for, 404, in hip and pelvis assessment, Hand. See also Wrist and hand. 256t, 257t, 269t abduction tests of, 486t 404f, 404t Crank test for, 402-403, 402f, in knee assessment, 301t, 310t, fascia of, 465f 402t, 403t 311t, 354f thickening of deep antebrachin lumbar spine assessment, 189t palpation of, 394, 394t ial, 467f in shoulder assessment, 390t paresthesias of, 495t, 498t, 501t patient history in, 389, 389t in wrist and hand assessment, with brachial plexus palsy, 425t various tests for, 378, 399t, 410-484f, 484t, 485f, 486f, patient report of, 478t, 479t, 411, 410t, 411t-412t Yergason test for, 408, 408f, 408t 480f 486t Glenoid labrum, 383f Gower's sign, of lumbar segmental strength testing of, 488f, 489, Glide test/technique instability, 180t, 191t anteroposterior, for hip mobiliza-Gracilis muscle, 249f, 250t, 251f, trauma screening for, 462, 481tion, 326f 253f, 290t, 291f, 292f 483, 481t, 482f, 483f caudal, for hip mobilization, 326f Gracilis tendon, 251f, 289f, 291f Hand and wrist pain. See also Carpal tunnel syndrome. lateral, of cervical vertebrae, 102t Great toe. See also Hallux. luno-meniscotriquetral dorsal, 500t distal vs. proximal phalanx of, 344f brachial plexus palsy causing, mediolateral, of patella, 307t extension, in predicting success 425t posterior to anterior. See Posteof patellofemoral pain with carpal compression test, interventions, 325f, rior to anterior (PA) 498t glide test/technique. with cervical compression test, of sacroiliac joint, 235 Grip/gripping 108f, 108t Gluteal lines, of hip bone, 203f, 245f strength testing of patient report of, 478t, 479t anterior vs. posterior, 203f, 245f forearm in, 440, 452, 452t Hand behind back test, 391f, 391t inferior, 203f, 245f with fractures, 483 Hand in neck test, 391t hand and fingers in, 488f, 489, Gluteal nerve Hand Severity Scale, for carpal tuninferior, 148f, 208t, 209f, 252t 489t nel syndrome, 462, 502 superior, 148f, 208t, 209f, 252f, wrist in, 487-489, 487f, 487t Hand to neck test, 391t 252t wrist and hand disorders impact Hand to scapula tests, 391t on, 478t, 479t opposite, 391t Gluteal (buttock) pain with herniated lumbar nucleus carpal tunnel syndrome as, Hand-shake position, for scaphoid pulposus, 157f 465t, 489 fracture identification. in children, 483 in hip examination, 274t, 278t 481t as lumbar zygapophyseal joint Groin pain. See Inguinal (groin) pain. Hawkins-Kennedy test, for subacropain referral, 149t, 150f mial impingement, 378, patient report of, 254t, 255t 413, 413f, 413t Habitus, characteristic, with hip osphysical examination for, 257t combined with other tests, 428t teoarthritis, 259f sacroiliac pain and, 211t Head Hallux. See also Great toe. Gluteal tuberosity, 245f forward test of, in postural assess-AOFAS scale for, 373t Gluteus maximus muscle, 140f, ment, 106t Hallux limitus test, functional, dur-207f, 207t, 248t, 249f, leaning on palm, and TMJ disoring gait, 367, 367f, 367t 252f ders, 27, 27f

bony framework of hip fracture detection, 276, muscle length assessment, 268in relation to cervical spine, 67f 276f, 276t, 277f 269, 270 in relation to TMJ, 17f flexion contracture in, 269, intra-articular pathology 269f, 269t Headaches, cervical spine and, 97t, detection, 275, 275f, 104t iliotibial band length in, 268, Heel-bank test, of sacroiliac joint, lateral tendon pathology iden-268f, 268t tification, 266, 266f, measurements in, 270, 270f, Herniation, of intervertebral discs. 266t, 267f, 267t 270t, 271f See Disc herniation. pain during limited ROM, 260, Ober tests, 268f, 268t Hill-Sachs lesion, of shoulder, 399t, 260f, 260t, 261f pain with palpation, 273, 273f, 400t, 401t pain with functional move-273t Hindfoot, in physical examination, ments, 272, 272f, 272t Patrick's (FABER) test, 274, 274f, 274t 358t pain with palpation, 273, 273f, Hindfoot motion, during gait, dy-ROM measurements, 256, 256f, namic assessment of, patellar-pubic percussion test, 256t, 257f, 257t 367, 367f, 367t 276, 276f, 276t, 277f Thomas test, 269, 269f, 269t Hinge joints, temporomandibular, patient history, 255, 255f, Trendelenburg test, 267, 267f, 20, 20f 255t 267t Hip abduction/abduction tests, 244, Patrick's (FABER) test, 274, in straight-leg raise test, 176t 256t, 257t 274f, 274t Hip (coxal) bone, 203f auricular surface of, for sacrum, length assessment with, 268t Trendelenburg test, 267, 267f, 203f limited, developmental dysplasia 267t fractures of, 244, 277f osteology of, 245f in infants and, 244, 263, 263f, 263t patellar-pubic percussion test Hip pain. See also Sacroiliac pain. for, 276, 276f, 276t combined tests for, 278t osteonecrosis detection with, 262t ligaments of, 247, 247f, 247t during functional movements, pain during, 260t, 266t mobilization strategies for, for 272, 272t intra-articular resisted, for sacroiliac pain provoknee osteoarthritis, 284, cation, 225f, 225t 326, 326f, 326t anesthetic-steroid injection for, strength assessment with, 264t, muscles of, 248 273t, 274t, 275t 265t anterior, 250, 250t, 251f palpation for, 273, 273t Hip adduction/adduction tests, 244, posterior, 248, 248t, 249f patient report of, 244t, 254t, 256t, 257t nerves of, 248t, 252 255, 255t for impingement. See Flexionand buttocks, 252, 252f, 252t special tests for, 274t, 275t diagnostic utility of, 275, internal rotationand thigh, 249f, 252t, 253f adduction (FADIR) osteology of, 245 275f femur, 245f reliability of, 275, 275f impingement test. length assessment with, 268t hip (coxal) bone, 245f knee interventions and, 326t pain during, 260t, 278t outcome measures of, 279, 279t lateral tendon pathology and, strength assessment with, 264t, palpation of, 273 266, 266t, 267t 265t patient history and, 244, 255 physical examination for, 244, Hip and pelvis, 243-282 initial hypotheses based on, 256-278, 268t arthritis of. See Osteoarthritis (OA). 254, 254t during resistance tests, 264, 264t, arthrology of, 246 physical examination of, 244t, 265t History, in clinical examination. See clinical summary and recommen-256-278 dations, 244-280 quality assessment of diagnostic Patient history. diagnostic utility of examination studies, 280, 280t Hook (anatomy). See Hamulus avascular necrosis detection (hook). range of motion of with limited ROM, 262, passive measurements of, 256, Hook (tool), in thoracolumbar mus-262f, 262t 256f, 256t, 257t, 258t, cles, 141f combination of tests for osteo-Horizontal adduction test, for subarthritis, 278, 278f, 278t physical examination of, 258, acromial impingement, Cyriax's capsular pattern for 260, 262-263 415t-416t, 416f detecting osteoarthritis, reliability of examination combined with other tests, 428t 258, 259f Horizontal (cleft) tear, of meniscus, capsular and noncapsular enddevelopmental dysplasia detecfeels, 258, 258f, 258t 323f tion in infants, 244, intra-articular pathology detec-Hornblower's sign, with rotator cuff 263, 263f, 263t tion, 275, 275f, 275t tears, 419f, 422t

Hip and pelvis (Continued)

Hip and pelvis (Continued)

Head and neck. See also Neck.

Humeral artery, circumflex, anterior	Hypogastric (pelvic) plexus, inferior,	Iliac spine (Continued)
vs. posterior, 388f	209f	in physical examination. See
Humeroradial joint, 442t	Hypoglossal nerve, 24t, 26f	Anterior-superior iliac
Humeroulnar joint, 442t	Hypoglossus muscle, 24f, 25f, 73f	spine (ASIS); Posterior-
Humerus	Hypomobile segments	superior iliac spine
capitulum of, 379f, 441f	of cervical spine, 100t, 101t, 102t,	(PSIS).
condyles of, lateral vs. medial,	103t	posterior, inferior vs. superior,
379f, 441f	manipulation and, 119f	203f, 206f, 245f
deltoid tuberosity of, 379f, 380f	of lumbar spine, 166t, 184t	in sacroiliac pain provocation
in elbow joint, 442f, 442t, 443f	clinical prediction rule for, 185, 185f	anterior-superior, 216t, 218t,
extension vs. flexion, 441f epicondyles of, lateral vs. medial,	spinal manipulation for, 189t	223t posterior-superior, 211t, 213t
379f, 380f, 441f, 443f,	Hypothenar eminence, in carpal	Iliac vein, external, 253f
445f, 446f, 447f, 448f,	compression test, 498t	Iliacus muscle, 146f, 209f, 250t,
470f, 471f, 472f, 476f,	Hypothenar muscles, innervation	251f, 293f
477f	of, 476f	nerve branch to, 146f, 147t, 148f
palpation of, 449f	Hypotheses, based on patient history	Iliocostalis cervicis muscle, 141f
tenderness over. See Tennis el-	of cervical spine conditions, 80, 80t	Iliocostalis extensor muscle, 143f
bow.	in diagnostic process, 2	Iliocostalis lumborum muscle, 141f,
fossae of, 379f, 441f	of elbow and forearm conditions,	141t
groove for ulnar nerve on, 380f,	449, 449t	Iliocostalis muscles
441f	of foot and ankle conditions, 355,	sacroiliac, 207f, 207t
head of, 379f, 380f	355t	thoracic, 141f, 141t
in scapulohumeral rhythm, 381	of hip and pelvis conditions, 254,	Iliofemoral ligament, 247f, 247t
intertubercular sulcus of, 379f	254t	Iliohypogastric nerve, 146f, 147t,
ligaments of, 443f, 443t, 444f	of knee conditions, 295, 295t	148f, 292f
neck of, anatomical vs. surgical,	of shoulder conditions, 389, 389t	lateral branch of, 148f
379f, 380f	of temporomandibular joint con-	Ilioinguinal nerve, 146f, 147t, 148f,
in neural tension tests, 112t	ditions, 27, 27t	292f
olecranon fossa of, 380f, 441f radial fossa of, 379f, 441f	of thoracolumbar spine condi- tions, 149, 149t	Iliolumbar ligament, 138t, 206f Iliopectineal bursa, 247f
radial groove of, 380f	of wrist and hand conditions,	Iliopsoas muscle, 251f, 253f
in rotator cuff tears, 418f, 422t	478, 478t	Iliopubic eminence, 201f, 203f, 206f,
in shoulder examination, 393t,	170, 1700	245f, 246f, 247f
397f, 399t, 403t, 404t,	1	female, 204f
405t, 407t, 409t, 422t,	ICC (intraclass correlation	Iliotibial band (ITB), length assess-
426t, 452t	coefficient), 3	ment of, 268, 268f, 268t
in shoulder joint, 380f	Iliac artery(ies)	TFL complex and, 305t
anterior view of, 379f	circumflex, deep, 253f	Iliotibial tract, 249f, 251f, 289f, 291f,
supracondylar ridge of, medial vs.	external, 253f	346f
lateral, 379f, 380f, 441f	Iliac crest, 140f, 141f, 142f, 201f,	blended into lateral patellar reti-
trochlea of, 379f, 380f, 441f	203f, 206f, 246f, 249f,	naculum, 288f
tubercles of	252f	bursa deep to, 289f, 291f
greater vs. lesser, 379f, 380f, 382f	inner vs. outer lip of, 201f, 203f,	insertion of, to Gerdy tubercle, 289f
crests of, 379f	206f, 245f, 246f intermediate zone of, 201f, 203f,	Ilium
infraglenoid, 380f	206f, 245f, 246f	body of, 203f, 245f
Hyaline cartilage, in knee, osteoar-	symmetry of	crest of. See Iliac crest.
thritis of, 296f Hyoid bone, 72f, 73f	in postural assessment, 163t	spine of. See Iliac spine.
body, lesser horn, and greater	as sacroiliac bony landmark,	tuberosity of, 201f, 203f, 245f, 246f wing of. See Ala (wing).
horn of, 17f, 24f, 25f,	214t, 215f	Impingement sign, in ankle, 336,
67f	tuberculum of, 201f, 203f, 206f,	370f, 370t
Hyperflexion test, for meniscal	245f, 246f	Impingement tests
tears, 323t	Iliac fossa, 206f	compressive. See Compression
Hypermobile segments, of lumbar	ala of ilium and, 203f, 245f	tests.
spine, 166t, 184t	Iliac spine	FADIR. See Flexion-internal
spinal manipulation for, 189t	anterior, inferior vs. superior,	rotation-adduction
Hypertonicity, of multifidus muscle,	201f, 203f, 206f, 245f,	(FADIR) impingement
in lumbar spine, 165t	246f, 247f, 251f	test.

in cervical spine assessment,94f,	e.g., Fractures.	pression maneuver, for
95t, 96t, 118t	Innominate torsion, of sacroiliac re-	intra-articular hip pa-
in elbow and forearm assessment,	gion, 200, 227t, 229t,	thology, 275t
450t	230t, 231t	Interosseous artery
in foot and ankle assessment, 359t	Instability. See Stability/instability.	common, 446f, 448f
in hip and pelvis assessment,	Interalveolar septa, of mandible, 18f	posterior vs. anterior, 445f, 446f,
256t, 257t, 268t, 269t,	Interarticular ligament, of rib head,	448f
274t	135f, 137f	recurrent, 445f
in muscle length assessment	Intercarpal joint, 465t	Interosseous border
of hip, 268t, 270t, 271f	Intercarpal ligaments, interosseous,	of radius, 444f
of knee, 305f, 305t	465f	of ulna, 444f
in shoulder assessment, 392t	Interchondral joints, of thoracic	Interosseous ligaments, intercarpal,
in thoracolumbar spine assess-	spine, 134f, 136t	465f
ment, 159t, 160f, 184t,	Interchondral ligaments, 137t	Interosseous membrane
191t	Interclavicular ligament, 134f, 380f,	of ankle joint, 340f, 340t, 347f
Infants, limited hip abduction in,	382t	of forearm, 444f, 444t, 470f,
244	Intercondylar area, of tibia, anterior	472f
with developmental dysplasia,	vs. posterior, 285f	1st dorsal, 445f
263, 263f, 263t	Intercondylar eminence, of tibia,	of knee joint, 287f
Inferior view	285f	of wrist joint, 467f, 468f
of atlas, 68f	Intercondylar fossa, of femur, 285f	1st dorsal, 465f
of female pelvic outlet, 204f	Intercondylar (T or Y) fracture, of	Interosseous nerve
of mouth floor muscles, 24f	femur, 298f	of foot, 354f
Inflammation. See also Swelling.	Intercondylar notch, of femur,	of forearm
of knee, 300, 300t	cartilaginous excres-	anterior, 448f, 448t, 471t, 475f
lumbar pain and, 179f	cences at, 285f	posterior, 445f, 448t, 470t, 477f
Infraglenoid tubercle	Intercondylar tubercle, of tibia, lat-	Interosseus muscles, 344f
of humerus, 380f	eral vs. medial, 285f	of foot and ankle
of scapula, 379f	Intercostal muscle, external, 142f	4th, superficial branch of tibial
Infrahyoid muscles, fascia of, 72f	Intercostal nerves/membranes	nerve to, 354f
Infrapatellar bursa	1st, 79f	deep branch of tibial nerve to,
deep (subtendinous), 286f	of thoracic spine, 145t, 148f	354f
subcutaneous, 286f	external, 145f	dorsal, 347f, 348t, 352f, 352t
Infrapatellar fat pad, 286f, 288f	innermost, 145f	manual testing of, 87f
Infrapatellar synovial fold, 288f	window cut in, 145f	for cervical radiculopathy,
Infraspinatus fascia, 140f, 384t	internal, 145f	88t
Infraspinatus muscle, 140f, 384f,	anterior to external, 145f	plantar, 351f, 352f, 352t
386f, 386t	as ventral (anterior) ramus of spi-	of wrist and hand
tears of, 418, 418f, 418t, 419-422,	nal nerve, 145f	1st dorsal, 474f
419f, 422t	Intercostobrachial nerve, 388f	deep branch of ulnar nerve to,
Infraspinatus tendon, 383f, 386f	Intercuneiform ligaments, dorsal,	474f
Infraspinatus test, for rotator cuff	341f, 341t	dorsal (bipennate), 473t, 474f
tears, 422t	Intermetacarpal joints, 465f	innervation of, 476f
combined with other tests, 428t	in palmar abduction, 486t	palmar (unipennate), 473f, 473t
Infraspinous fossae, 380f	Intermuscular septum	innervation of, 476f
notch connecting, 380f	of forearm, medial vs. lateral,	Interphalangeal (IP) joints, 339t,
Infratemporal fossa, 67f	445f, 448f	344f, 465t
Inguinal ligament, 146f, 251f, 253f	of hip and pelvis, anteromedial,	AOFAS scale for, 373t
Inguinal (groin) pain	251f, 253f	capsules and ligaments of, 343,
in hip examination, 274t, 275t,	Internal rotation (IR) lag sign, in	343f, 343t, 344f
278t	shoulder, 423t	distal, 469f
ipsilateral, 244, 255t	Internal rotation resistance strength	ligaments of, 469, 469f, 469t
knee interventions and, 326t	(IRRS) test, of shoulder,	nodules over, 369f
as lumbar zygapophyseal joint	408, 417, 417f	in physical examination, 371t, 501t
pain referral, 149t, 150f	Internal rotation (IR) test, of foot,	proximal, 500t
patient report of, 254t, 255t	for TMJ disorders	proximal, 469f, 500t
physical examination for, 257t	diagnostic utility of, 53, 53f, 53t	ROM measurements of, proximal
sacroiliac pain and, 211t, 213t	reliability of, 53, 53f, 53t	vs. distal, 486f, 486t
	, 02, 00, 002, 004	, , , , , , , , , , , , , , , , , , , ,

Injuries. See Trauma; specific injury,

Internal rotation-flexion-axial com-

Inclinometer

Intersegmental tenderness, of thora-	Intraorbital foramen, of maxilla, 19f	Joint capsules (Continued)
columbar spine, 172t	Inversion, subtalar joint, 359t	of mandible, 20, 20f
Interspinalis cervicis muscle, 142f,	IP joints. See Interphalangeal (IP)	ligaments of, 21f
142t	joints.	metacarpophalangeal/interpha-
Interspinalis lumborum muscle,	IRRS (internal rotation resistance	langeal, 469f
142f, 142t	strength) test, of shoul-	metatarsophalangeal, 343, 343f,
Interspinous ligaments	der, 408, 417, 417f	343t, 344f
of cervical spine, 71t	Ischial spine, 201f, 203f, 206f, 245f,	of shoulder
of thoracolumbar spine, 138f, 138t	246f, 247f, 252f	limited ROM of, 397f, 397t
in ankylosing spondylitis, 155f	female, 204f	pain in, 389t
Intertransversarius muscle, 142t	(Ischio)-coccygeus muscle, 209f	of wrist, 468f
lateral, 142f	nerve to, 208t, 209f	zygapophyseal
Intertransverse ligaments	Ischiofemoral ligament, 247f, 247t	cervical, 70f, 71f
of cervical spine, 71t	Ischium	thoracolumbar, 138f
of thoracolumbar spine, 135f,	body of, 203f, 245f	Joint line tenderness, of knee, 284,
137f, 138t	bursitis of, 254t	312
Intertrochanteric crest, 245f, 247f,	ramus of, 203f, 245f	with meniscal tears, 322t, 323t
252f	spine of. See Ischial spine.	palpation for, 312, 312f, 312t
Intertrochanteric fracture, of femur,	tuberosity of, 201f, 203f, 206f,	Joint play, in temporomandibular
277f	245f, 246f, 247f, 249f,	joint
Intertrochanteric line, 245f, 247f	252f	joint sounds during, 39, 39t
Intertubercular sulcus, of humerus,	female vs. male, 204f	pain during, 49, 49t
379f	Isometric strength, of knee, extensor	ROM with, 44, 44t
Intertubercular tendon sheath, 382f	vs. flexor, 304t	Joint play test, of temporomandibu-
Interval estimate, 8	ITB/TFL complex, length assess-	lar joint, 49t
Intervertebral discs	ment of, 305t	Joint position sense test, of shoulder,
cervical, 71f		392t
herniation of. See Disc hernia-	J	Joint sounds, in temporomandibular
tion.	Jaw pinch strength, 489t	joint, 16t, 31t
lumbar, 133f, 136f, 138f	Jerk test, for glenoid labral tears,	during active motion, 39, 39t
neovascularization of, 179f	378, 411t-412t	conditions identified by, 40-41
ossification of, in ankylosing	posterior, 411t-412t	during joint play, 39, 39t
spondylitis, 155f	Job activities, sacroiliac pain aggra-	Joints. See also Named joint, e.g.,
in scoliosis pathology, 164f	vated by, 211t	Patellofemoral joint.
Intervertebral foramen	Jobe relocation test, of shoulder,	of cervical spine, 69f, 69t
of lumbar vertebrae, 136f, 138f	400t	of elbow, 442, 442f, 442t
degenerative disc disease im-	combined with other tests, 378,	of foot and ankle, 339, 339f, 339t
pact on, 183f	427t	of hip and pelvis, 246, 246f, 246t
of sacrum and coccyx, 202f	Joint anatomy. See Arthrology.	of knee, 286, 286f, 286t
for spinal nerve, 69f	Joint capsule(s)	of lumbar spine, 136, 136t
of thoracic vertebrae, 138f	acromioclavicular, 382f	paraspinal, tenderness with pal-
lower margin of, 133f	in anterior disc displacement, 32f	pation of, 105t
Intervertebral joints	atlantoaxial, lateral, 70f, 71f	of sacroiliac region, 205, 205f, 205t
cervical, 69f, 69t	atlanto-occipital, 70f, 71f	of shoulder, 380, 380t
tenderness with palpation of,	of elbow, 442f, 443f	integrated movements of, 381,
105t	of femur	381f
lumbosacral, 205t	line of attachment of, 245f, 285f	of temporomandibular, 20
thoracolumbar, 136t	line of reflection of, 245f, 285f	of thoracic spine, 134, 134f, 135f
Intervertebral motion. See Passive	unattached, 285f	of wrist and hand, 465, 465f, 465t
intervertebral motion	interphalangeal, 343, 343f, 343t,	Jugular notch, 72f
(PIVM).	344f	Jugular process, of occipital bone,
Intervertebral spaces, thoracolum-	of knee, 288f, 291f	75f
bar, in degenerative disc	attachment of, 287f	Jugular vein, internal, 72f, 73f, 75f
disease, 183f	edge arching over popliteus	Jugulai veni, internai, 721, 731, 731
Intra-articular ligament	muscle, 287f	K
costovertebral, 137f, 137t	iliotibial tract blended into,	Kappa coefficient, 3
of thoracic spine, 135f	288f	Kellgren grading scale, for hip os-
Intraclass correlation coefficient	medial patellar retinaculum	teoarthritis, 255t, 260t,
(ICC), 3	blended into, 288f	274t, 275t, 278t
(200), 0	-	-

Kendall grades, of muscle strength, Knee (Continued) Knee (Continued) 88t ligaments of, 286f, 287 patellar rotation, 309, 309f, Key pinch strength, 488f, 489t anterior, 288f, 288t 309t Kibler test, for glenoid labral tears, inferior, 288f, 288t Q angle measurement, 310, 409, 409f, 409t 310f, 310t posterior, 287f, 287t Kim test, for glenoid labral tears, meniscus of. See Meniscus. superoinferior patellar tilt, 378, 410f, 410t, 411muscles of, 286f, 289 308, 308f, 308t 412t anterior, 289f, 289t, 290t capsular and noncapsular endmedial vs. lateral, 290t, 291f Knee, 283-334 feel determination, 284, arthritis of. See Osteoarthritis (OA). nerves of, 292 302, 302f, 302t femoral and lateral femoral cuarthrology of, 286 fracture screening, 298-299, 298f clinical summary and recommentaneous, 292t, 293f inflammation detection, 300, 300f, 300t dations, 284-331 obturator, 292f, 292t diagnostic utility of examination sciatic and posterior femoral Lachman test, 302t, 313, 313f anterior drawer test, 314, 314f, cutaneous, 292t, 294f lateral pull test, 311, 311t 314t osteology of, 285 McMurray's test, 317, 317f, 317t Apley's test, 318, 318f, 318t femur, 285f muscle length assessment, 305, combination of tests, 322, 324 fibula, 285f 305f, 305t for meniscal tears, 322, 322f, tibia, 285f pain during palpation, 312, 322t, 323f, 323t outcome measures of, 303, 327t 312f, 312t pain with resistance sequences, for other pathology, 324, patient history and, 284, 295-297 initial hypotheses based on, 303, 303f, 303t 324f, 324t 295, 295t Ege's test, 319f, 319t patient history, 296, 296f, 296t inflammation detection, 300, with osteoarthritis, 295t, 296, ROM measurements, 284, 301, 300f, 300t 301f, 301t Lachman test, 313, 313f, 313t predicting success of intervenstrength assessment, 284, 304, McMurray's test, 317, 317f, 317t tions, 325-326 304f, 304t valgus and varus stress tests, meniscal tears identification, report of pain, 295t, 296t report of swelling, 295t, 296t, 316, 316f, 316t 319-320, 319f, 320f combination of tests, 322, 297t, 300t in straight-leg raise test, 176t 322f, 322t, 323f, 323t report of trauma, 295f, 295t, x-rays of. See Ottawa Knee Rule moving patellar apprehension 296t, 297t for Radiography. test, 284, 321, 321f, 321t physical examination of, 284t, Knee bend test, prone, 232, 232f, 232t Knee bursa, 288f patient history, 297, 297f, 297t, 298-326 323f, 323t, 325 combined with tests, in diaganserine, 289f, 291f nosing pathology, 324t beneath biceps femoris tendon, pivot shift test, 315, 315f, 315t predicting success of hip mobi-287f, 289f to identify radiographic needs lizations, 326, 326f, 326t following trauma, 298, semimembranosus, 291f predicting success of orthoses 298f deep to tendon, 287f and activity modificaquality assessment of diagnostic subcutaneous studies, 328-331, 329t infrapatellar, 286f tion, 284, 325, 325f, 325t radiography rule for fractures, range of motion measurements prepatellar, 286f subtendinous. See Subtendinous 299, 299f, 299t of, 284 strength assessment, 304, 304f, active vs. passive, 258t, 301, (deep) bursa. 301f, 301t synovial, suprapatellar, 286f, 288f 304t Thessaly test, 320f physical examination of, 301-Knee jerk reflex, with herniated valgus and varus stress tests, 302, 303 lumbar nucleus pulpo-316, 316f, 316t in slump test, 178f, 178t sus, 157f fractures of, 284, 298-299, 299t reliability of examination Knee Outcome Survey (KOS), 327t anterior drawer test, 314, 314f, distal femur and, 298f Knee pain anteromedial, history of, in diagintervention(s) for, 284 314t groin pain and, 326t bony alignment assessment, 306nosing pathology, 324t hip mobilization interventions hip distraction tests with, 326t 307, 308-309, 310-311 hip mobilization as, 326, 326f, A angle measurement, 311, and, 326t during palpation, 312, 312f, 312t 326t 311f, 311t in patellofemoral syndrome. See orthoses and activity modificamediolateral patellar tilt, tion as, 284, 325, 325f, 306, 306f, 306t Patellofemoral pain syndrome. 325t patellar orientation, 307, thigh pain and, 326t 307f, 307t patient report of, 295t, 296t

Knee pain (Continued)	Labral tears (Continued)	Lateral view (Continued)
during range of motion, 303,	of shoulder. See Glenoid labral	of mandibular nerve, 26f
303f, 303t, 319t, 320t	tears.	of muscles involved in mastica-
during valgus and varus stress	Lachman test, of knee, 284, 313f	tion, 22f, 23f
tests, 316t, 322t	diagnostic utility of, 313, 313f,	of pelvis, 245f
Kyphosis	313t	right
excessive vs. diminished, 163t	end-feel assessment during, 302t	of cervical spine arthrology,
of thoracic spine, 119t, 121t	reliability of, 313, 313f, 313t	69f
postural assessment and, 106f,	Lacrimal bone, 19f	of cervical spine ligaments,
106t, 163t	Lacrimal socie, 151 Lacrimal sac, fossa for, 19f	71f
1000, 1030	Lag signs, in shoulder	of shoulder ligaments, 383f
L	external rotation, 378, 422t	of T6 vertebra, 133f
L1 vertebra	internal rotation, 423t	of T12 vertebra, 133f
nerves of, 146f, 147t, 148f, 292f,	Lambdoid suture, 19f	of temporomandibular ligaments,
293f		1
osteology of, 201f	Lamina	21f
in zygapophyseal pain referral	of cervical vertebrae, 68f	Latissimus dorsi muscle, 77f, 139t,
pattern, 150f	of lumbar vertebrae, 133f, 136f,	145f, 384f, 384t, 385f,
L2 vertebra	138f	388f
nerves of, 146f, 147t, 148f, 289t,	in scoliosis pathology, 164f	length assessment of, 107t
	of thoracic vertebrae, 133f, 138f	Lawrence grading scale, for hip
292f, 292t, 293f, 353t	Lateral bending	osteoarthritis,255t,
osteology of, 201f	of cervical spine, 95t, 96t	260t, 274t, 275t, 278t
in zygapophyseal pain referral	pain during, 97t, 102t	LCL (lateral collateral ligament),
pattern, 150f	of thoracolumbar spine, 159t	tears of, 295t
L3 vertebra	Lateral collateral ligament (LCL),	Leaning head on palm, and TMJ
disc herniation at level of, 157f	tears of, 295t	disorders, 27, 27f
nerves of, 146f, 147t, 148f, 252t,	Lateral glide test, of cervical verte-	LEFS. See Lower Extremity Func-
289t, 290t, 292f, 292t,	brae, 102t	tional Scale (LEFS).
293f, 353t, 354f	Lateral hip tendon, identifying pa-	Leg. See also Lower extremity.
osteology of, 201f	thology of, 266-267,	bones of. See Femur; Fibula;
posterior view of, 136f	266t, 267t	Tibia.
in zygapophyseal pain referral	Lateral (temporomandibular) liga-	muscles of, 345, 347
pattern, 150f	ment, 21f	lateral, 345, 345t, 346f
L4 vertebra	Lateral ligaments. See Collateral lig-	posterior, 347f, 347t
disc herniation at level of, 157f	aments.	nerves of, 353f, 353t, 354f. See
nerves of, 146f, 147t, 148f, 208t,	Lateral mass, of atlas, 68f	also Thigh.
209f, 252t, 289t, 290t,	Lateral pull test, for patellar align-	cutaneous localization of, 292f,
292f, 292t, 293f, 294f,	ment, 311, 311t	293f, 294f
345t, 347t, 353t, 354f	Lateral raphe, 144	Leg length discrepancy/inequality
osteology of, 201f	Lateral slide test, for scapular asym-	in postural assessment, 163t
posterior view of, 136f	metry, 395t, 396f	in TMJ disorders
in zygapophyseal pain referral	Lateral view	diagnostic utility of, 53, 53f,
pattern, 150f	of ankle ligaments, 340, 340f, 340t	53t
L5 vertebra	of elbow bones, in extension vs.	reliability of, 53, 53f, 53t
disc herniation at level of, 157f	flexion, 441f	Leg raise test. See Straight-leg raise
nerves of, 146f, 147t, 148f, 208t,	of elbow ligaments, in flexion, 443f	(SLR) test.
209f, 248t, 252t, 290t,	of foot and ankle, 337f	Levator anguli oris muscle, 22f
292t, 294f, 345t, 347t,	Ottawa rules in, 357f	Levator ani muscle, 209f
348t, 353t, 354f	of hip and pelvis ligaments, joint	nerve to, 148f, 208t, 209f
osteology of, 201f	opened, 247f	Levator costae muscle, 142f
as sacroiliac bony landmark, 214t	of hip bone, 203f	Levator labii superioris alaeque nasi
motion assessment and, 226t	of knee muscles, 291f	muscle, 22f
in zygapophyseal pain referral	left	
pattern, 150f		Levator labii superioris muscle, 22f
Labia, perineal nerve of, posterior	of costovertebral ligaments, 137f	Levator scapulae muscle, 76t, 140f,
branch of, 148f	of costovertebral ligaments, 137f of lumbar vertebrae, 136f	384f, 384t
Labral tears		length assessment of, 107t
acetabular, 244	of thoracolumbar ligaments, 138f	Levator veli palatini muscle, 23f
patient history in, 254t, 255, 255t		Levatores costarum breves muscle,
Patient motor y m, 204t, 200, 200t	of leg muscles, 346f	142f

Levatores costarum longi muscle, 142f	Limbs. See Lower extremity; Upper extremity.	Lordosis, lumbar, in ankylosing spondylitis, 186t
Lifting/carrying, thoracolumbar	Linea alba, 145f	Low back pain. See also Thoraco-
pain with, 152t	Linea aspera, medial vs. lateral lip	lumbar pain.
Lift-off test	of, 245f	ankylosing spondylitis causing,
for subacromial impingement,	Linea terminalis, 202f	186t
415t-416t	Lingual nerve, 21f, 23f, 25f, 26f, 26t	centralization phenomenon in,
for subscapularis tears, 423t, 424f	Lingula, 18f	132, 235
Ligamenta flava	Lips	vs. peripheralization phenome-
of cervical spine, 71f, 71t	of iliac crest, inner vs. outer, 201f,	non, 173, 173t, 174f,
of thoracolumbar spine, 138f,	203f, 206f, 245f, 246f	174t
138t, 146f	of linea aspera, medial vs. lateral,	classification systems for, 187,
Ligaments. See also Collateral	245f	187t
ligaments.	Load	treatment-based, 187t, 188,
of cervical spine	in biceps test(s) I/II, for labral	188t
atlanto-occipital joint, 70, 70f,	tears, 378, 403t, 411t-	hip and pelvis in, 244t
70t	412t	inflammation role in, 179f
neck, 68f, 69f, 73f	combined with other tests, 378,	motion assessment for, 228t,
spinal, 71, 71f, 71t	427t, 428t	229t, 230t, 231t, 232t,
of elbow, 443, 443f, 443t	valgus extension syndrome re-	233t
of foot and ankle, 340-341, 342-343	lated to, 449t	neurological examination for,
lateral, 341, 341f, 341t, 346f	Load and shift test, for glenoid	156t, 157f, 158t
medial, 342, 342f, 342t	labral tears, 378, 403t,	palpation identification of, 172t
plantar, 343, 343f, 343t, 344f	411t-412t	passive intervertebral motion
posterior, 340, 340f, 340t	combined with other tests, 378,	assessment for, 165,
of sole, 352f	427t, 428t	167-168, 169-170,
sprain injury of, 355t, 372, 372f	Log roll, for intra-articular hip pa-	171
of forearm, 443, 444f, 444t	thology, 275t	patient report of, 149, 149t, 152t,
of hip and pelvis, 247, 247f, 247t	Longissimus capitis muscle, 76t,	153t, 154t, 255t
of knee, 286f, 287	141f	physical examination for, 180t,
anterior, 288f, 288t	Longissimus cervicis muscle, 76t, 77f	182t
inferior, 288f, 288t	Longissimus extensor muscle, 143f	provocative tests for, 216t, 217t,
posterior, 287f, 287t	Longissimus lumborum muscle,	218t, 219t, 220t, 223t,
of sacroiliac region, 206, 206f, 206t	141f, 141t	224t, 225t
of shoulder, 380f, 382, 382t	Longissimus muscles	radiographic examination for,
anterior view of, 382f, 383f	sacroiliac, 207f, 207t	184t, 185
coronal section, 383f	thoracic, 141f, 141t	range of motion assessment for,
lateral view of, 383f	Longitudinal ligaments	159t
of temporomandibular joint, 21,	of cervical spine	referral patterns of, zygapophy-
21f	anterior, 71f, 71t	seal, 149, 149t, 150f
of thigh, 253f	posterior, 70f, 71t	sacroiliac joint in, 210, 211t
of thoracolumbar spine, 137-138,	costovertebral, anterior, 137, 137f,	bony landmark symmetry and,
138f, 138t	137t	214t
costovertebral, 135f, 137, 137f,	of sacroiliac region, anterior, 206f,	spinal manipulation for, 236,
137t	206t	237f, 237t
sternocostal, 134f	of thoracolumbar spine	classification system based on,
of wrist and hand, 466-469	anterior, 135f, 138f, 138t	187t, 188, 188t
metacarpophalangeal and in-	ossification of, 155f	clinical prediction rule for, 236,
terphalangeal, 469,	posterior, 138f, 138t	237f
469f, 469t	nociceptors in, 179f	Flynn technique for, 190f, 236,
palmar, 466, 466t, 467f	Longitudinal (vertical) tear, of me-	236f
posterior, 468, 468f, 468t	niscus, 323f	lumbosacral, 132, 188t, 189-
Ligamentum nuchae, 71f, 71t	Long-sit test, of sacroiliac joint, 229,	190, 189t, 200
Likelihood ratios (LRs), 3, 6-7	229f, 229t	stabilization exercise programs
application of. See Clinical pre-	Longus capitis muscle, 75f, 75t	for, lumbar, 132, 191,
diction rule.	Longus colli muscle, 75f, 75t	191t, 236
positive or negative, 7-8, 11t	Longus colli nerve, 79f	classifications based on, 188t
interpretation of, 7, 7t, 8f, 9-10,	Loose body, within knee joint, 295t,	straight-leg raise tests for, 175t,
9f, 11-12	324t	176t, 177t

Lower extremity. See also specific Lumbar spine (Continued) Lumbar triangle, internal oblique anatomy, e.g., Foot and passive intervertebral motion muscle in, 140f ankle. Lumbar vertebrae. See also specific assessment measurements of, in TMJ excessive, 171, 171f, 171t vertebra, e.g., L2 vertebra. disorders limited and painful, 169, diagnostic utility of, 53, 53f, accessory process of, 133f, 136f 169f, 169t, 170f articular processes of 53t spinal manipulation factors, reliability of, 53, 53f, 53t 189-190, 189f, 190f inferior, 136f, 138f nerves to, cervical disc herniation stabilization exercise factors, passive motion assessment of. See Passive interverteand, 116f 191, 191f, 191t pain in, with lumbar spine pastenosis tests, 182, 182f, 182t, bral motion (PIVM). thology, 157f, 182t, 183f superior, 133f, 136f, 138f 191t segmental mobility of. See Segstraight-leg raise test, 176, 176f, paresthesias of, with lumbar pain, mental mobility testing. 176t 149t, 154t, 157f fascia of, 140f, 141f, 144 spinous processes of, 133f, 136f, Lower Extremity Functional Scale hypermobile segments of, 166t, 138f (LEFS) 184t in palpation examination, 172t hypomobile segments of, 166t, in foot and ankle outcomes, 373t transverse processes of, 133f, in hip and pelvis outcomes, 279t 184t, 185f, 200 136f, 138f, 201f, 246f in knee outcomes, 327t instability of, 149t Lumbopelvic pain, 180t, 217t, 218t, LR. See Likelihood ratios (LRs). clinical prediction rule for, 185, 220t, 223t, 233t Lumbar lordosis, in ankylosing Lumbopelvic rhythm, in lumbar 185f spondylitis, 186t dynamic "corset" concept of, segmental instability, Lumbar paravertebral myofascial 180t, 191t Lumbosacral articular surface, pain, 172t radiographic tests for, 184-185, Lumbar plexus, 148f, 292f, 293f 184t, 185f 202f Lumbar radiculopathy segmental tests for, 180, 180t, facets of, 202f neurological examination for, Lumbosacral joints, 205f, 205t 181f 156, 156t muscles of, 139 Lumbosacral radiculopathy, neuropatient history in, 149t, 154, 154f, nerves of, 146-147, 148 logical examination for, 154t, 355t anterior vs. posterior divisions 156, 156t of, 146f, 148f slump test for, 132, 178t, 179f Lumbosacral spine, pain diagnoses straight-leg raise test for, 132, lumbosacral trunks of, 146f, related to, 220t, 223t 148f, 209f, 292f, 293f Lumbosacral/pelvic manipulation, 175f crossed, 132, 177, 177f, 177t osteology of, 133f for low back pain, 132, diagnostic utility of, 176, 176f, pain in. See Low back pain. 176t reliability of examination classifications based on, 188t, reliability of, 175, 175f, 175t centralization phenomena 189t Lumbar spinal stenosis identification, 173, 173f, combined factors of likely beneclinical summary and recommenfits, 190, 190f, 190t 173t dations, 132-194 instability tests single factors of likely benefits, radiographic, 184-185, 184f, neurological examination for, 189, 189t 157, 158f, 158t 184t, 185f Lumbrical muscles, 348f, 349f, 350t, patient history in, 149t, 153, 153f, segmental, 180, 180f, 180t 352f 153t palpation of segmental levels, 1st, 354f 172, 172f, 172t physical examination tests for, 2nd, 354f 132, 182, 182t, 183f palpation of tenderness, 172, 3rd, 354f Lumbar spine 172f, 172t 4th, 354f arthrology of, 136 innervation of, 474f, 475f, 476f passive intervertebral motion clinical summary and recommenassessment, 165, 165f, lateral vs. medial, 473t, 474f dations, 132-194 tendons of, 351f 165t, 166f, 166t diagnostic utility of examination pain during, 167, 167f, 167t Lumbrical nerve, 354f centralization phenomena, 174, straight-leg raise test, 175, 175f, Lumbrical provocation test, for car-174f, 174t 175t pal tunnel syndrome, crossed straight-leg raise test, translation test of, 184t 501t 177, 177f, 177t Lumbrical tendon, 4th, 344f Lumbar stabilization program, for Lunate, 463f, 464f, 465f, 467f, 468f neurological examination, 156low back pain, 132, 157, 156f, 156t, 158f, 191, 191t, 236 in carpal instability, 500t 158t classifications based on, 188t in scaphoid fractures, 482f

Lunge test	Mandible (Continued)	Masseteric nerve, 22f, 23f, 26f
for ankle ROM measurements,	coronoid process of, 67f	mandibular nerve via, 22t
359t, 360f	digastric fossa of, 18f	Mastication, muscles involved in,
for pelvic pain, 272t	head of, 18f	22, 31t
Luno-meniscotriquetral dorsal glide	mental tubercle of, 18f	Mastoid process, 17f, 19f, 24f, 67f,
test, 500t	neck of, 18f	72f, 73f, 75f, 142f
Luno-meniscotriquetral joint, insta-	oblique line of, 18f, 19f	tenderness with palpation of, 104t
bility of, 500t	opening of, measuring with dif-	Maxilla, 19f
Lying down	ferent head positions,	alveolar process of, 67f
sacroiliac pain relieved by, 211t	44, 44t	in cervical spine examination,
thoracolumbar pain with, 152t,	osteology of, 18f	110f, 110t
154t, 168f, 169t	in relation to head and neck,	frontal process of, 19f
Lying flexion test	17f	tuberosity of, 67f
of lumbar spine, 171f, 171t	in relation to lateral skull, 19f	Maxillary artery, 21f, 22f, 23f, 26f
of sacroiliac joint, 235	ramus of, 17f, 18f, 19f, 67f	Maxillary nerve, 26f, 26t
	ROM measurements of, 31t	McCreary grades, of muscle
M	translation test of, 39t, 44f, 44t,	strength, 88t
Magnetic resonance imaging (MRI)	45t, 49t	McKenzie evaluation/classification
of cervical spine injury, 92t-93t,	Mandible angle, 17f, 18f, 67f	of low back pain, 187t
109t, 116t	Mandibular foramen, 18f	of lumbar spine motion, 173t, 174t
of hip and pelvis conditions, 255t,	inferior alveolar nerve entering,	of sacroiliac discogenic pain, 235,
260t, 262t, 266t, 267t,	26f	235f
275t, 276t	Mandibular fossa, 20f	of sacroiliac joint/region motion,
of lumbar spinal stenosis, 153t,	Mandibular Function Impairment	200, 235, 235f
158t, 182t	Questionnaire (MFIQ),	MCL. See Medial collateral ligament
of lumbar spine herniations, 176t,	60t	(MCL), tears of.
178t	Mandibular nerve, 21f, 26t	McMurray's test, of knee, 284
of rotator cuff tears, 422t	anterior vs. posterior division of,	diagnostic utility of, 317, 317f, 317t
of sacroiliac joint conditions,	26f	combined with other tests,
216t, 217t, 218t, 219t,	deep temporal branches of, 22t	322t, 323t
220t, 223t, 224t	meningeal branch of, 26f	with internal vs. external rotation,
of shoulder conditions, 415t-416t	via lateral pterygoid nerve, 23t	317f
Male pelvic inlet, anterior view of,	via masseteric nerve, 22t	reliability of, 317, 317f, 317t
204f	via medial pterygoid nerve, 23t	MCP joints. See Metacarpophalan-
Male pelvis, anterior view of, 204f	Mandibular notch, 17f, 18f, 19f,	geal (MCP) joints.
Malleolar artery, anterior, lateral vs.	67f	Measurement error, 2
medial, 348f	Manual muscle testing (MMT)	determination of acceptable, 3
Malleolar zone, in physical exami-	of knee, 284, 304, 304f, 304t	Medial collateral ligament (MCL),
nation, 357f	of lumbar spine, 132	tears of
Malleolus/malleoli	for radiculopathy, 156, 156t,	in elbow, 440, 455, 455f, 455t
lateral, 346f, 347f, 348f	157f	in knee, 284, 316t
tuning fork test of, 358t	for spinal stenosis, 157f, 158f,	patient history in, 295t, 297f,
medial, 347f, 348f	158t	297t
direct compression stress test	of shoulder, 378	Medial ligament, of ankle, 340f,
of, 358t	of upper limb, 87f, 87t	342f, 342t
as sacroiliac bony landmark,	for cervical radiculopathy, 66,	tibiocalcaneal part of, 342f, 342t
214t	88f, 88t	tibionavicular part of, 342f, 342t
in sacroiliac motion assess-	of wrist and hand, 462	tibiotalar part of, anterior vs. pos-
ment, 229t	Manubriosternal joint, 134f	terior, 342f, 342t
in physical examination, 356t,	Manubriosternal synchondrosis,	Medial tibial stress syndrome, 355t
357f, 358t, 360f, 368t	380f	Medial view
Mammillary process, of lumbar ver-	Manubrium, 134f, 380f	of ankle ligaments, 342, 342f, 342t
tebrae, 133f, 136f	of sternum, 72f	of elbow bones, in extension vs.
Mandible	Masseter muscle, 22f, 22t, 72f	flexion, 441f
alveolar part (crest) of, 18f	deep vs. superficial part of, 22f	of elbow ligaments, in flexion, 443f
in anterior disc displacement, 32f	insertion of, 22f	of foot and ankle, 337f
base of, 18f	in physical examination, 34t, 35f,	Ottawa rules in, 357f
body of, 17f, 18f, 19f, 67f	35t, 36f, 37t, 38t	of hip bone, 203f
condylar process of, 67f	Masseteric artery, 22f, 23f	of knee muscles, 291f
• •		27 10100 111000100, 27 11

Medial view (Continued)	Meniscus (Continued)	Metatarsal arteries (Continued)
of mandibular nerve, 26f	in TMJ arthrosis, 32f	anterior perforating branches
of metacarpophalangeal and in-	of wrist, 465f	of, 348f, 352f
terphalangeal liga-	Meniscus tears, of knee, 284	common plantar digital arter-
ments, in extension vs.	Ege's test for, 319f, 319t	ies from, 349f
flexion, 469, 469f, 469t of pelvis, 245f	joint line tenderness with, 312f,	Metatarsal bones, 337f, 338f, 343f, 348f, 352f
of sacroiliac region nerves, 209f	patient history in, 295t, 297t	1st, 337f, 338f, 342f, 344f
of TMJ ligaments, 21f	Thessaly test for, 320f, 320t	in physical examination, 363t,
Medial-lateral width, of wrist, 490t	types of, 323f	367t
in carpal tunnel syndrome, 490t	Mennell's test, of sacroiliac joint,	tuberosity of, 337f, 342f
Median nerve, 388f, 467f, 471t, 473t,	224, 224f	2nd, 337f, 338f
474f, 475, 475t	combined with other tests, 233t	3rd, 337f, 338f
anterior vs. posterior view of, 475f	diagnostic utility of, 224f, 224t	4th, 337f, 338f
articular branch of, 475f	reliability of, 224f, 224t	5th, 337f, 338f, 344f, 346f
branches to hand muscles, 474f,	Mental foramen, of mandible, 18f, 19f	in physical examination, 357f,
475f, 476f	Mental nerve, 26f	364t, 368t, 369t
branches to phalanges, dorsal,	Mental protuberance, of mandible,	
475f	18f	tuberosity of, 337f, 338f, 344f, 351f, 352f
in carpal tunnel syndrome, 480f,	Mental spine	base of, 338f
501t	of mandible, 18f	head of, 338f
compression test of, 498t	superior, for genioglossus muscle,	erosion of, 369f
Phalen's test and, 496t, 497t	25f	plantar metatarsal ligaments be-
Tinel's sign/test and, 494t, 495t	Mentalis muscle, 22f	tween bases of, 352f
of cervical spine, 78t, 79f	Metacarpal arteries, common, 474f	ROM measurements of, 359t
in brachial plexus schema, 425f	Metacarpal bones, 465f, 467f, 469f	shaft (body) of, 338f
communicating branch of, 475f	1st, 445f, 448f, 464f, 465f, 467f, 468f	Metatarsal drift, 369f
compression of, 480f	2nd, 445f, 464f, 465f, 467f, 468f	Metatarsal ligaments
of forearm, 446f, 448f, 448t	3rd, 464f, 465f, 467f, 468f	deep transverse, 343t, 344f, 352f
palmar branch of, 446f	4th, 464f, 465f, 467f, 468f	dorsal, 341f, 352f
inconstant spinal contributions	5th, 445f, 448f, 464f, 465f, 467f,	plantar, 344f
to, 475f	468f	between bases of metatarsal
palmar branch of, 475f, 493f	base of, 464f	bones, 352f
from forearm, 446f	compression of, for scaphoid	Metatarsalgia, 355t
palmar digital branches of, 493f	fractures, 481t	Metatarsophalangeal (MTP) joints,
proper, 475f, 493f	head of, 464f	339f, 339t, 344f
tethered extension test of, 501t	palmar vs. dorsal surface/view of,	AOFAS scale for, 373t
Median raphe between mylohyoid	463f, 469f	capsules and ligaments of, 343,
muscle, 24f	shaft (body) of, 464f	343f, 343t, 344f
Mediolateral displacement, of pa-	Metacarpal ligaments	in physical examination, 369t, 371t
tella, 307t	deep transverse, 469f, 469t, 473f,	MFIQ (Mandibular Function
Mediolateral glide, of patella, 307t	474f	Impairment Question-
Mediolateral patellar orientation/	dorsal, 468f, 468t	naire), 60t
position, 307f, 307t	palmar, 466t, 467f, 469f	Michigan Hand Outcomes Ques-
Meningeal artery, middle, 21f, 23f, 26f	Metacarpophalangeal (MCP) joints,	tionnaire (MHQ), 503t
Meningeal nerve, recurrent, lumbar	465t	Midcarpal joint, 465f
disc herniation and, 179f	in hand swelling measurements,	Midfoot
Meniscofemoral ligament, posterior,	491f, 491t	AOFAS scale for, 373t
287f, 287t, 288f	ligaments of, 469, 469f, 469t	fractures of, 336, 358f, 358t
Meniscus	ROM measurements of, 486t	Midfoot zone, in physical examina-
of knee	Metalloproteinases, in lumbar pain,	tion, 357f, 358t
anterior displacement of, in an-	179f	MMT. See Manual muscle testing
terior disc displace-	Metatarsal arteries	(MMT).
ment, 32f	dorsal, 348f, 352f	Mobilization therapy
cysts of, 324t	anterior perforating arteries to,	of arm, for tennis elbow, 456,
lateral, 286f, 287f, 288f	351f, 352f	456t
medial, 287f, 288f	posterior perforating branches	of hip, for knee osteoarthritis,
rupture of. See also Meniscus	of, 352f	284, 326, 326f, 326t
tears, of knee.	plantar, 348f, 351f, 352f	Morton's neuroma, 355t

Motion assessment	Muscle strength	Muscles (Continued)
active. See Dynamic move-	in cervical spine	of hip and thigh, 248
ments; Functional	endurance testing and, 99, 99f,	anterior, 250, 250t, 251f
movements.	99t	posterior, 248, 248t, 249f
McKenzie-type repeated	radiculopathy and, 118t, 123t,	of knee, 286f, 289
of lumbar spine, 173t, 174t	124t	anterior, 289f, 289t, 290t
of sacroiliac joint/region, 200,	testing for, 87f, 87t, 88t	medial vs. lateral, 290t, 291f
235, 235f	in elbow and forearm, 440, 452,	of leg, 345, 347
passive. See Passive intervertebral	452t	lateral, 345, 345t, 346f
motion (PIVM).	in foot and ankle, 336, 361, 361f,	posterior, 347f, 347t
for range. See Range of motion	361t	of neck (cervical spine), 72-73,
(ROM).	in hip and pelvis, 244	75-76
Motor innervation	lateral tendon pathology and,	anterior, 72
of cervical spine, 78t	266, 266t	deep layers of, 72f
of elbow and forearm, 445t, 446t,	during resisted tests, 264, 264t,	posterior, 76
447t, 448t	265t	scalene and prevertebral, 75
of foot and ankle, 353t	Trendelenburg test for, 267,	suprahyoid and infrahyoid, 73
of hip and buttocks, 252t	267f, 267t	paraspinal, tenderness with pal-
of hip and thigh, 250t	in knee, 284, 304, 304t	pation of, 105t
of knee, 292t	in lower extremity	ruptures and tears of. See specific
of lumbar spine, 147t	calf, 336	muscle, e.g., Gluteus
of sacroiliac region, 208t	with herniated lumbar nucleus	medius muscle.
of shoulder, 384t, 385t, 386t,	pulposus, 157f	of sacroiliac region, 206f, 207,
387t	with lumbar spinal stenosis,	207f, 207t
of thoracic spine, 145t, 147t	158f, 158t	of shoulder, 384
of wrist and hand, 470t, 471t,	manual. See Manual muscle test-	anterior, 385, 385f, 385t
473t, 475t, 476t, 477t	ing (MMT).	posterior, 384, 384f, 384t
Mouth floor, muscles of, 24	in shoulder, 378, 392, 392t	rotator cuff, 386, 386f, 386t
Movement therapy. See Mobilization	with supraspinatus tears, 418f,	stress injuries of. See Sprains;
therapy.	418t, 422t	Strains, muscle.
Movement velocity, in balance assessment, 365t	in thoracolumbar spine, 132, 162, 162f, 162t	of temporomandibular joint, 22, 35f
MRI. See Magnetic resonance imag-	in wrist and hand, 462, 487-489.	floor of mouth, 24
ing (MRI).	See also Grip/gripping.	involved in mastication, 22, 23f
MSR (muscle stretch reflex) testing,	with carpal tunnel syndrome,	tendons of. See Tendons.
for cervical radiculopa-	489, 489t	of thoracolumbar spine, 139
thy, 66, 89f, 89t	Muscle stretch reflex (MSR) testing,	anterior abdominal wall, 143
MTP joints. See Metatarsophalan-	for cervical radiculopa-	deep layer of, 142
geal (MTP) joints.	thy, 66, 89f, 89t	intermediate layer of, 141
Multifidus extensor muscle, 143f	Muscle tightness, in shoulder, 378,	superficial layers of, 139
Multifidus muscle, 142f, 142t	393, 393t	of wrist and hand, 470-473
in lumbar spine, hypertonicity of,	Muscles	extensor, 470, 470f, 470t
165t	of elbow, 445, 447	flexor, 471, 471f, 471t, 472f
in sacroiliac region, 207f, 207t	of foot and ankle, 348	intrinsic, 473, 473f, 473t, 474f
Muscle atrophy	dorsum, 348, 348f, 348t	Musculocutaneous nerve
with herniated lumbar nucleus	leg vs., 345, 347	in cervical spine, 78t, 79f
pulposus, 157f	in sole, 349-350, 351-352	brachial plexus schema, 425f
in shoulder, 397f, 422t	deep interosseous, 352, 352f,	in forearm, 446f, 446t, 448f, 448t
in wrist and hand, 480f	352t	innervation of, 475f
Muscle length, assessment of	first layer of, 349, 349f, 349t	in shoulder, 387t, 388f
in cervical spine, 107, 107f, 107t	second layer of, 350, 350f,	in wrist, 493f
in hip and pelvis, 268-269, 270	350t	Myelography
flexion contracture and, 269,	third layer of, 351, 351f, 351t	cervical, 104t, 110t, 111t, 112t
269f, 269t	of forearm, 445	CT, for brachial plexus palsy,
iliotibial band length in, 268,	anterior vs. posterior, 445, 445f	425t
268f, 268t	anterior view of, 446f, 446t	Myelopathy, cervical, 80t
reliability of, 270, 270f, 270t,	posterior view of, 445f, 445t	Mylohyoid artery, 25f
271f	supinators vs. pronators, 447,	Mylohyoid groove, 18f
in knee, 305, 305f, 305t	447f, 447t	Mylohyoid line, 18f

Mylohyoid muscle, 24f, 24t, 25f, 26f, Needle electromyography Nerves (Continued) digital. See Digital nerves/ 35f, 72f, 73f, 74t for cervical radiculopathy, 84t, median raphe between, 24f 86t, 88t, 89t, 109t, 114t, branches. Mylohyoid nerve, 24t. See also of elbow, 448, 448f, 448t 117t and forearm, 445f, 446f Nerve to mylohyoid. for wrist and hand disorders, of foot and ankle, 353, 353f, 353t, Myofascial pain 479t, 489t, 490t, 492t, 354f. See also Plantar lumbar paravertebral, 172t 495t, 497t, 498t piriformis, 172t Neer test, for subacromial impingein sole, 349f, 349t, 350f, 350t, ment, 378, 414, 414f, tensor fasciae latae, 172t in thoracolumbar spine, palpation 351f, 351t identification of, 172t combined with other tests, 428t of hip, 248t, 252 in TMI disorders, 31 Negative predictive values (NPV), 3, and buttocks, 252f, 252t diagnostic criteria for, 33t 4-5, 4t, 11t and thigh, 249f, 252t, 253f Nerve compression. See specific of knee, 292 Ν nerve, e.g., Ulnar nerve. femoral and lateral femoral cu-Napoleon test, for subscapularis impingement with. See Impingetaneous, 292t, 293f tears, 378, 423t ment entries; specific obturator, 292f, 292t Nares, posterior, 67f anatomy, e.g., Subacrosciatic and posterior femoral Nasal bone, 19f mial impingement. cutaneous, 292t, 294f Nasal spine, anterior, of maxilla, 19f of leg, 353. See also Peroneal Nerve conduction studies Navicular bone, 337f, 338f, 342f, 352f for carpal tunnel syndrome, 489t, nerve: Tibial nerve. in physical examination, 357f, 490t, 492t, 495t, 497t, motor. See Motor innervation. 362t, 363t, 368t 498t of neck, 78-79, 78t, 79f tuberosity of, 337f, 338f, 344f, of sacroiliac region, 208t, 209, for cervical radiculopathy, 84t, 348f, 352f 86t, 88t, 89t, 109t, 114t, 209f Navicular drop test, 362t 117t, 495t sensory. See Sensory innervation. Navicular height, 362, 362f, 362t Nerve fibers, unmyelinated, in lumof shoulder, 78t, 79f, 387 Neck bar spine, 179f anterior axilla, 387t, 388f bony framework of Nerve root-dura interface, in lumin brachial plexus schema, 425f in relation to cervical spine, 67f bar pain, 179f of skin. See Cutaneous nerves. in relation to TMJ, 17f Nerve roots. See also Spinal nerve spinal. See Spinal nerves. ligaments of, 68f, 69f, 73f of temporomandibular joint, 26 roots muscles of, 72-73, 75-76 mandibular, 26, 26f avulsions of, in brachial plexus, anterior, 72 378, 425, 425t of thigh, 208t, 249f deep layers of, 72f Nerve to abductor digiti minimi cutaneous localization of, 292f, posterior, 76 muscle, 350f, 354f 293f, 294f scalene and prevertebral, 75 Nerve to coccygeus, 148f lateral cutaneous, 146f, 147t, suprahyoid and infrahyoid, 73 148f, 252f, 252t, 253f, Nerve to inferior gemellus muscle, tenderness with palpation of, 148f, 208t, 209f, 252f 292f, 293f 105t Nerve to levator ani muscle, 148f, posterior cutaneous, 148f, 252f, nerves of, 78-79, 78t, 79f 208t, 209f 252t, 294f in neural tension tests, 114t, 499t Nerve to mylohyoid, 21f, 23f, 25f, perineal branches of, 291f, posterior triangle of, 140f 26f, 26t 294f range of motion of, in slump test, Nerve to obturator internus muscle. of wrist and hand, 475-477 178f, 178t 148f, 208t, 209f, 252f cutaneous, 493f tenderness in, 104t, 105t median, 475, 475f, 475t Nerve to piriformis muscle, 148f, veins of, 72f, 75f 208t, 209f palmar, 493f Neck Disability Index (NDI), 119t, Nerve to popliteus muscle, 354f radial, 477, 477f, 477t 125t Nerve to quadratus femoris muscle, ulnar, 476, 476f, 476t Neck flexor muscle endurance test, Neural tension tests, of upper limb. 148f, 208t, 209f, 252f, 252t See Upper limb tension Neck pain. See Cervical (neck) pain. tests (ULTTs). Nerve to subclavius, 78t, 79f Necrosis Neurological examination/screening Nerve to superior gemellus muscle, avascular, of hip and pelvis 148f, 208t, 209f, 252f of cervical spine, 85-86, 87-88, 89 detection with limited ROM. for radiculopathy, 66, 86-87, Nerves 262, 262f, 262t 88-89 costal. See Intercostal nerves/ patient history in, 254t of lumbar spine, 156 membranes: Subcostal osteonecrosis, of hip and pelvis, for radiculopathy, 132, 156, nerves. 262f, 262t

cranial. See Cranial nerves.

156t, 157f

Neurological examination/screening	Numeric Pain Rating Scale (NPRS)	Occipital artery, 7/1
(Continued)	(Continued)	Occipital bone, 19f
for spinal stenosis, 157, 157f,	for shoulder outcomes, 429t	basilar part of, 71f, 75f
158f, 158t	for thoracolumbar spine, 192t	clivus of, 70f
of wrist and hand	for TMJ pain, 28f, 28t, 60t	jugular process of, 75f
for carpal tunnel syndrome,	for wrist and hand outcomes, 503t	Occipital condyle, 75f
489t, 490t, 497t	Nutrient foramen, of tibia, 285f	atlas lateral mass articular surface
for cervical radiculopathy,	0	for
489t, 490t, 492t, 494t,	O	inferior, 68f
495t, 497t, 498t, 499t	OA. See Osteoarthritis (OA).	superior, 68f, 69f
Neurotomies, radiofrequency, for	Ober test, of muscle length, 268f,	Occipital nerves
sacroiliac joint pain,	268t, 305t	3rd (least), 77f
212f	modified, 268f, 268t	greater vs. lesser, 77f
	Oblique diameter, of pelvic inlet,	
New York criteria, for ankylosing		Occipital protuberance, external, 19f
spondylitis, 154t, 186t	204f	Occipitofrontalis muscle, occipital
NEXUS Low-Risk Criteria, for cer-	Oblique fracture, of femur, 277f	belly of, 77f
vical spine injury, 66,	Oblique line	Occiput
90t, 92t-93t	of mandible, 18f, 19f	in cervical spine examination,
Nipple line measurement, in anky-	of thyroid cartilage, 73f	110f, 110t
losing spondylitis, 155f	of tibia, 285f, 289f	tenderness with palpation of, 104t
	Oblique muscles	Occlusal stabilization splint, nightly
Nitric oxide, in lumbar pain, 179f	*	
Nociceptors, in anulus fibrosis, 179f	external, 140f, 141f, 143f, 143t,	wear of, for TMJ disor-
Nodding	145f, 385f	ders, 58f
endurance test of, 99t	internal, 140f, 141f, 143f, 143t	predicting failure with, 59, 59f, 59t
pain during, 97t	Obliquus capitis inferior muscle,	predicting success with, 58, 58f, 58t
Nomograms	76t, 77f, 141f, 142f	ODI. See Oswestry Disability Index
of carpal tunnel syndrome, 502,	Obliquus capitis superior muscle,	(ODI).
502f	76t, 77f, 141f, 142f	Olecranon, 441f, 444f, 445f, 470f
	O'Brien test, for glenoid labral tears,	Olecranon bursa, subcutaneous, 443f
of cervical radiculopathy, 117, 117f	406-407, 406f, 406t,	
of lumbar instability, 185, 185f		Olecranon fossa, 380f, 441f
of Ottawa Ankle Rule for Radiog-	407t, 426t	Omaticofacial foramen, of zygo-
raphy, 358f	combined with other tests, 378,	matic bone, 19f
of Ottawa Knee Rule for Radiog-	427t, 428t	Omohyoid muscle, 24f, 385f, 388f
raphy, 299f	Obturator artery, 247f	inferior belly of, 72f, 73f
of probability, 7, 8f, 9-10, 9f	acetabular branch of, 247f	investing layer of deep cervical
of sacroiliac dysfunction, 234f	anterior vs. posterior branch of,	fascia, 385f
	247f	superior belly of, 72f, 73f, 74t
of sacroiliac pain, discogenic, 235,	Obturator canal, 253f	
235f		1 Repetition maximum (1RM), in
Notches. See specific anatomy, e.g.,	Obturator crest, 203f, 245f, 247f	knee assessment, 304t
Vertebral notch.	Obturator externus muscle, 250t,	Open kinetic chain, in foot and ankle
NPRS. See Numeric Pain Rating	253f, 292f	assessments, 359, 368t
Scale (NPRS).	Obturator foramen, 201f, 203f, 206f,	Ophthalmic nerve, 26f, 26t
NPV (negative predictive values), 3,	245f, 246f	Opponens digit minimi muscle,
4-5, 4t, 11t	Obturator groove, 203f, 245f	473t, 474f
Nuchal line, superior, of skull, 140f,	Obturator internus muscle, 209f,	innervation of, 476f
=	248t, 249f	· · · · · · · · · · · · · · · · · · ·
141f, 142f		Opponens pollicis muscle, 473t,
Nucleus pulposus	nerve to, 148f, 208t, 209f, 252f	474f
of cervical intervertebral disc,	Obturator membrane, 247f	innervation of, 475f
herniated, 116f	Obturator nerve, 146f, 147t, 148f,	Oral habits, association with TMJ
of lumbar intervertebral disc, 133f	200f 252f 252t 200t	disorders, 27
	209f, 252f, 252t, 290t,	disorders, 27
herniated, 157f, 179f	292f, 292f, 293f	•
herniated, 157f, 179f Numbness, See Paresthesias	292f, 292t, 293f	Orbicularis orb muscle, 35f
Numbness. See Paresthesias.	292f, 292t, 293f accessory, 146f, 148f, 292f	Orbicularis orb muscle, 35f Orbicularis oris muscle, 22f
Numbness. See Paresthesias. Numeric Pain Rating Scale (NPRS)	292f, 292t, 293f accessory, 146f, 148f, 292f to adductor magnus muscle, 294f	Orbicularis orb muscle, 35f Orbicularis oris muscle, 22f Orbital plate, of ethmoid bone, 19f
Numbness. <i>See</i> Paresthesias. Numeric Pain Rating Scale (NPRS) for cervical spine, 101t, 119t, 125t	292f, 292t, 293f accessory, 146f, 148f, 292f to adductor magnus muscle, 294f anterior branch of, 253f, 292f	Orbicularis orb muscle, 35f Orbicularis oris muscle, 22f Orbital plate, of ethmoid bone, 19f Orthoses, foot, for patellofemoral
Numbness. <i>See</i> Paresthesias. Numeric Pain Rating Scale (NPRS) for cervical spine, 101t, 119t, 125t for elbow and forearm, 457t	292f, 292t, 293f accessory, 146f, 148f, 292f to adductor magnus muscle, 294f anterior branch of, 253f, 292f articular branch of, 292f	Orbicularis orb muscle, 35f Orbicularis oris muscle, 22f Orbital plate, of ethmoid bone, 19f Orthoses, foot, for patellofemoral pain syndrome, 284,
Numbness. See Paresthesias. Numeric Pain Rating Scale (NPRS) for cervical spine, 101t, 119t, 125t for elbow and forearm, 457t for foot and ankle, 373t	292f, 292t, 293f accessory, 146f, 148f, 292f to adductor magnus muscle, 294f anterior branch of, 253f, 292f articular branch of, 292f to knee joint, 292f	Orbicularis orb muscle, 35f Orbicularis oris muscle, 22f Orbital plate, of ethmoid bone, 19f Orthoses, foot, for patellofemoral pain syndrome, 284, 325, 325f, 325t
Numbness. <i>See</i> Paresthesias. Numeric Pain Rating Scale (NPRS) for cervical spine, 101t, 119t, 125t for elbow and forearm, 457t	292f, 292t, 293f accessory, 146f, 148f, 292f to adductor magnus muscle, 294f anterior branch of, 253f, 292f articular branch of, 292f to knee joint, 292f cutaneous branch of, 253f, 292f	Orbicularis orb muscle, 35f Orbicularis oris muscle, 22f Orbital plate, of ethmoid bone, 19f Orthoses, foot, for patellofemoral pain syndrome, 284,
Numbness. See Paresthesias. Numeric Pain Rating Scale (NPRS) for cervical spine, 101t, 119t, 125t for elbow and forearm, 457t for foot and ankle, 373t	292f, 292t, 293f accessory, 146f, 148f, 292f to adductor magnus muscle, 294f anterior branch of, 253f, 292f articular branch of, 292f to knee joint, 292f	Orbicularis orb muscle, 35f Orbicularis oris muscle, 22f Orbital plate, of ethmoid bone, 19f Orthoses, foot, for patellofemoral pain syndrome, 284, 325, 325f, 325t

Osteoarthritis (OA)	Osteology (Continued)	Pain (Continued)
of hip and pelvis	mandible, 18f	bone, in thoracolumbar spine,
clinical summary and recom-	skull, 19f	172t
mendations, 244t	of thoracolumbar spine, 133	buttock. See Gluteal (buttock)
combination of tests for, 278,	lumbar vertebrae, 133f	pain.
278f, 278t	thoracic vertebrae, 133f	calf, 149t, 157f
Cyriax's capsular pattern for	of wrist and hand, 463, 464f	discogenic
detecting, 258, 259f	carpal bones, 463f	sacroiliac, McKenzie evalua-
grading scales for, 255t, 260t,	Osteonecrosis, of hip and pelvis,	tion rule for, 200, 235,
274t, 275t, 278t, 279t	262f, 262t	235f
patient history in, 254t, 255,	Osteophytes, in degenerative disc	thoracolumbar, 149t, 179f
255t	disease, 183f	elbow. See Elbow pain.
radiography of, 257t, 259f, 260t	Oswestry Disability Index (ODI)	extremity. See Lower extremity;
ROM measurements in, 256t,	for sacroiliac region outcomes,	Upper extremity.
257t	237t, 238t	foot. See Foot and ankle pain.
testing for, 267f, 267t, 268t,	Modified, 238t	forearm, with cervical compres-
272t, 273t	for thoracolumbar spine outcomes,	sion test, 108f, 108t
special tests, 274t, 275t	189t, 190t, 191t, 192t	groin. See Inguinal (groin) pain.
of knee	Modified, 192t	hand. See Hand and wrist pain.
hip mobilization for, 284, 326	Otic ganglion, 21f, 23f, 26f	hip. See Hip pain.
outcome measures of, 327t	Ottawa Ankle Rule for Radiography,	knee. See Knee pain.
progressive stages of, 296f	336, 357f, 358	lumbopelvic, 217t, 218t, 220t,
subjective questions for assess-	diagnostic utility of, 358, 358f, 358t	223t
ing, 296, 296f, 296t	Ottawa Knee Rule for Radiography,	myofascial. See Myofascial pain.
testing for, 312t, 316t, 317t, 324t	284	neck. See Cervical (neck) pain. patellar syndrome. See Patello-
in TMJ disorders, 31, 33t, 41t	diagnostic utility of, 299, 299f,	÷ •
Osteoarthrosis, in TMJ disorders,	299t Outcome measures	femoral pain syndrome. pelvic. See Pelvic pain.
31, 32f, 33t	of cervical spine, 125, 125t	sciatic, 149t, 176t, 355t
Osteology	of elbow and forearm, 457, 457t	shoulder. See Shoulder pain.
of cervical spine, 67-68	of foot and ankle, 373, 373t	snuff box, with scaphoid frac-
head and neck, 67f	of hip and pelvis, 279, 279t	tures, 481t, 482f
vertebrae, 68f	of knee, 303, 327t	thigh. See Thigh pain.
in relation to TMJ, 17f	of sacroiliac region, 238t	with TMJ disorders. See Tem-
of elbow, 441, 441f	of shoulder, 429, 429t	poromandibular pain.
of foot and ankle, 337	of temporomandibular joint	wrist. See Hand and wrist pain.
dorsal vs. plantar view of, 338f	(TMJ), 60	Pain provocation tests. See specific
medial vs. lateral view of, 337f	of thoracolumbar spine, 192, 192t	anatomy or test, e.g.,
Ottawa rules for, 357f	of wrist and hand, 503, 503t	Compression tests.
of hip and pelvis, 245	Overbite, 43t	Pain rating scales
femur, 245f	Overjet, of temporomandibular	behavioral, 28t
hip (coxal) bone, 245f	joint, 43t	numerical. See Numeric Pain Rat-
of knee, 285	Overlap, of temporomandibular	ing Scale (NPRS).
femur, 285f	joint, 43t	Pain referral patterns
fibula, 285f	Overuse injury, of hip and pelvis,	in cervical spine, zygapophyseal
tibia, 285f	254t	syndromes of, 80, 82t
of sacroiliac region	Р	Cooper description, 81f
abdominal framework, 201, 201f		diagnostic nerve block for,
coccyx, 202, 202f	PA. See Posterior to anterior (PA)	103t
hip (coxal), 202, 203f	glide test/technique.	Dwyer description, 80f
sacrum, 202f, 203	Pain	in lumbar spine, zygapophyseal,
sex differences in, 204, 204f	ankle. See Foot and ankle pain.	149, 149t, 150f
of shoulder, 379	back (spinal)	in sacroiliac joint, 212
anterior humerus and scapula,	cervical. See Cervical (neck)	with double-block injections,
379f	pain.	212, 212f
superior and inferior clavicle	lumbar. See Low back pain.	with radiofrequency neuroto-
surface, 379f	sacral. See Sacroiliac pain. thoracic. See Thoracolumbar	mies, 212, 212f
of temporomandibular joint, 17		in thoracic spine, zygapophyseal,
head and neck, 17f	pain.	149, 149t, 151, 151f

Painful arc sign, in shoulder, 378,	Palpation (Continued)	Passive intervertebral motion
389t, 391t, 397t, 415t-	pain location identification	(PIVM) (Continued)
416t	with, 213, 213f, 213t	pain during, 101, 101t, 102f,
combined with other tests, 428t	static, 200	102t
with rotator cuff tears, 422t	of shoulder	of lumbar spine
Painful arc test, for subacromial im-	labral tears identification with,	accessory, 169t, 171t
pingement, 415t-416t	394, 394t	limited vs. excessive, 165, 165t,
combined with other tests, 428t	subacromial space in, 394,	166t, 171, 171t
Palatine bone, pyramidal process of,	394f, 394t	pain with, 132, 167, 167t, 169t,
67f	of temporomandibular joint, 16t,	170f
Palmar abduction, 486t	31t, 34	physiological, 169t
Palmar (arterial) arch, carpal, 474f	conditions identified by, 37	flexion vs. extension, 171t
Palmar ligaments, volar plate of,	extraoral, 34t	radiography with, for instabil-
469f, 469t	intraoral, 34t	ity, 184t
Palmar nerves	lateral, 35t, 36f, 37t	Patella, 251f, 253f, 286f, 289f, 291f,
digital. See Digital nerves/	muscle, 34, 35t	346f
branches.	posterior, 35t, 36f, 37t	alignment of. See also Patellar
median, 493f	pressure pain thresholds, 38	tilt.
Palmar pinch strength, 489t	regional, 35	A angle in, 311, 311f, 311t
Palmar view	tests, 36f	lateral pull test for, 311, 311t
of carpal bones, 463f	of thoracolumbar spine, 172	Q-angle in, 310, 310f, 310t
of wrist and hand bones, 464f	segmental level identification	angle between longitudinal axis
of wrist and hand muscles, 471f,	with, 172, 172f, 172t	of, and patellar tendon,
472f, 473f, 474f	segmental mobility identifica-	311, 311f, 311t
of wrist ligaments, carpal tunnel vs. flexor retinaculum	tion with, 166t, 168f,	articular cartilage of, erosion of, 296f
removed, 466, 466t,	169t, 170f, 171f, 171t tenderness identification with,	displacement of
467f	172, 172t	lateral pull test for, 311t
Palmaris brevis muscle, innervation	Paper grip test, for toe strength, 336,	mediolateral, 307t
of, 476f	361, 361t	instability of, 284
Palmaris longus muscle, 448f, 471f,	Paraspinal joints, tenderness with	bony assessment of, 306-307,
471t	palpation of, 105t	308-309, 310-311
innervation of, 475f	Paraspinal muscles, tenderness with	in physical examination, 298f,
Palmaris longus tendon, 446f, 467f	palpation of, 105t	299t, 300t
in carpal tunnel syndrome, 480f	Parasympathetic nerves, of sacroil-	subluxation of, 295t, 310f
Palpation	iac region, 209f	tenderness of, in trauma screen-
of cervical spine, pain during,	Paresthesias. See also Radiculopathy.	ing, 298f, 299t
104-105, 104t, 105t	in foot and ankle, 355t	Patella poles, inferior vs. superior,
without patient history, 105,	in lower extremity, with lumbar	in alignment assess-
105t	pain, 149t, 154t, 157f	ment, 308t, 309t, 311f,
of foot and ankle, for trauma	in upper extremity	311t
screening, 356t	with brachial plexus palsy, 425t	Patellar anastomosis, 253f
of hip, 273	with neck pain, 66, 80t, 82t,	Patellar apprehension test, moving,
diagnostic utility for intra-ar-	83f, 83t, 84t	284, 321, 321f, 321t
ticular pain, 273, 273f,	patient report of, 66, 80t,	Patellar ligament, 251f, 253f, 286f,
273t	82t, 83f, 83t, 84t	288f, 289f, 291f, 346f
reliability of, 273, 273f, 273t	during ROM, 97t	Patellar orientation/position
of humerus, lateral epicondyle,	in wrist and hand, 495t, 498t, 501t	assessment of, 307, 307f, 307t
449f	with brachial plexus palsy, 425t	mediolateral, 307f, 307t
of knee	patient report of, 478t, 479t, 480f	Patellar retinaculum
for inflammation detection,	Parietal bone, 19f	lateral, 251f, 289f, 291f, 346f
300f, 300t	temporal lines of, inferior vs. su-	iliotibial tract blended into,
lateral vs. medial joint line,	perior, 19f	288f
312f, 312t	Parotid duct, 22f, 23f	tight, 324t medial, 251f, 253f, 289f, 291f
pain during, 312, 312t, 322t of sacroiliac region, 213	Parotid gland, 72f Parrot beak tear, of meniscus, 323f	blended into joint capsule,
bony landmark symmetry as-	Passive intervertebral motion (PIVM)	288f
sessment, 214, 214f,	of cervical spine, limited, 100,	Patellar rotation, 309, 309f, 309t
214t, 215f	100f, 100t	Patellar surface, of femur, 285f
,	1001, 1000	

Patellar tap test, for knee inflamma-Patrick test Pelvic pain. See also Sacroiliac pain. of hip and pelvis, 244, 258t tion, 300t girdle, 214t, 260t, 272t. See also Patellar tendon, angle between londiagnostic utility of, 274, 274f, Sacroiliac pain. gitudinal axis of patella motion assessment for, 226t, 274t reliability of, 274, 274f, 274t and, 311, 311f, 311t 232t Patellar tendonitis, 295t of sacroiliac joint, 201-209, 221f postpartum, 216t, 217t, 218t, Patellar tilt, 306t combined with other tests, 225t, 228t anterior, 308t Pelvic (hypogastric) plexus, inferior, anteroposterior, 308, 308f, 308t diagnostic utility of, 216f, 216t, 209f mediolateral, 306, 306f, 306t 221f Pelvic provocation test, posterior, 217 reliability of, 216f, 216t, 221f superoinferior, 308, 308t diagnostic utility of, 217f, 217t Patellar-pubic percussion test, for Patte maneuver/test reliability of, 217f, 217t hip fractures, 244, 276, for infraspinatus tears, 422t Pelvic tilt, in Trendelenburg test, 267t 276f, 276t, 277f for supraspinatus tears, 418t Pelvis. See also Hip and pelvis. Patellofemoral joint, 286t Paxinos sign, in shoulder, 426t lateral vs. medial view of, 245f tenderness of, 312t Payr test, for meniscal tears, 322t sex differences in, 204, 204f Patellofemoral pain syndrome, 284, PCL. See Posterior cruciate ligament Penis, dorsal nerve of, 148f, 252f 295t, 310t (PCL). Percussion test activity modification for, 284, Pecten pubis, 201f, 203f, 206f, 245f, patellar-pubic, for hip fractures, 276, 276f, 276t, 277f 325, 325f, 325t 246f of wrist and hand, for carpal tunfoot orthoses for, 284, 325, 325f, Pectineal line, 201f, 203f, 206f, 245f, nel syndrome, 494t, 495t 325t 246f Pectineus muscle, 250t, 251f, 253f, forefoot valgus and, in predicting Perforating branches intervention success, anterior 325f, 325t Pectoral branch, of thoracoacromial to dorsal metatarsal artery, great toe extension and, in preartery, 388f 351f, 352f dicting intervention Pectoral nerve, lateral vs. medial, of plantar metatarsal arteries, success, 325f, 325t 72t, 78t, 79f, 387t, 388f 348f, 352f iliotibial band length in, 268t in brachial plexus schema, 425f of arcuate artery, posterior, 348f, Pectoralis major muscle, 72f, 385f, Patient history 352f cervical spine and, 66, 80-83 385t, 388f of deep artery, of thigh, 253f elbow and forearm and, 440 abdominal part of, 385f of fibular artery, 347f, 348f foot and ankle and, 336, 355 clavicular head of, 385f, 385t posterior, to dorsal metatarsal arhip and pelvis and, 244, 254-255, length assessment of, 107t tery, 352f 254t, 255t sternocostal head of, 385f, 385t Perineal nerve, 148f, 252f knee and, 284, 295-297 Pectoralis minor muscle, 385t, 388f posterior scrotal/labial branches length assessment of, 107t, 393, combined with tests, in diagof, 148f, 208t, 209f, nosing pathology, 324t 393f, 393t 252f, 294f in meniscal tear diagnosis, 323t tightness identification of, 393, Peripheralization phenomena reliability and diagnostic utility 393t in cervical pain, 97t Pectoralis minor tendon, 388f in lumbar pain, 149t, 173t, 174f of, 2. See also specific anatomy or pathology. Peroneal artery, 347f Pedicles sacroiliac joint/region and, 200, of cervical vertebrae, 68f communicating branch of, 347f 210-212 of lumbar vertebrae, 133f, 136f, lateral calcaneal branch of, 347f, shoulder and, 378 138f 350f temporomandibular joint and, 16, of thoracic vertebrae, 133f, 138f perforating branch of, 347f, 348f Pelvic brim, sacral part of, 202f 27-30 Peroneal nerve, 353 thoracolumbar spine and, 132, Pelvic dysfunction, 210, 235, 235f anterior view of, 353t, 354f 149-154 Pelvic inlet common, 148f, 209f, 249f, 289f, diameters of, female vs. male, in diagnosing pathology, 149, 291f, 294f, 346f, 347f, 151, 153-154, 184t 204f 353f, 354f in low back pain classifications, female articular branch of, 294f, 354f 187t anterior view of, 204f division of sciatic nerve, 294f wrist and hand and, 462, 478-479, phantom, 353f plane of, 204f 478t male, anterior view of, 204f deep, 345t, 348f, 348t, 353f Pelvic outlet, female dorsal digital branches of, 348f Patient populations, statistical samlateral branch of, 348f, 353f ple of, 8 anteroposterior diameter of, 204f Patient-Rated Tennis Elbow Evaluainferior view of, 204f medial branch of, 348f, 353f tion, 457t plane of, 204f in foot and ankle injury, 355t

Peroneal nerve (Continued)	Phalen's test, 462, 496-497, 496t,	Pisotriquetral complex, in carpal in-
phantom, 353f	497t	stability, 500t
posterior view of, 353f, 353t	reverse, 496f, 497t	PIVM. See Passive intervertebral
superficial, 345t, 346f, 348f, 353f	Pharyngeal tubercle, 71f	motion (PIVM).
division of sciatic nerve, 294f	Pharyngotympanic (auditory) tube,	Pivot shift test, for ACL tears, 284,
dorsal digital branches of, 348f	cartilaginous part of,	315, 315f, 315t
Peroneal retinaculum	23f	Plane-gliding joints, temporoman-
inferior, 341f, 346f, 347f	Phospholipase A ₂ , in lumbar pain,	dibular, 20, 20f
fibular tendons in, 340f	179f	Plantar (arterial) arch, deep, 352f
superior, 341f, 346f, 347f	Phrenic nerve, 75f, 79f, 388f	deep plantar artery to, 348f, 352f
Peroneal tendons, in inferior fibular	Physical examination	posterior perforating branches of
retinaculum, 340f	of cervical spine, 66t, 85-124	arcuate artery to, 348f,
Peroneal trochlea, of calcaneus,	to identify radiographic needs	352f
337f, 338f	following trauma, 66,	Plantar arteries
Peroneus brevis muscle, 348f, 353f	90t, 91, 92t-93t	deep
Peroneus brevis tendon, 341f, 346f,	of elbow and forearm, 440t, 450-	to deep plantar arch, 348f, 352f
347f, 348f, 351f, 352f	455	from dorsalis pedis artery, 352f
Peroneus longus muscle, 289f, 291f,	of foot and ankle, 336t, 356-372	digital. See Digital arteries.
353f	of hip and pelvis, 244t, 256-278	lateral, 350f, 351f, 352f
groove for	of knee, 284t, 298-326	medial, 350f, 351f
on calcaneus, 337f	combined with tests, in diag-	deep branch of, 350f, 351f
on cuboid, 337f, 338f	nosing pathology, 324t	superficial branch of, 349f,
Peroneus longus tendon, 341f, 344f,	to identify radiographic needs	350f, 351f
347f, 348f, 351f, 352f	following trauma, 298,	proper plantar digital branch
fibrous sheath of, 351f	298f	of, 351f
groove for	reliability and diagnostic utility	metatarsal, 348f, 351f, 352f
on calcaneus, 337f	of, 1-14. See also Clini-	Plantar fasciitis, 336, 355t, 371t
on cuboid, 337f, 338f	cal examination; specific	Plantar foot, ROM measurements
passing to sole, 346f	anatomy or test.	of, 359t
Peroneus tertius muscle, 345t	of sacroiliac region, 200t, 213-237	Plantar ligaments, 352f
Peroneus tertius tendon, 346f, 348f,	of shoulder, 378t, 390-428	long, 341f, 342f, 343t, 344f, 352f
352f	of temporomandibular joint, 16t,	metatarsal, 344f
Pes anserinus tendon, 251f, 289f, 291f	34-59	between bases of metatarsal
Petrosal nerve, lesser, 26f	of thoracolumbar spine, 132t,	bones, 352f
Phalanx (phalanges), 337f, 338f	156-191	plate of, 343f, 343f, 344f
base of, 338f	of wrist and hand, 462t, 481-502	short, 342f, 343t, 344f, 352f
distal, 338f, 343f, 464f, 469f	Physical therapy referral, for shoul-	tarsometatarsal, 343t, 344f
4th, 344f	der impairments, 390t	Plantar nerves
base of, 464f	Physician judgment, on cervical	digital. See Digital nerves/branches.
head of, 464f	spine injury, 92-93t	dorsal branches of, 348f
median nerve branches to, 475f	Pin prick testing	lateral, 294f, 348t, 349t, 350f,
shafts of, 464f	for lumbar spinal stenosis, 158f,	350t, 351f, 352t, 354f
ulnar nerve branches to, 476f	158t	deep branch of, 350f, 351f, 351f
great toe, distal vs. proximal, 344f	for radiculopathy	deep plantar arterial branch of,
head of, 338f	cervical, 66, 86f, 86t	351f
middle, 338f, 343f, 464f, 469f	lumbar, 132, 156t	plantar metatarsal branch of,
4th, 344f	Pinch test	349f
base of, 464f	for carpal tunnel syndrome, 501t	proper plantar digital branches
head of, 464f	for strength measurement, 488f,	of, 349f, 350f, 351f
	_	superficial branch of, 350f,
median nerve branches to, 475f	489t	=
shafts of, 464f	Piriformis muscle, 207f, 207f, 209f,	351f, 351t
ulnar nerve branches to, 476f	248t, 249f, 252f	from tibial nerve, 354f
proximal, 338f, 343f, 464f, 469f	nerve to, 148f, 208t, 209f	medial, 294f, 349t, 350f, 350t,
5th, 344f	Piriformis myofascial pain, 172t	351f, 351t, 354f
base of, 464f	Piriformis syndrome, 254t	deep branch of, 351f
head of, 464f	Pisiform, 446f, 448f, 463f, 464f, 465f,	proper plantar digital branches
shafts of, 464f	467f, 469f, 471f, 474f	of, 349f, 350f, 351f
shaft (body) of, 338f	in scaphoid fractures, 482f	superficial branch of, 351f
tuberosity of, 338f	Pisometacarpal ligament, 466t, 467f	from tibial nerve, 354f

Plantar view Posterior view (Continued) Pregnancy of deep interosseous muscles of of femur, 245f sacroiliac bony landmarks and, sole, 352f of fibular nerves, 353t, 354f 2.14t of foot and ankle, 338f of hip and pelvis ligaments, 247f sacroiliac motion assessment and, Plantarflexion, ankle, 359t, 361f, of leg muscles, 347f 232t of lumbar vertebrae, 136f 361t Prepatellar bursa, subcutaneous, 286f of mandible osteology, left, 18f Pressure pain threshold (PPT), in impingement sign with, 370f, 370t Plantaris muscle, 249f, 287f, 291f, of muscles involved in mastica-TMI disorders, 38, 38f, 294f, 347f, 354f tion, 23f 38t Plantaris tendon, 249f of rotator cuff muscles, 386f Pressure provocation test Plate. See specific anatomy, e.g., Pterof sacroiliac region ligaments, 206f for carpal tunnel syndrome, 498f, ygoid plate. of shoulder muscles, 384, 384f, 384t 498t Platysma muscle, 72f, 72t of thoracic vertebrae, 134f of elbow, 440, 454t Plicae, medial, in knee pathology, of tibia and fibula, 285f flexion test combined with, 454t 284, 324t of tibial nerves, 353t, 354f Pretest probability, 8f, 9 Point estimates, 8 of wrist and hand bones, 464f Prevalence rates, 5, 9 of wrist and hand muscles, 474f Probability Pop test, for glenoid labral tears, of wrist and hand nerves, 475f, 427t determination of shifts in, 7, 7t, Popliteal artery, 249f, 253f, 347f 476f, 477f 9-10 Popliteal ligaments post-test calculation, 9-10, 9f of wrist ligaments, 468, 468f, arcuate, 287f, 287t, 288f 468t pretest and post-test, 8f, 9 oblique, 287f, 287t, 288f Posterior-superior iliac spine (PSIS) Processes. See specific anatomy, e.g., Popliteal surface, of femur, 285f, in hip muscle length assessment, Styloid process. 287f 270t articular. See Articular processes. Popliteus muscle, 249f, 287f, 347f, as sacroiliac bony landmark spinous. See Spinous processes. 354f prone, 214t transverse. See Transverse capsule edge arching over, 287f sitting vs. standing, 214t process(es). nerve to, 354f in sacroiliac motion assessment, Pronation measurements, of elbow, Popliteus tendon, 287f, 288f 226t, 227t, 230t, 231t 451, 451f, 451t Population characteristics, diagnosin sacroiliac pain provocation, Pronator muscles, of forearm, 445f, tic statistics of, 3, 8 211t, 213t 447, 447f, 447t Posterolateral view, of costovertebral Positive predictive values (PPV), 3, Pronator quadratus muscle 4-5, 4t, 11t ligaments, right, 137f of foot, 447f, 447t, 448f Posterior cruciate ligament (PCL), Posterosuperior view of hand, 447f, 447t, 474f 287f, 288f, 288t, 295f of axis, 68f innervation of, 475f ruptures of, 295t of mouth floor muscles, 25f Pronator syndrome, 449t Posterior shear test Post-test probability, 8f, 9 Pronator teres muscle, 445f, 446f, calculating, 9-10, 9f for lumbar segmental instability, 447f, 447t, 448f 180t Postural assessment humeral head of, 446f of sacroiliac region, 217 of cervical spine innervation of, 475f diagnostic utility of, 217f, 217t head vs. shoulder in, 106t ulnar head of, 446f, 448f reliability of, 217f, 217t muscle length assessment in, innervation of, 475f Posterior tibial reflex, with herniated 107f, 107t Prone instability test, of lumbar lumbar nucleus pulpothoracic kyphosis in, 106f, 106t spine,180t, 181f, 191t sus, 157f of thoracolumbar spine, 163, Prone knee bend test, 232, 232f, Posterior to anterior (PA) glide test/ 163t, 164f 232t technique for ankylosing spondylitis, 155f Proprioception assessment central, of cervical spine, 102t, in low back pain classifications, foot and ankle in, 336, 365, 366, 103f, 103t 366f, 366t Postural syndrome, upper crossed, for hip mobilization, 326f shoulder in, 392, 392t with flexion, abduction, and Prostaglandins, in lumbar pain, 179f 80t lateral rotation, 326f Potentiometer, in foot and ankle as-Protraction test, shoulder Posterior triangle of neck, 140f sessment, 365t for brachial plexus palsy, 425t Poupart ligament, 146f, 253f in postural assessment, 96t, 106t Posterior view of ankle ligaments, 340, 340f, 340t PPV (positive predictive values), 3, Protractor, for ROM measurements, 4-5, 4t, 11t of carpal bones, 463f of thoracolumbar spine, of cervical spine ligaments, 70f, 71f Predictive values, positive and negaof elbow bones, in extension, 441f tive, 3, 4-5, 4t, 11t Protrusions, of temporomandibular of elbow joint, opened, 442f likelihood ratios and, 7, 8t joint, 43t, 45t, 47t

PSIS. See Posterior-superior iliac	Quadratus femoris muscle, 252f, 253f	Radial nerve, 78t, 79t, 387t, 388t, 445t,
spine (PSIS).	anterior muscles of, 251f	446f, 448f, 448t, 470t,
Psoas major muscle, 146f, 148f,	nerves to, 252f, 252t, 293f	477, 477t
209f, 250t, 251f	posterior view of, 248t, 249f	in brachial plexus schema, 425f,
lower part of, 293f	nerve to, 148f, 208t, 209f	475f
Psoas minor muscle, 148f, 250t, 251f	Quadratus femoris tendon, 346f	branches to arm/forearm, 477f
Psoas muscles, 143f	Quadratus lumborum muscle, 142f,	cutaneous branches of, 477f
nerve branch to, 146f, 148f	146f	deep branch of, 445f, 446f, 470t
Pterion, 19f	Quadratus plantae muscle, 348f,	continuation to supinator mus-
Pterygoid fovea, 18f	350t, 351f, 354f	cle, 493f
Pterygoid muscle	Quadratus plantae nerve, 354f	terminal, 493f
in anterior disc displacement, 32f	Quadriceps (Q) angle, 310, 310f, 310t	division between ulnar nerve on
internal vs. external, 35f	Quadriceps (%) ungre, 516, 516, 516.	dorsal hand, 493f
lateral, 22f, 23f, 23t, 26f	251f, 253f, 286f, 291f	dorsal digital branches of, 465f,
in physical examination, 35t	atrophy of, with herniated lumbar	477f, 493f
medial, 23f, 23t, 26f	nucleus pulposus, 157f	inconstant spinal contributions
in physical examination, 34t, 36f	isometric contraction of, for pa-	to, 477f
= , *		
Pterygoid nerve lateral, 26f	tellar alignment, 311t	lateral vs. medial branch of, 465f posterior view of, 477f
*	length assessment of, 305f, 305t	-
mandibular nerve via, 23t	neurological examination of, 156t	superficial branch of, 446f, 465f,
medial, mandibular nerve via, 23t	rectus femoris tendon becoming,	477f
Pterygoid plate	289f	terminal, 493f
lateral, 17f, 23f, 67f	rupture of, 295t	Radial notch, of ulna, 441f, 444f
medial, 17f, 23f	Quality Assessment of Diagnostic	Radial tear, of meniscus, 323f
hamulus of, 17f, 23f, 26f, 67f	Accuracy Studies	Radial tunnel syndrome, 449t
Pterygoid process	(QUADAS), 2, 10-11	Radiate ligament, of rib head, 135f,
hamulus of, 67f	of cervical spine, 126-127	137f, 137t
lateral vs. medial plate of, 67f.	of elbow and forearm, 458, 458t	ossification of, 155f
See also Pterygoid plate.	of foot and ankle, 374, 374t	Radiculopathy. See also Paresthesias.
Pterygomandibular raphe, 17f, 23f, 67f	of hip and pelvis, 280, 280t	cervical. See Cervical radiculop-
Pterygopalatine fossa, 67f	of knee, 328-331, 329t	athy.
Pubic arch, 201f, 246f	of sacroiliac region, 239, 239t	lumbar. See Lumbar radiculopathy.
female vs. male, 204f	of shoulder, 430-435, 431t, 433t,	thoracolumbar, 132
Pubic ligaments	435t	screening for, 132, 175-176, 177
inferior, 246f, 247t	of temporomandibular joint, 61-	Radiocapitate portion, of palmar ra-
posterior, 247t	62, 61t, 62t	diocarpal ligament,
superior, 247t	of thoracolumbar spine, 193-194,	466t, 467f
Pubic ramus	194t	Radiocarpal joint, 465f, 465t
inferior, 201f, 203f, 206f, 245f, 246f	of wrist and hand, 504-505, 504t,	Radiocarpal ligament
superior, 201f, 203f, 206f, 209f,	505t	dorsal, 468f, 468t
245f, 246f, 247f	QuickDASH (Shortened Disabilities	palmar, 466t, 467f
Pubic symphysis, 201f, 206f, 246f	of the Arm, Shoulder,	radiocapitate portion of, 466t,
female vs. male, 204f	and Hand), in shoulder	467f
as joint, 246t	outcomes, 429t	radioscapholunate portion of,
Pubic tubercle, 201f, 203f, 206f,		466t, 467f
245f, 246f, 251f	R	Radiography
Pubofemoral ligament, 247f, 247t	Radial artery, 445f, 446f, 448f, 474f	of ankle, Ottawa Rule for, 336,
Pudendal artery, internal, 209f	dorsal carpal branch of, 465f	357f, 358
Pudendal nerve, 148f, 208t, 209f,	palmar carpal branch of, 448f,	diagnostic utility of, 358f, 358t
	474f	
252f, 252t	recurrent, 446f, 448f	of cervical spine, for injury
Pushing, thoracolumbar pain with,	in snuffbox, 465f	screening, 66, 91-92,
152t	superficial palmar branch of,	92t-93t, 92f
Pyramidal process, of palatine bone,	446f, 467f, 474f	of elbow, for injuries, 453t
67f		of hip joint
Q	Radial bursa, in carpal tunnel syn- drome, 480f	for fractures, 276t
		for osteoarthritis, 257t, 259f,
Q angle, 310, 310f, 310t	Radial collateral ligament, 443f,	260t
QUADAS. See Quality Assessment	443t, 466t, 467f	of knee, Ottawa Rule for, 284,
of Diagnostic Accuracy Studies (QUADAS).	Radial fossa, 379f, 441f	299, 299f, 299t

Radiography (Continued) Radius (Continued) Range of motion (ROM) (Continued) of shoulder, for instability identiavascular necrosis detection tuberosity of, 441f, 444f fication, 399t, 400t, 401t with, 262, 262f, 262t in wrist joint, 463f, 465f, 467f, 468f Rami communicantes pain during, 260, 260f, 260t of thoracolumbar spine for degenerative disc disease, measurements of, 256, 256f, of cervical nerves dorsal, 71f, 77f, 79f 256t, 257f, 257t 183f in brachial plexus schema, mobilizations effect on, 326t flexion-extension, 159t, 167t, 169t, 171t, 184t passive ventral, 79f for instability, 184-185, 184t, external vs. internal rotation, in brachial plexus schema, 185f 256f, 256t, 257t of wrist and hand, for fractures, flexion vs. extension, 260t, 425f 481t of sacral nerves, gray vs. white, 261f Radioscapholunate portion, of pal-209f maximal, 258t mar radiocarpal ligaof thoracolumbar nerves, 148f intervertebral. See Passive interment, 466t, 467f dorsal, 141t, 142t, 145f, 145t, vertebral motion Radioulnar joint 252t (PIVM). distal, 442t, 465f lateral vs. medial branch of. of knee, 284 145f active vs. passive, 301, 301f, proximal, 442t posterior, 145f Radioulnar ligament 301t, 319t dorsal, 468f, 468t gray vs. white, 145f, 146f capsular and noncapsular endfoveal disruption of, 462 ventral, 139t, 143t, 145f, 146f feels, 302, 302f, 302t, 326t testing for, 501f, 501t Ramus palmar, 466t, 467f of ischium, 203f, 245f hip mobilizations effect on, 326t of mandible, 17f, 18f, 19f, 67f Radius anterior vs. posterior border of, of pubis. See Pubic ramus. pain during resistance sequences, 303, 303f, 303t 444f of spinal nerves. See Rami area for abductor pollicis longus communicantes. of sacroiliac region, 200 muscle on, 444f Range of motion (ROM) assessment tests for, 226-227, area for extensor pollicis brevis of cervical spine, 66 228-229, 230-231, 232 muscle on, 444f improvement of, with intervencombinations of, 233-234, deviation tests of, 484t, 485f, 500t tions, 118t, 120t, 121t, distal, fractures of, in children, 483f 122t, 123t, 124t dysfunction vs. pain detection with, 234-235, dorsal tubercle of, 463f limited passive intervertebral, 234f, 235f in elbow joint, 441f, 442f, 442t, 100, 100f, 100t of shoulder 443f pain during, 101, 101t, 102f, disorders classification based extension vs. flexion, 441f measurements of, 94f, 95t, 96t on, 397f, 397t groove for extensor carpi radialis pain during, 97t, 98f, 98t functional tests of, 391, 391f, brevis muscle on, 444f therapeutic, following spinal 391t groove for extensor carpi radialis longus muscle on, 444f manipulation, 121f integrated movements during, groove for extensor digitorum of elbow and forearm, 450 381, 381f muscle on, 444f measurements of, 440, 450measurements of, 378, 390, groove for extensor indicis mus-451, 450f, 451f 390f, 390t cle on, 444f pain during, 449t pain during, 390t, 391t, 415tof foot and ankle, 336, 359, 359f groove for extensor pollicis lon-416t calcaneal position, 336t, 360, gus muscle on, 444f of temporomandibular joint, 16t, head of, 441f, 444f 360f lunge, 338f, 360 anterior disc displacement and, interosseous border of, 444f ligaments of, 443f, 443t, 444f open kinetic chain, 359 passive vs. active, 359t joint play and end-feel assessmuscles of, 445f, 446f, 470f, 471f, ment in, 44 472f, 473f, 474f patient history in, 355t, 370t in trauma screening, 356t mandibular opening in, 31t, 44 in supination vs. pronation, of hip and pelvis, 244 measurements of, 43, 43t 447, 447f, 447t neck of, 441f, 444f capsular and noncapsular endmouth opening in, 42, 42t, 57t feels, 258, 258f, 258t of thoracolumbar spine, 132 nerves of, 448f, 448t in low back pain classifications, styloid process of, 444f, 463f limited surfaces of abduction, developmental 187t anterior vs. posterior, 444f dysplasia in infants with, in lumbar instability tests, 184t, lateral, 444f 244, 263, 263f, 263t 191t

Range of motion (ROM) (Continued)	1 Repetition maximum (1RM), in	Ribs (Continued)
measurements of, 159, 159t, 160f	knee assessment, 304t	in ankylosing spondylitis, of tho-
pain during, 149t, 161, 161f,	Repetitive use injury, of hip and pel-	racolumbar spine, 155f
161t	vis, 254t	in scoliosis pathology, 164f
of wrist and hand, 462	Research Diagnostic Criteria	tubercle of, transverse costal facet
measurements of, 484, 484f,	(RDC), for TMJ disor-	for, 137f
484t, 485f	ders, 31-32, 33	Roland-Morris (R-M) Disability
finger and thumb, 486, 486f,	Resistance tests	Questionnaire
486t	of hip and pelvis, 244	for sacroiliac region outcomes, 238t
Rays. See Metatarsal bones.	lateral tendon pathology and, 266, 266t	
RDC (Research Diagnostic Criteria), for TMJ disorders,	pain or weakness during, 264,	for thoracolumbar spine out- comes, 192t
31-32, 33	264t, 265t	ROM. See Range of motion (ROM).
Rearfoot angle, 360f, 360t	of knee, pain during, 303, 303f,	Romberg test, for lumbar spinal ste-
Rectal (anal) nerve, inferior, 148f,	303t	nosis, 132
252f	of shoulder	Rotation lag signs, in shoulder
Rectus abdominis muscle, 143f,	for labral tears, 407t, 408t	external, 378, 422t
143t, 145f	supine flexion with, 405t,	internal, 423t
Rectus capitis anterior muscle, 75f,	411t-412t	Rotation tests
75t	for subacromial impingement,	of cervical spine, 95t, 96t
Rectus capitis lateralis muscle, 75f,	internal rotation with,	C1, 100f, 100t
75t	417, 417f	C2, 100f, 100t
Rectus capitis posterior major mus-	of temporomandibular joint, pain	combined with other tests, 117,
cle, 76t, 77f, 141f, 142f	during	117t
Rectus capitis posterior minor mus-	diagnostic utility of, 50, 50f,	pain during, 97t, 101t, 102t
cle, 76t, 77f, 141f, 142f	51f, 51t	of foot, for TMJ disorders
Rectus femoris muscle, 250t, 251f,	lateral deviation, 48f, 48t	diagnostic utility of, 53, 53f, 53t
253f, 289f, 289t, 293f	mouth opening and closing,	reliability of, 53, 53f, 53t
Rectus femoris tendon, 251f	51f	of hip and pelvis, 244
becoming quadriceps femoris	reliability of, 48, 48f, 48t	internal vs. external, 256f, 256t,
tendon, 289f	of wrist and hand, for scaphoid	257t, 258t
Rectus sheath, anterior layer of,	fractures, 481t	muscle length measure-
385f	Rheumatoid arthritis	ments, 270t, 271f
Reference standard, 3	cervical spine involvement in,	muscle strength assessment,
test results compared to, 3	115t	264, 264t, 265t
Reflex hammer, in wrist and hand examination, 494t, 495t	foot involvement in, 369f, 369t Rhomberg test, for lumbar spinal	pain during, 260t, 262t, 264, 266t, 278t
Reflex tests	stenosis, 182t	for sacroiliac pain provoca-
of lumbar spine, 132	Rhomboid major muscle, 77f, 139t,	tion, 225t
for radiculopathy, 156, 156t,	384f, 384t	strength assessment with,
157f	Rhomboid minor muscle, 77f, 139t,	264t, 265t
for spinal stenosis, 94, 158f,	384f, 384t	mobilization effect on, 326t
158t	Rib head	osteonecrosis detection with,
of upper limb, for cervical radicu-	in ankylosing spondylitis, 155f	262t
lopathy, 66, 89f, 89t	articular facets of, superior, 135f,	of knee
Reliability of clinical examination,	137f	with internal vs. external rota-
1-14. See also Clinical	ligaments of, 135f, 137f, 137t	tion, 317f, 322t
examination; specific	Ribs	patellar, 309, 309f, 309t
anatomy or test.	1st, 17f, 67f, 75f, 380f, 388f	of shoulder, 378
intra-examiner vs. inter-	in brachial plexus schema,	functional, 391f, 391t
examiner, 2-3	425f	for instability, 399t, 400t, 401t
Relocation tests, of shoulder, 400,	costal facets for, 69f, 135f, 137f	for labral tears, 403t, 407t
400f, 400t	springing test of, 391t	active compression with,
anterior, 400t	sternocostal articulation, 134f	404, 404f, 404t, 406f,
apprehension, 400t	synchondrosis of, 380f	407t
combined with other tests, 378,	testing stiffness of, 100f, 100t	combined with other tests,
427t	2nd, 380f	428t
Jobe, 400t	7th, 134f	passive compression with,
pain, 400t	12th, 140f, 201f	411t-412t

Rotation tests (Continued)	S2 vertebra (Continued)	Sacroiliac pain (Continued)
resisted supination with,	in sacroiliac motion assessment,	motion testing and, 227t,
411t-412t	226t, 227t	228t, 233t
measurement of, 390f, 390t	S3 vertebra	provocative testing and,
for muscle length determina-	nerves of, 147t, 148f, 208t, 209f,	216t, 217t, 218t, 219t,
tion, 393t	252t, 290t, 292t, 294f,	220t, 223t
in proprioception testing, 392t with resistance	347t, 348t, 349t, 350t, 351t, 352t, 353t, 354f	radiofrequency neurotomies as 212, 212f
for subacromial impinge-	in sacroiliac motion assessment,	spinal manipulation as, 236,
ment, 417, 417f	226t	236f, 237f, 237t
during supination, 411t-412t	S4 vertebra, nerves of, 148f, 208t,	location of, 211, 211t
for rotator cuff tears, 422t	209f, 252t	palpation for location identifica-
of thoracolumbar spine, 159t, 184t	perineal branch of, 148f, 208t,	tion, 213, 213t
pain during, 161, 161f, 161t	209f	patient report of, 211, 211t
Rotator cuff	perineal branches of, 148f, 208t,	physical examination for, 200,
lesions of, 397t	209f	213
muscles of, 386, 386f, 386t	S5 vertebra, nerves of, 148f, 208t,	provocative tests for, 216-217,
tears of, 378	209f	218-219, 220-221, 222-
patient history in, 389, 389t	Sacral canal, 202f	223, 224-225
retracted, 418f	Sacral cornu (horn), 202f	anesthetic injection with, 216t,
subscapularis tests for, 423,	Sacral crest	217t, 218t, 219t, 220t, 223t
423t, 424f superior, 418f	intermediate, 202f lateral, 202f	diagnostic utility of, 200, 216f,
supraspinatus/infraspinatus	median, 202f	217f, 218f, 219f, 220f,
tests for, 418, 418f, 418t,	Sacral foramen	223f, 224f
419-422, 419f, 422t	anterior (pelvic), 202f, 206f	reliability of, 216f, 217f, 218f,
Rotator muscles, of forearm	posterior, 202f, 206f	219f, 220f, 223f, 224f,
instability of, 449t	Sacral hiatus, 202f	225f
in supination vs. pronation, 447,	Sacral plexus, 148f	referral patterns of, 212
447f, 447t	Sacral promontory, 201f, 202f, 206f,	with double-block injections,
Rotatores cervicis breves muscle, 142f	246f	212, 212f
Rotatores cervicis longi muscle, 142f	female, 204f	with radiofrequency neuroto-
Rotatores thoracis breves muscle,	Sacral sulcus	mies, 212, 212f
142f, 142t	as sacroiliac bony landmark, 214t	Sacroiliac region, 199-242
Rotatores thoracis longi muscle,	tenderness of, 213t	arthrology of, 205, 205f, 205t
142f, 142t	Sacral thrust test, 200, 219, 222f	clinical summary and recommen
Ruptures. See specific anatomy, e.g.,	combined with other tests, 233t,	dations, 200-239
Anterior cruciate liga-	235	diagnostic utility of examination
ment (ACL).	diagnostic utility of, 219f, 219t reliability of, 219f, 219t	compression test, 200, 218f, 218t, 221f
S	Sacrococcygeal ligaments	distraction tests, 223f, 223t
S1 vertebra	anterior vs. posterior, 206f, 206t	Gaenslen test, 220f, 220t, 222f
disc herniation at level of, 157f	lateral, 206f, 206t	Gillet test, 226-227, 227f, 227t
nerves of, 147t, 148f, 208t, 209f,	Sacroiliac joint, 205, 205f, 205t	history of pain, 211, 211f,
248t, 252t, 290t, 292t,	Sacroiliac ligaments, anterior vs.	211t
294f, 345t, 348t, 353t,	posterior, 206f, 206t	long-sit test, 229, 229f, 229t
354f	Sacroiliac pain. See also Hip pain;	motion assessment, 200
in sacroiliac motion assessment,	Pelvic pain.	pain provocation tests, 200,
226t	aggravating factors of, 211, 211t	216f, 217f, 218f, 219f,
in zygapophyseal pain referral	discogenic, McKenzie evaluation	220f, 223f, 224f
pattern, 150f	rule for, 200, 235, 235f	pain referral patterns of, 212
S2 vertebra	dysfunction vs., 210, 235, 235f	palpation for pain location,
foramina of, coronal section	with herniated lumbar nucleus	213, 213f, 213t
through, 202f	pulposus, 157f	Patrick's (FABER) test, 216f,
nerves of, 147t, 148f, 208t, 209f,	intensity locations of, 212, 212f	216t, 221f
248t, 252t, 290t, 292t,	intervention(s) for, 200	sacral thrust test, 219f, 219t,
294f, 345t, 347t, 348t,	anesthetic injection as, 211t,	222f
349t, 350t, 351t, 352t,	213t	sitting flexion test, 231, 231f,
353t, 354f	double-block, 212, 212f	231t

Sacroiliac region (Continued) Sacroiliac region (Continued) Scalene muscles (Continued) spring test, 228, 228f, 228t sacral thrust test, 219f, 219t, middle, 72, 75f standing flexion test, 230, 230f, 222f posterior, 72, 75f length assessment of, 107t 230t sitting flexion test, 231, 231f, static palpation, 200 231t slips of origin of, 75f thigh thrust test, 217f, 217t, 221f spring test, 228, 228f, 228t Scaphoid, 463f, 464f, 465f, 468f dysfunction of standing flexion test, 230, 230f, fractures of, 462, 478t 230t clinical prediction rule for, common vs. uncommon sites thigh thrust test, 217f, 217t, 234f of, 482f pain vs., 210, 235, 235f 221f screening for, 481, 481t female vs. male, 204f tenderness over, with ankylosing palmar prominence of, 500t injury, common causes of, 210f spondylitis, 186t tubercle of, 463f, 464f, 467f ligaments of, 206, 206f, 206t Sacroiliitis, 216t, 217t, 218t, 219t, compression test of, 481t, 500t motion assessment tests for, 226-220t, 223t, 224t, 233t Scaphoid shift test, 500f, 500t 227, 228-229, 230-231, bilateral, 155f Scapula, 73f 232 lower spine involvement in, 155f acromion of, 379f, 380f, 382f, 383f, combinations of, 233-234, 235 Sacrospinous ligament, 206f, 206t, 384f, 385f, 386f, 388f dysfunction vs. pain detec-249f, 252f in physical examination, 393t, tion with, 234-235, Sacrotuberous ligament, 206f, 206t, 395t 234f, 235f 249f, 252f angles of muscles of, 206f, 207, 207f, 207t Sacrum. See also Sacral entries. acromial, 379f, 380f nerves of, 208t, 209, 209f apex of, 202f inferior vs. superior, 379f, 380f osteology of articular facets for, 136f, 202f asymmetry of, during static and abdominal framework, 201, 201f articular processes of, superior, dynamic activity, 395, coccyx, 202, 202f 202f 395t, 396f auricular surface of hip bone for, hip (coxal), 202, 203f borders of sacrum, 202f, 203 203f, 245f lateral vs. medial, 379f, 380f sex differences in, 204, 204f base of, 202f superior, 379f, 380f, 386f outcome measures of, 238t as sacroiliac bony landmark, coracoid process of, 379f, 380f, palpation of, 200, 213 214t 383f, 386f, 388f patient history and, 200, 210-212 inferior lateral angle of, 214t fossae of report of pain, 211, 211t nerve roots of, in herniated luminfraspinous vs. supraspinous, physical examination of, 200t, bar nucleus pulposus, 380f 213-237 157f notch connecting, 380f quality assessment of diagnostic osteology of, 201f, 202f, 246f subscapular, 379f studies, 239, 239t surfaces of, dorsal vs. pelvic, glenoid cavity of, 379f, 383f reliability of examination 202f groove for circumflex scapular compression test, 218f, 218t, transverse ridges of, 202f vessels on, 380f 221f tuberosity of, 202f ligaments of, 382f distraction tests, 223f, 223t Sagittal section/view neck of, 379f, 380f drop-test, 225t of cervical disc herniation, 116f in neural tension tests, 112t, 114t, Gaenslen test, 220f, 220t, 222f of female pelvis, 204f 499t Gillet test, 226-227, 226f, 226t, of knee, 286f osteology of, 379f 227f of sacrum and coccyx, median, in physical examination, 392t, internal rotation of hip, 225t 202f 393t, 397f, 409t, 499t long-sit test, 229, 229f, 229t of wrist joint, 465f spine of, 140f, 380f, 384f, 386f Mennell's test, 224f, 224t Sample populations, 8 suprascapular notch of, 379f, pain provocation tests, 216f, Saphenous nerve, 252t, 253f, 293f, 380f, 382f, 386f 217f, 218f, 219f, 220f, 354f tubercles of, infraglenoid vs. su-223f, 224f, 225f infrapatellar branch of, 253f, 293f praglenoid, 379f palpation for bony landmark medial cutaneous branches to leg, Scapular area, tenderness with palpation of, 104t symmetry, 214, 214f, 293f Sartorius muscle, 249f, 250t, 251f, 214t, 215f Scapular circumflex artery, 388f Patrick (FABER) test, 216f, 253f, 290t, 291f, 293f groove on scapula for, 380f Sartorius tendon, 251f, 289f, 291f 216t, 221f Scapular ligament, superior transprone knee bend test, 232, Scalene muscles, 72f, 73f, 75, 79f verse, 382f, 386f 232f, 232t anterior, 72, 75f, 388f Scapular nerve, dorsal, 78t, 79f, resisted hip abduction, 225f, length assessment of, 107t 384t, 387t, 388f 225t slips of origin of, 75f in brachial plexus schema, 425f

Scapular slide test, lateral, 395t, 396f Segmental mobility testing Sensory ganglion Scapulohumeral rhythm, 381, 381f (Continued) of lumbar spine nerves, 179f Scapulothoracic joint, 136t of lumbar vertebrae, 168f, 169t, of thoracic spine nerves, 145f integrated movements of, 381, 171t Sensory innervation pain during, 167t 381f of cervical spine, 78t Scheuermann's disease, 106f posteroanterior, 165t, 166t, of elbow and forearm, 448t Schober test, of thoracolumbar 167f, 167t of foot and ankle, 353t radiographic findings vs., 184t, spine of hip and buttocks, 252t for ankylosing spondylitis, 186t 185, 185f of knee, 292t modified, 159t spinal manipulation as, 189t, of lumbar spine, 147t 190t of sacroiliac region, 208t Sciatic foramen, lesser vs. greater, 206f, 294f Semilunar (trigeminal) ganglion, of shoulder, 387t Sciatic nerve, 147t, 148f, 208t, 209f, 26f of temporomandibular joint, 26t 249f, 252f, 252t, 294f Semimembranosus bursa, 291f of thoracic spine, 145f, 145t, 147t fibular branch of, 290t deep to tendon, 287f of wrist and hand, 475t, 476t, 477t common (peroneal), 294f Semimembranosus muscle, 248t, Serratus anterior muscle, 145f, 384t, superficial, 294f 249f, 290t, 291f, 294f 385f, 388f to hamstrings, 249f, 250t, 292f tendinous expansion of, 287f endurance testing of, 392t medial sural cutaneous nerve Semimembranous tendon, 287f, strength testing of, 392t 288f, 347f from, 294f Serratus posterior anterior muscle, tibial branch of, 290t, 294f groove for insertion of, on tibia, 140f Serratus posterior inferior muscle, Sciatic notches, lesser vs. greater, 285f Semispinalis capitis muscle, 76t, 201f, 203f, 245f, 246f 77f, 139t, 141f 77f, 140f, 141f, 142f, Sciatic pain, 149t, 176t, 355t Serratus posterior superior muscle, SCM. See Sternocleidomastoid 77f, 139t, 141f (SCM) muscle. Semispinalis cervicis muscle, 76t, Sesamoid bones, 337f, 338f, 344f, Scoliosis, 163t, 164f 350f, 351f, 352f, 464f Scour test, of hip and pelvis, 244, Semispinalis thoracis muscle, 142f lateral, 338f Semitendinosus muscle, 248t, 249f, medial, 338f 258t combined with other tests, 278t 252f, 289f, 290t, 291f, Sever's disease, 355t for intra-articular pathology, 275t Shaking, in wrist and hand, 461-462 Semitendinosus tendon, 251f, 291f Screening tests patient report of, 478t, 479t for ankle trauma, 336, 356, 358 Semmes-Weinstein monofilaments, Sharp-Purser test, 115, 115f, 115t for cervical spine trauma, 90-91, in sensation testing Shear test. See Posterior shear test. 92 of fingers and thumb, 492t, 493f Shoes, heeled, sacroiliac pain aggrafractures, 66, 90f of foot and ankle, 369t vated by, 211t Shortened Disabilities of the Arm, to identify radiographic Sensation testing of cervical spine, 85, 85f, 85t needs, 90t, 91, 92t-93t Shoulder, and Hand pin prick, for radiculopathy, 66, for knee trauma (QuickDASH), in shoulfractures, 284 86f, 86t der outcomes, 429t of fingers and thumb, 492, 492t, Shoulder, 377-438 to identify radiographic needs, 298-299 arthrology of, 380 carpal tunnel syndrome identiinflammation, 300 integrated movements in, 381, neurological. See Neurological exfication with, 462, 492, 381f amination/screening. 492t, 502 bursitis in, 389t, 397t, 415t-416t for wrist and hand fractures, 462, of foot and ankle, 336 subacromial, 415t-416t, 422t anterolateral ankle impingeclinical summary and recommen-481-483, 481t, 482f, 483f Scrotal nerve, posterior, 148f, 252f ment detection, 370, dations, 378-435 Segmental fixations, of lumbar 370f, 370t diagnostic utility of examination spine, 166t, 170f protective, 369, 369f, 369t acromioclavicular lesion tests, Segmental fracture, of femur, 277f of lumbosacral spine 426, 426f, 426t for radiculopathy, 156, 156t, Segmental instability test, of lumbar active compression/O'Brien spine, 180, 180t, 181f 157f test, 407, 407f, 407t Segmental lesions, in thoracolumbar for spinal stenosis, 157, 158f, combined with other tests. spine, 166t 158t 427t Segmental mobility testing of thoracolumbar spine, 132 anterior drawer test, 401, 401f, of cervical spine, 100t, 101t, 102t, Sensitivity of diagnostic test, 3, 5-6, 103t 5f, 8, 11t anterior slide/Kibler test, 409, manipulation and, 119f likelihood ratios and, 7, 8t 409f, 409t

Shoulder (Continued) Shoulder (Continued) Shoulder (Continued) apprehension tests, 399-400, rotator cuff, 386, 386f, 386t strength assessment, 392, 392f, 399f, 399t nerves of, 387 392t combined with other tests, anterior axilla, 387t, 388f subacromial space palpation, 394, 394f, 394t in brachial plexus schema, 425f 378, 427t in neural tension tests, 112t, 114t, supraspinatus/infraspinatus brachial plexus palsy identification, 425, 425f, 425t muscle tear tests, 418, osteology of, 379 418f, 418t combination of tests anterior humerus and scapula, scapulohumeral rhythm of, 381, for labral tears, 427, 427f, 381f 427t 379f superior and inferior clavicle Shoulder abduction/abduction tests for SLAP lesions, 428, 428t for subacromial impingesurface, 379f for asymmetry assessment, 395t, outcome measures of, 429, 429t 396f ment, 428, 428f, 428t palpation of, 394, 394f, 394t for carpal tunnel syndrome, 499t compression rotation test, 404, patient history and, 378 for cervical spine pathology, 111, 404f, 404t Crank test, 403, 403f, 403t initial hypotheses based on, 111f, 111t 389, 389t following cervical traction, 122t, Hawkins-Kennedy test, 413, 413f, 413t physical examination of, 378t 124t labral tear tests, 411, 411t-412t, protraction of functional assessment of, 391t for brachial plexus palsy, 425t for instability, 399t, 400t, 401t 411f, 427-428 labral tear palpation, 394, 394f, in postural assessment, 96t, 106t for labral tear identification, 403t, quality assessment of diagnostic 394t 404t, 411-412t studies of, 430-435, measurement with, 390f, 390t Neer test, 414, 414f, 414t 431t, 433t, 435t in scapulohumeral rhythm, 381, patient history, 389, 389f, 389t range of motion of pectoralis minor tightness identification, 393, 393f, disorders of, classification Shoulder adduction/adduction tests based on, 397f, 397t cross-body, for subacromial im-393t functional tests of, 391, 391f, pingement identificarelocation test, 400, 400f, 400t tion, 415t-416t combined with other tests, integrated movements during, horizontal, for subacromial im-427t Speeds test, 405, 405f, 405t 381, 381f pingement identificasubacromial impingement measurements of, 378, 390, tion, 415t-416t, 416f tests, 415, 415t-416t, 390f, 390t combined with other tests, 428t for labral tear identification, 394t, 415f, 417, 428 pain during, 390t, 391t, 415tsubscapularis muscle tear tests, 416t 411t-412t reliability of examination measurement with, 390t 423, 423f, 423t supraspinatus/infraspinatus active compression/O'Brien for muscle assessments, 392t, 393t test, 406, 406f, 406t Shoulder pain muscle tear tests, 419-422, 419f, 422t anterior slide/Kibler test, 409, during cervical compression test, 409f, 409t 108f, 108t Yergason test, 408, 408f, 408t classifying disorders of, 397, disorders classification based on, dislocations of, 398f, 399t, 401t, 397f, 397t 397f, 397t 411t-412t disorders of, classification of, 397, Crank test, 402, 402f, 402t with impingement. See Subacro-397f, 397t Hawkins-Kennedy test, 413, mial impingement. 413f, 413t with instability, 399t, 400t impingement syndrome of, 393t. See also Subacromial instability tests, 398, 398f, 398t during muscle length determinaimpingement. labral tear tests, 410, 410f, 410t tion, 393t intra-articular pathology of, sub-Neer test, 414, 414f, 414t patient history in, 378, 389t pectoralis minor length deterduring range of motion, 390t, acromial impingement vs., 417, 417f mination, 393, 393f, 391t, 415t-416t ligaments of, 380f, 382, 382t 393t with scapular asymmetry, 395t anterior view of, 382f, 383f proprioception assessment, during strength assessment, 392t coronal section, 383f 392, 392t with tears. See Glenoid labral lateral view of, 383f ROM functional tests, 391, tears; Rotator cuff. 391f, 391t Shoulder Pain and Disability Index muscle tightness in, 378, 393, ROM measurements, 390, 390f, (SPADI), 429t 393t muscles of, 384 Shoulder protraction test scapular asymmetry during acfor brachial plexus palsy, 425t anterior, 385, 385f, 385t posterior, 384, 384f, 384t tivity, 395, 395f, 395t in postural assessment, 96t, 106t

Shoulder separation, 426f Soft tissue tenderness, in foot and Spinal manipulation ankle trauma, 356t Sidebending cervical, for radiculopathy, 119, of cervical spine 119f, 119t Sole in carpal tunnel tests, 499t cutaneous innervation of, 354f for low back pain, 236, 237f, 237t left vs. right, 102f fibularis longus tendon passing clinical prediction rule for, 236, to, 346f measurements of, 94f, 95t, muscles of, 349-350, 351-352 Flynn technique for, 190f, 236, deep interosseous, 352, 352f, pain during, 97t, 98f, 102t, 236f lumbosacral, 132, 188t, 189-103t 352t in neural tension tests, 112t, first layer of, 349, 349f, 349t 190, 189t, 200 second layer of, 350, 350f, 350t lumbosacral/pelvic, for low back 114t, 499t of thoracolumbar spine, 159t, third layer of, 351, 351f, 351t pain, 132, 200 168f Soleal line, of tibia, 285f classifications based on, 188t, pain during, 161, 161f, 161t Soleus muscle, 291f, 294f, 345t, 346f, Single leg hop for distance, 366t 347f, 348f, 354f combined factors of likely ben-Single leg hop test, 366f, 366t atrophy of, with herniated lumbar efits, 190, 190f, 190t Sinuvertebral nerve, lumbar disc nucleus pulposus, 157f single factors of likely benefits, herniation and, 179f length assessment of, 305t 189, 189t neurological examination of, 156t Sit to stand test, for pelvic pain, sacroiliac joint/region, as pain intendinous arch of, 249f, 347f tervention, 236, 236f, Space of Poirier, 467f Sitting 237f, 237t SPADI (Shoulder Pain and Disabilsacroiliac bony landmarks with, thoracic, for cervical radiculopaity Index), 429t 214t thy, 120, 120f, 120t sacroiliac pain relieved by, 211t Specificity of diagnostic test, 3, 5f, 6, cluster of findings, 121, 121f, for slump test, 178f, 178t 6f, 8, 11t 121t thoracolumbar pain with, 152t, likelihood ratios and, 7, 8t neck pain and, 66 Speed test Spinal nerve roots 153t for SLAP lesions, 405, 405f, 405t thoracolumbar spine ROM with, avulsions of, in brachial plexus, 159t, 168f combined with other tests, 378, 425, 425t Sitting flexion test, of sacroiliac 428t compression of joint, 231, 231f, 231t for subacromial impingement, with cervical disc herniation, combined with other 6-Meter hop for time, 366t 83f with lumbar disc herniation, Skull tests, 378, 428t lateral, osteology of, 19f Sphenoid bone, 17f, 19f, 67f 157f posterior, ligaments of, 71f spine of, 67f dorsal ganglion and, 179f superior nuchal line of, 140f, with thoracolumbar disc de-Sphenomandibular ligament, 21, 21f 141f, 142f Sphenopalatine foramen, 67f generation, 183f Sphygmomanometer cuff, in knee rami of. See Rami communitemporal lines of, inferior vs. superior, 19f assessment, 304t cantes. SLAP lesions. See Superior labrum Spinal artery thoracic, dorsal vs. ventral, 145f anterior posterior anterior vs. posterolateral, cervi-Spinal nerve trunks (SLAP) lesions. cal disc herniation and, in brachial plexus schema, 425f Slide tests 116f cervical disc herniation and, 116f anterior, for glenoid labral tears, compression of, with cervical lumbar, 146f, 148f 409, 409f, 409t fractures, 90f lumbosacral, 146f, 148f, 209f, combined with other tests, Spinal canal. See Vertebral canal. 292f, 293f Spinal column. See also Vertebrae; 427t sacroiliac region, 209f lateral, for scapular asymmetry, specific segment, e.g., thoracic, 145f, 145t, 147t 395t, 396f Lumbar spine. Spinal nerves nerves of. See Spinal nerves; SLR. See Straight-leg raise (SLR) cervical, 78-79, 78t, 79f Spinal nerve entries. test. anterior vs. posterior divisions Slump test, 178, 178f, 178t pain in. See specific location, e.g., of, 79f radicular pain with, 132, 178t, Low back pain. in brachial plexus schema, posterior view of, with associated 425f Sneezing musculature, 207f cords of, 79f posterior columns of, disc hersacroiliac pain aggravated by, Spinal cord compression, cervical with disc herniation, 116, 116f, 211t niation and, 116f thoracolumbar pain with, 152t 116t terminal branches of, 79f Snuff box, tenderness of, 481t, 482f with fractures, 90f cranial. See Cranial nerve(s).

Spinal nerves (Continued)	Splenius cervicis muscle, 76t, 77f,	Stability/instability (Continued)
groove for	140f, 141f	segmental tests for, 180, 180t,
on C4, 68f	Spondylosis, of cervical spine, 119t	181f
on C7, 68f	Sprains	of patella, 284, 321, 321f, 321t
intervertebral foramina for, 69f	of ACL, degrees of, 315f	scapulohumeral rhythm and, 381,
lumbar, 146-147, 148	acromioclavicular joint, 389t	381f
anterior vs. posterior divisions	cervical, 80t	of shoulder, 389t
of, 146f, 148f	foot and ankle, 355t, 372, 372f	testing for, 378, 398-399, 400-
motor. See Motor innervation.	hip and pelvis, 254t	401
sacroiliac region, 207, 208t, 209,	Spring ligament, 342f, 342t, 343t,	of wrist and hand
209f	344f, 352f	carpal tests for, 500, 500f, 500t
anterior vs. posterior divisions	Spring test	patient history in, 478t, 480f
of, 209f	of cervical spine, posteroanterior,	Stabilization exercises, lumbar, for
sensory. See Sensory innervation.	102t, 103f, 103t	low back pain, 132, 191,
thoracic, 145. See also Thoracic	of sacroiliac joint, 228, 228f,	191t, 236
nerve.	228t	classifications based on, 188t
Spinal stenosis. See Lumbar spinal	of thoracolumbar spine, 167t	Stance
stenosis.	Springing test, of 1st rib, for shoul-	calcaneal, relaxed vs. neutral
Spinalis cervicis muscle, 141f	der ROM, 391t	measurement of, 360f,
Spinalis thoracis muscle, 141f, 141t	Spur formation, in degenerative disc	360t
Spine. See specific anatomy e.g., Is-	disease, 183f	characteristic
chial spine.	Spurling's test(s), 66	with hip osteoarthritis, 267f,
Spinothalamic tract, lateral, cervical	combined with other tests, 117,	267t
disc herniation and, 116f	117t	with pelvic pain, 272t
Spinous processes	diagnostic utility of, 109f, 109t	Standing
of cervical vertebrae, 69f	A and B, 109f, 109t	sacroiliac bony landmarks with,
axis, 68f, 140f, 142f	reliability of	214t, 215f
C4, 68f	A and B, 108f, 108t	sacroiliac pain relieved by, 211t
C7, 68f, 71f, 140f, 141f, 142f,	to the right vs. left, 108f, 108t	thoracolumbar pain with, 152t,
384f	Square-shaped wrist, in carpal tun-	153t, 161f, 161t
tenderness with palpation of,	nel syndrome, 490t	thoracolumbar spine ROM with,
104t, 105t	Squat test	159t, 160f
of lumbar vertebrae, 133f, 136f, 138f	double leg, 370t	Standing flexion test, of sacroiliac
in sacroiliac motion assessment,	for hip and pelvis, 244, 255t combined with other tests,	joint, 230, 230f, 230t, 235
226t	278t	Static alignment
in scoliosis pathology, 164f	pain, 272t	of foot and ankle, 336
of thoracic vertebrae, 133f, 138f	deep, 272t	of shoulder, 395, 395t, 396f
in shoulder asymmetry assess-	for meniscal tears, 323t	of thoracolumbar spine, 166t
ment, 395t	single leg, 370t	Static pain test, of temporomandib-
T7, 134f	Squeeze test, for ankle trauma, 356t,	ular joint, 48t
T9, 134f	357f	Statistics, related to diagnostic accu-
T12, 140f, 141f, 384f	Stability/instability	racy, 11-12, 11t
in ROM assessment, 160f	of cervical spine, 80t, 115, 115f,	population characteristics in, 3, 8
tenderness with palpation of,	115t	statistical significance, 8
105t	of elbow and forearm, 449t	Steinmann test, for meniscal tears,
of thoracolumbar vertebrae	of foot and ankle, 365-366, 365f,	322t, 323t
in palpation examination,	365t, 366f, 366t	Stenosis, spinal. See Lumbar spinal
172t	after sprains, 355t, 372, 372f	stenosis.
in passive intervertebral mo-	of hip, 244	Step up test, for pelvic pain, 272t
tion examination, 165t,	of knee, with valgus stress, 316t,	Sternal end, of clavicle, 379f
166t, 167t	322t	Sternal facet, of clavicle, 379f
Spiral fracture, of femur, 277f	of lumbar spine, 149t	Sternoclavicular joint, 136t, 380f
Splanchnic nerve	clinical prediction rule for, 185,	articular cavities of, 380f
greater vs. lesser, 145f	185f	articular discs of, 380f
pelvic, 148f, 208t, 209f	dynamic "corset" concept of,	integrated movements of, 381,
sacral, 209f	143f	381f
Splenius capitis muscle, 76t, 77f,	radiographic tests for, 184-185,	Sternoclavicular ligament, 382t
140f, 141f, 384f	184t, 185f	anterior, 380f

Sternocleidomastoid (SCM) muscle, Subacromial bursitis, 415t-416t, 422t Subscapularis muscle, 383f, 386f, Subacromial impingement 72f, 72t, 77f, 140f, 385f, combination of tests for, 428, 388f tears of, 378, 418f, 423, 423t, 424f clavicular head of, 72f 428t Subscapularis tendon, 382f, 383f, 386f Hawkins-Kennedy test for, 378, subtendinous bursa of, openings sternal head of, 72f tenderness with palpation of, 104t 413, 413f of, 383f Sternocostal articulations, 136t intra-articular pathology vs., 417, Subtalar joint, 339f, 339t 417f in alignment assessment, 362t, anterior view of, 134f Sternocostal joint, 380f Neer test for, 378, 414, 414f, 414t 364t Sternocostal ligaments patient history in, 389t in motion assessment, 367t intraclavicular, 134f rotator cuff tears and, 422t ROM measurements of, 359t, radiate, 134f, 137t, 380f testing for, 378 360f Sternohyoid muscle, 24f, 72f various tests for, 415, 415-416t Subtendinous (deep) bursa median, 73f, 74t Subacromial space of gastrocnemius muscle Sternothyroid muscle, 72f, 73f, 74t pain syndrome of, 397t lateral, 286f, 287f Sternum, 73f, 385f palpation of, 394, 394f, 394t medial, 287f Subclavian artery, 75f, 388f body of, 201f inferior, 289f Subclavian groove, of clavicle, 379f manubrium of, 72f biceps femoris tendon and, 291f Subclavian muscle, groove on clavi-Stethoscope, for auscultation, of infrapatellar, 286f cle for, 379f medial head of, 287f TMJ, 40f Straight-leg raise (SLR) test Subclavian vein, 75f, 388f of subscapularis tendon, 383f Subclavicular dislocation, of shoulopenings of, 383f for lumbar radiculopathy, 132, 175f der, 398f of supraspinatus tendon, 382f cervical flexion for sensitizing, Subclavius muscle, 380f, 388f communications of, 382f 175f crossed, 132, 177, 177f, 177t nerve to, 78t, 79f of tendocalcaneus, 346f diagnostic utility of, 176, 176f, Subcoracoid dislocation, of shoul-Sulcus sign, of shoulder instability, der, 398f 176t combined with other tests, 427t reliability of, 175, 175f, 175t Subcostal nerves for lumbar segmental instability, of lumbar spine, lateral branch of, Superficial dissection 180t, 191t 148f of hip and thigh muscles, 248t of wrist and hand muscles, 470f for muscle length assessment, 305t of thoracic spine, 145f, 145t, 146f, for pelvic pain assessment, 260t, 147t, 148f Superior labrum anterior posterior 272t Subcutaneous bursa (SLAP) lesions for sciatic pain, 176t infrapatellar, 286f active compression/O'Brien test Strains, muscle prepatellar, 286f for, 406-407, 406f, 406t, Subdeltoid bursa, 383f cervical, 80t hamstring, 254t Subglenoid dislocation, of shoulder, combined with other tests, 427t 398f in hip and pelvis, 254t anterior slide/Kibler test for, 409, Strength testing. See Muscle Sublingual fossa, 18f 409f, 409t Sublingual gland, 25f, 26f strength. combination of tests for, 428, 428t Strengthening exercises Sublingual nerve, 26f compression rotation test for, 404t for cervical spine, 118t, 123t, 124t Subluxations palpation of, 394t knee pain and, 326t of patella, 295t, 310f Speeds test for, 405, 405f, 405t Stress test of talus, anterior, 372f various tests for, 378, 410-411, adduction, of knee Submandibular fossa, 18f 410t, 411t-412t end-feel with, 302t Submandibular ganglion, 26f Yergason test for, 408, 408f, 408t Submandibular gland, 72f pain during, 303t Superior view compression, of foot and ankle, and duct, 25f, 26f of atlas, 68f 358f, 358t Suboccipital muscles, length assessof C4 vertebra, 68f Stylohyoid ligament, 17f, 67f ment of, 107t of C7 vertebra, 68f Stylohyoid muscle, 24f, 24t, 25f, 26f, Suboccipital nerve, 71f, 77f of cervical disc herniation, 116f Subpopliteal recess, 288f of cervical spine ligaments, 70f 72f, 73f, 74t Subscapular artery, 388f Styloid process, 24f, 67f, 73f, 75f of costovertebral joints, transof mandible, 21f Subscapular fossa, 379f verse section, 135f Subscapular nerve of radius, 444f, 463f of costovertebral ligaments, transof ulna, 444f, 463f lower vs. upper, 78t, 79f, 387t, 388f verse section, 137f in brachial plexus schema, 425f of mandible, anterolateral, 18f Stylomandibular ligament, 17f, 21, 21f. 67f middle, 71t, 78t, 79f, 388f of rotator cuff muscles, 386f Subacromial bursa, 383f, 415t-416t in brachial plexus schema, 425f of T6 vertebra, 133f

Supmation measurement/tests	Surai nerve, 2941, 3531, 3541	11 vertebra (Commuea)
of elbow, 451, 451f, 451t	communicating branches of, 294f	osteology of, 17f, 67f
for cubital tunnel syndrome,	cutaneous. See Sural cutaneous	tenderness with palpation of, 105t
454f, 454t	nerve.	in upper limb dermatomes, 85f, 86t
of forearm, for carpal tunnel syn-	lateral calcaneal branches of, 294f,	T2 vertebra
drome, 499t		
	347f, 354f	in kyphosis, 106t, 163t
of shoulder, for labral tears, 407t,	muscular branches of, 347f	nerves of, 79f
408t, 411t-412t	Sustentaculum tali, 337f, 338f, 342f,	tenderness with palpation of, 105t
of wrist and hand	344f	in zygapophyseal pain referral
for carpal tunnel syndrome,	Swelling	pattern, 151f
498f, 498t	in foot and ankle	T3 vertebra
median nerve and, 501t	impingement sign with, 370t	in kyphosis, 106t, 163t
for scaphoid fractures, 481t	measurement of, 368, 368f, 368t	tenderness with palpation of, 105t
Supinator muscle, 445f, 446f, 447,	in trauma screening, 356t	in zygapophyseal pain referral
1		
447f, 447t, 448f	in knee	pattern, 151f
innervation of, 477f	patient report of, 295t, 296t,	T4 vertebra
Supracondylar fracture, of femur,	297t, 300t	in kyphosis, 106t, 163t
transverse, 298f	in trauma screening, 300, 300t	in zygapophyseal pain referral
Supracondylar ridge, of humerus,	in wrist and hand	pattern, 151f
medial vs. lateral, 379f,	measurement of, 491, 491f, 491t	T5 vertebra
380f, 441f	patient report of, 478t, 479t	in kyphosis, 106t, 163t
Supraglenoid tubercle, of scapula,	in trauma screening, 482f	in zygapophyseal pain referral
379f	Sympathetic nerves	pattern, 151f
Supraorbital notch (foramen), of	of lumbar spine, 146f, 148f	T6 vertebra
*		
frontal bone, 19f	of sacroiliac region, 209f	in kyphosis, 106t, 163t
Suprapatellar fat body, 286f	of thoracic spine, 145f	osteology of
Suprapatellar synovial bursa, 286f,	Symphyseal surface, of hip bone,	lateral view of, 133f
288f	203f, 245f	superior view of, 133f
Suprascapular nerve, 78t, 79f, 386t,	Synchondrosis	in zygapophyseal pain referral
387t, 388f	of 1st rib, 380f	pattern, 151f
upper vs. lower, 386t	manubriosternal, 380f	T7 vertebra
Suprascapular notch, 379f, 380f,	Syndesmotic ligaments, 356t	arthrology of, 134f
382f, 386f	Synovial bursa, suprapatellar, 286f,	in kyphosis, 106t, 163t
Suprascapular tenderness, with pal-	288f	spinous processes of, 134f
pation, 104t	Synovial cavities	in zygapophyseal pain referral
Supraspinatus muscle, 140f, 383f,	costovertebral, 137f, 380f	pattern, 151f
384f, 386f, 386t	of thoracic vertebrae, 135f	T8 vertebra
tears of, 418, 418f, 418t, 419-422,	Synovial fold, infrapatellar, 288f	arthrology of, 134f
419f, 422t	Synovial joint, of sternum, 380f	in kyphosis, 106t, 163t
Supraspinatus tendon, 382f, 383f, 386f	Synovial membrane	in zygapophyseal pain referral
subtendinous bursa of, 382f	of acetabular fossa, 247f	pattern, 151f
communications of, 382f	of elbow, 442f	T9 vertebra
Supraspinatus tests, of rotator cuff	of femur	arthrology of, 134f
tears, 422t	line of attachment of, 245f, 285f	in kyphosis, 106t, 163t
Supraspinous fossa, 380f	line of reflection of, 245f, 285f	transverse process of, 134f
		-
notch connecting, 380f	of knee, 286f, 288f	in zygapophyseal pain referral
Supraspinous ligament, 206f	protrusion of, in hip, 247t	pattern, 151f
of cervical spine, 71t	of shoulder, 383f	T10 vertebra
of thoracolumbar spine, 138f, 138t	Synovitis, of knee, 324t	in kyphosis, 106t, 163t
Suprasternal space, 72f	т	in zygapophyseal pain referral
Sural cutaneous nerve	Т	pattern, 151f
lateral, 294f, 353f, 354f	T1 vertebra	T11 vertebra
branches of, 348f, 353f, 354f	arthrology of, 69f, 71f	osteology of, 201f
phantom, 353f	in kyphosis, 106t, 163t	in zygapophyseal pain referral
lateral calcaneal nerve from, 350f	limited and painful passive mo-	
	tion of, 100t, 101t	pattern, 151f
medial, 294f, 354f		T12 vertebra
from sciatic nerve, 294f	nerves of, 78t, 79f, 445t, 447t,	nerves of, 146f, 147t, 148f, 293f
via lateral dorsal cutaneous	471t, 473t, 476t, 477t	osteology of, 201f
branch, 353f	brachial plexus schema, 425f	lateral view of, 133f

T12 vertebra (Continued) Temporal lines, of parietal bone, in-Temporomandibular joint (TMJ) spinous process of, 140f, 141f, 384f ferior vs. superior, 19f (Continued) in ROM assessment, 160f night occlusal stabilization splint Temporal nerve, deep Talar tilt test, for ankle instability, anterior vs. posterior, 26f for, 58f 372, 372f from mandibular nerve, 22t predicting failure with, 59, 59f, Talocalcaneal ligaments Temporalis muscle, 22f, 22t, 26f interosseous, 341f, 341t insertion into coronoid process of predicting success with, 58, lateral, 341f mandible, 22f 58f, 58t medial, 342f, 342t in physical examination, 34t, 35f, osteoarthritis in, 31, 33t, 41t posterior, 340f, 340t, 342f 36f, 37t, 38t osteology of, 17 Talocalcaneonavicular joint, 339f, pressure pain threshold of, 38t head and neck, 17f 339t Temporomandibular joint (TMJ), mandible, 18f Talocrural joint, 339f, 339t 15-64 skull, 19f Talofibular ligaments arthrology of, 20 outcome measures of, 60 anterior, 341f, 341t jaw closed, 20, 20f palpation of, 16t, 31t, 34, 36f in physical examination, 356t jaw slightly opened, 20f conditions identified by, 37, 37t tears of, 372f jaw widely opened, 20f extraoral, 34t clinical summary and recommenposterior, 340f, 340t, 341f, 341t intraoral, 34t Talonavicular ligament, dorsal, 341f, dations, 16-62 lateral, 35t, 36f, 37t 341t, 342f diagnostic utility of examination muscle, 34 Talus, 337f, 340f anterior disc displacement, 45posterior, 35t, 36f, 37t anterior subluxation of, 372f 46, 45f, 45t, 46f, 46t pressure pain thresholds, 38, 38t with reduction, 54, 54f, 55f, groove for flexor hallucis longus regional, 35 tendon on, 338f tests, 36f head of, 337f, 338f without reduction, 56, 56f, patient history and, 16, 27-30 lateral process of, 337f 57f, 57t anterior disc displacement, 21, neck of, 337f, 338f conditions with clicking, 40, in physical examination, 364t, 372f 40f, 40t initial hypotheses based on, 27, posterior process of, 337f, 338f, conditions with crepitus, 41, 27t 342f 41f, 41t oral habits, 27 report of pain, 28, 28f, 28t, 30, medial and lateral tubercles, 344f conditions with pain during trochlea of, 337f, 338f dynamic movements, tubercles of, lateral vs. medial, 50-51, 50f, 50t, 51f, 51t physical examination of, 16t, 34-59 338f, 344f conditions with palpation, 37, quality assessment of diagnostic Tarsal arteries, lateral vs. medial, 37f, 37t studies, 61-62, 61t, 62t 348f, 352f lower extremity measurements, range of motion of, 16t, 31t Tarsal joint, transverse, 337f, 338f, 53, 53f, 53t examination of, 42-43, 43t, 44-339f, 339t patient history, 21, 29-30, 29f, Tarsal sinus, 337f, 338f 30f reliability of examination Tarsal tunnel syndrome, 355t pressure pain thresholds, 38, compression test, 52, 52f, 52t 38f, 38t Tarsometatarsal joints, 337f, 338f, joint play and end-feel assess-339f, 339t RDC/TMD diagnoses, 33f, 33t ment, 44, 44f, 44t Tarsometatarsal ligaments disorders of, diagnostic criteria joint sounds during active modorsal, 341f, 341t, 342f, 352f for, 31-32, 33 tion, 39, 39f, 39t plantar, 343t, 344f dynamic movements of, 16t joint sounds during joint play, Tears. See specific anatomy, e.g., Meexamination of, 46-47, 48-49, 39, 39t niscus tears. 50-51 lower extremity measurements, Tectorial membrane, 70f, 70t interventions for, 16 53, 53f, 53t deeper (accessory) part of, 70f occlusal stabilization splint as, mandibular opening with dif-Temporal artery, posterior deep, 58-59, 58f ferent head positions, groove on temporal joint sounds in, 16t, 31t 44, 44f, 44t bone for, 19f examination of, 39-40, 41 mouth opening measurements, Temporal bone, 17f, 19f, 67f ligaments of, 21, 21f 34-59, 42f, 42t, 57t in anterior disc displacement, 32f muscles of, 22, 35f pain during dynamic movesquamous part of, 19f floor of mouth, 24 ments, 47, 47f involved in mastication, 22, Temporal fascia, 22f, 26f pain during joint play, 49, 49f, deep vs. superficial layer of, 22f 23f Temporal fossa, 17f, 67f nerves of, 26 pain during muscle palpation, of parietal bone, 19f mandibular, 26, 26f 34, 34f, 34t

(Continued) paid ultring regional palpation, 35, 35f, 35t paid ultring resistance tests, 48, 48f, 48f 27e, 28, 28f, 38 (RDCTMD diagnoses, 33f, 33t ROM measurements, 43, 43f, 43f 34, 43f, 43f, 43f 32, 23 (LTTE) Research Diagnostic Criteria for, 31, 32, 33 (LTTE) anterior disc displacement, 32f arthrosis, 32f diagnostic utility of, 33f, 33t examination procedures, 31f reliability of, 33f, 33t examination procedures, 31f resisting immuscle, 26f Tensor tympani nerve, 26f Tensor tympani muscle, 26f Tensor tympani muscle, 23f, 38f, 38f, 38f, 38f, 38f, 38f, 38f, 3	Temporomandibular joint (TMJ)	Tennis elbow	Thigh thrust test, 200, 217, 221f
35, 35, 351 paid utring resistance tests, 48, 48f, 48t patient history, 27-28, 28f, 28t, 48t, 48t, 48t, 48t, 48t, 48t, 48t, 4	(Continued)	grip strength with, 452, 452t	combined with other tests, 233t,
pain during resistance tests, 48, 48f, 48f patient history, 27-28, 28f, 28t, 28t, 28t, 28t, 28t, 28t, 30 ROCTMD diagnoses, 33f, 33t ROM measurements, 43, 43f, 43f, 43f, 43f, 43f, 43f, 43f,	pain during regional palpation,	mobilization interventions for,	235
pain during resistance tests, 48, 48f, 48f patient history, 27-28, 28f, 28t, 28t, 28t, 28t, 28t, 28t, 30 ROCTMD diagnoses, 33f, 33t ROM measurements, 43, 43f, 43f, 43f, 43f, 43f, 43f, 43f,	35, 35f, 35t		diagnostic utility of, 217f, 217t
patient history, 27-28, 28f, 28f, 28f, 28f, 28f, 28f, 28f, 2		patient history in, 449t	
patient history, 27-28, 28f, 28f, 38f, 30 (Act, 98f, 497f, 498f, 497f, 4			
RDC/TMD diagnoses, 33f, 33f ROM measurements, 43, 43f, 43f Research Diagnostic Criteria for, 31-32, 33 anterior disc displacement, 32f arthrosis, 32f diagnosts cutility of, 33f, 331 examination procedures, 31t reliability of, 33f, 33t examination procedures, 33t reliability of, 33f, 33t examinati	patient history, 27-28, 28f, 28t,		•
RDC/TMD diagnoses, 336, 331 Research Diagnostic Criteria for, 31-32, 33 anterior disc displacement, 32f diagnostic utility of, 33f, 33t examination procedures, 31t examination procedures, 31t erilability of, 33f, 33t Temporomandibular pain diagnostic criteria for, 31 during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 during plapation, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28f, 60t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 244f, 346f, 347f ruptures of, 355t rendons of foot and ankle, 337f, 340f, 341f, 342f, 244f, 346f, 347f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 288f, 289f, 291f of lateral hip, identifying pathology of, 266e 267, 266t, 267f of leg, 347f of neck, 24f, 25f, 72f, 73f of sacroliac region, 200f of shoulder, 382f, 383f, 383f, 386f temporomandibular piont, 24f, 24t, 25f, 34t of thigh, 251f of thoracolumbar spine, 141f, 142f of wirst and hand, 448f, 465f, 47ff, 469f, 470f, 471f, 467f, 469f, 470f, 471f, 475f, 476f, 469f, 470f, 471f, 475f, 476f, 476f		•	for hip flexor contracture, 269,
Research Diagnostic Criteria for, 31-32, 33 anterior disc displacement, 32f arthrosis, 32f arthr	RDC/TMD diagnoses, 33f, 33t		=
Research Diagnostic Criteria for, 31-32, 33 anterior disc displacement, 32f arthrosis, 32f diagnoses list, 31 diagnostic utility of, 33f, 33t examination procedures, 31t reliability of, 33f, 33t examination procedures, 31t resor viting palatini muscle, 23f, 22f Temporomandibular ligament, 21, 21f Temporomandibular pain diagnostic criteria for, 31 during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 diagnostic criteria for, 33t during palaption, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, e.g., loint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 344f, 346f, 347f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 286f, 287f, 286f, 287f, 267t of leg, 347f of neck, 24f, 25f, 72f, 73f of sacroiliac region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24f, 25f, 34t of they, 251f of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 467f, 469f, 470f, 471f, 471f, 469f, 470f, 471f, 471f, 469f, 470f, 471f, 471f, 469f, 470f, 471f, 471			
Research Diagnostic Criteria for, 31-32, 33 anterior disc displacement, 32f arthrosis, 32f arthrosis, 32f diagnoses list, 31 diagnostic utility of, 33f, 33t examination procedures, 31t reliability of, 33f, 33t examination procedures, 31t reliability, 33f, 33t examination procedures, 31t reliability, 38f, 386f examination, 3			
31-32, 33 anterior disc displacement, 32f arthrosis, 32f diagnostic utility of, 33f, 33t examination procedures, 31t reliability of, 33f, 34t ress minor muscle, 140f, 384f, 386t Teres minor muscle, 140f, 384f	·		
anterior disc displacement, 32f diagnoses list, 31 diagnostic utility of, 336, 331 treliporomandibular ligament, 21, 21f Temporomandibular pain diagnostic criteria for, 31 during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 during palpation, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28f, 60t Tenderness. See Pain; specific anatony, e.g., Joint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 3894, 422f Truptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 267t of esc, 24f, 25f, 72f, 73f of sacrolliar region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24t, 25t, 34t of thigh, 251f of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 446f, 450f, 470f, 471f, 469f, 440f, 470f, 471f, 460f, 470f, 470f, 471f, 460f, 470f, 471f, 470f, 460f, 470f, 471f, 460f, 470f, 471f, 460f, 470f, 471f, 470f, 470f			
arthrosis, 32f diagnostic utility of, 33f, 33t examination procedures, 31t reliability of, 33f, 34s fensor well palatini muscle, 23f, Tensor vell palatini nerve, 26f Terses migor muscle, 140f, 384f, 386t, 388f Teres minor muscle, 140f, 384f, 386t, asself exes of, 242t ters minor tendon, 33f, 386f Terses minor tendon, 33f, 386f ters minor tendon, 33f, 386f Terses minor tendon, 33f, 386f ters minor tendon, 38f, 386f Terse minor tendon, 38f, 386f Terses minor tendon, 38f, 386f ters minor tendon, 38f, 386f Terses minor tendon, 3			
diagnostic utility of, 33f, 33t examination procedures, 31t reliability of, 33f, 33t Temporomandibular ligament, 21, 21f Temporomandibular pain diagnostic criteria for, 31 during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 during palpation, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, e.g., Joint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 344f, 346f, 347f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 289f, 291f of lateral hip, identifying pathology of, 266-267, 266t, 267t of leg, 347f of ascaroliliar region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t of tishp, 251f of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 466f, 460f, 490f, 470f, 471f, Tensor tympani muscle, 26f Tensor vell palatini muscle, 23f, Tensor vell palatini erve, 26f Teres major muscle, 140f, 384f, 386t, 388f Teres minor muscle, 140f, 384f, 386t, 386f Teres minor muscle, 140f, 384f, 386t, Teres minor tendon, 383f, 386f Teres minor muscle, 140f, 384f, 386t, Tensor vell palatini muscle, 23f Tensor vell palatini muscle, 23f Teres minor muscle, 140f, 384f, 386t, Tensor vell			
diagnostic utility of, 33f, 33t remporomandibular ligament, 21, 21f Temporomandibular pain diagnostic criteria for, 31 during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 during dynamic, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, e.g., Joint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 344f, 344f, 344f, 347f ruptures of, 555t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 289f, 291f of lateral hip, identifying pathology of, 266-267, 266t, 267t of eley, 347f of esck, 24f, 25f, 72f, 73f of sacroiliae region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of throacolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 470f, 471f, Tensor tylip palatini muscle, 23f, 23f, 384f Tensor veli palatini merve, 26f Teres minor tuscle, 140f, 384f, 386f, 386f Teres minor tuscle, 140f, 384f, 386f, 386f Teres minor tuscle, 140f, 384f, 386f, 386f Teres minor tundon, 383f, 386f Teres minor tuscle, 140f, 384f, 386f, 386f Teres misor, 28f, 386f Teres misor, 28f, 386f Teres misor, 28f, 386f Teres			
examination procedures, 31t reliability of, 33f, 33t 32f Temporomandibular ligament, 21, 21f Temporomandibular pain diagnostic criteria for, 31 during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 diagnostic criteria for, 33t during palpation, 34 reting scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, e.g., Joint line tenderness. See Pain; specific anatomy, bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 344f, 346f, 347f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of lateral hip, identifying pathology of, 266-267, 266t, 267t of shoulder, 382f, 338f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of thoracolumbar spine, 141f, 142f of wist and hand, 448f, 465f, 467f, 470f, 471f, 467f, 476f, 470f, 471f, 467f, 476f, 470f, 471f, 467f, 470f, 471f, 467f, 476f, 470f, 471f, 467f, 476f, 470f, 471f, 467f, 476f, 470f, 471f, 50t pain referral, 149t, 150f Tendoral and land, 448f, 465f, 467f, 470f, 471f, 50t pain referral, 149t, 150f Tendoromandibular ligament, 21, 21f rees minor muscle, 140f, 384f, 386t, 386t, 386f, 386t tears of, 422t tears of, 422t tears of, 422t tears of, 422t tendons of the more muscle and the standard provential place and provential place and the standard provential place and the standard provential place and the standard provential place and the place and the standard provential place and the place and the pla			=
reliability of, 33f, 33f, 33f Temporomandibular ligament, 21, 21f Temporomandibular pain diagnostic criteria for, 31 during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 during palpation, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, e.g., Joint line tenderness. See Pain; specific anatomy, e.g., Pain, e.g., Pa			
Temporomandibular ligament, 21, 21f Temporomandibular pain diagnostic criteria for, 31 during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 diagnostic criteria for, 33t during palpation, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, e.g., Joint line tenderness. Pains, specific anatomy, e.g., Joint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 344f, 346f, 347f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 289f, 291f of lateral hip, identifying pathology of escavoliar gaps and solves of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of throacolumbar spine, 141f, 142f of thigh, 251f of wrist and hand, 448f, 465f, 467f, 469f, 470f, 471f, of merical and hand, 448f, 465f, 467f, 469f, 470f, 471f, of merical and hand, 448f, 465f, 467f, 469f, 470f, 471f, of merical and hand, 448f, 465f, 467f, 469f, 470f, 471f, of merical and hand, 448f, 465f, 467f, 469f, 470f, 471f, of merical and hand, 448f, 465f, 467f, 469f, 470f, 471f, of merical manufacture and hand, 448f, 465f, 467f, 469f, 470f, 471f, and the search of the processes of inferior vs. Tensor veit palatini nerve, 26f Teres minor muscle, 140f, 384f, 384f, 384f, 384f, 386f Teres minor muscle, 140f, 384f, 384f, 384f Teres minor muscle, 140f, 384f, 384f, 384f Teres minor muscle, 140f, 384f, 384f Teres minor muscle, 140f, 384f, 384f Teres minor tendon, 383f, 386f Test silvocation, 383f, 386f Test silvocation, 383f, 386f Test silvocation, 383f, 386f Teres minor tendon, 383f, 386f Test solves, 184f, 221 Tendom of test of matomy, disorder, or component. Tetherd median nerve test, 501t Thenar eminence in carpal compression test, 498t impact of fall on, 482f Thenar muscles, innervation of, 224f Thenar muscles, innervation of, 225f Thenar muscles, innervation of, 225f Test(
Temporomandibular pain diagnostic criteria for, 31 during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 diagnostic criteria for, 33t during palpation, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, edgeness. See P			
Temporomandibular pain diagnostic criteria for, 31 during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 diagnostic criteria for, 33t diagnostic criteria for, 33t diagnostic criteria for, 33t during scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, disorder, or component. Tethered median nerve test, 501t Thenar eminence in carpal compression test, 49st impact of fall on, 482 f Thoracic outlet syndrome, 389t			
diagnostic criteria for, 31 during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 diagnostic criteria for, 33t during palpation, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy omy, e.g., Joint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 344f, 346f, 347f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 289f, 291f of lateral hip, identifying pathology of, 266-267, 266t, 267t of leg, 347f of enck, 24f, 25f, 72f, 73f of escroliiac region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24f, 25f, 34t of thigh, 251f of thigh, 251f of wrist and hand, 448f, 465f, 467f, 469f, 470f, 471f, Teres minor muscle, 140f, 384f, 386f, 386t tears of, 422t Teres minor tendon, 383f, 386f Test(s)/testing. See specific eate or under specific anatomy, disorder, or component. Tethered median nerve test, 501t Thenar eminence in carpal compression test, 498t impact of fall on, 482f Thenar muscles, 140f, 384f tears of, 422t Teres minor tendon, 383f, 386f Test(s)/testing. See specific eate or under specific anatomy, disorder, or component. Tethered median nerve test, 501t Thenar eminence in carpal compression test, 498t impact of late of have a favore test or under specific anatomy, disorder, or component. Tethered median nerve test, 501t Thenar eminence in carpal compression test, 498t impact of all on, 482f Thenar muscles, innervation of, 474f, 475f, 476f Thessaly test, of knee, 284 for meningael branch of, 145f subcostal branches of, 145f, 145t, 145		-	
during dynamic movements, 47 conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 diagnostic criteria for, 33t during palpation, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28f, 60t Tenderness. See Pain; specific anatomy, e.g., Joint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389f, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 342f, 344f, 346f, 347f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 291f of lateral thip, identifying pathology of, 266-267, 266t, 267t of neck, 24f, 25f, 72f, 73f of eacrolliae region, 206f of shoulder, 382f, 343f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of thigh, 251f of wrist and hand, 448f, 465f, 469f, 470f, 471f, 467f, 469f, 470f, 471f, 475f, 476f Teres minor tendon, 383f, 386f Test(s)/testing, See specific test or under specific anatomy, disorder, or component. Tethered median nerve test, 501t Thenar eminence in carpal compression test, 498t im bractatory, disorder, or component. Tethered median nerve test, 501t Thenar eminence in carpal compression test, 498t impact of fall on, 482f Thoracic outlet syndrome, 389t Thoracic spine arting cales for, 284, 298t in bractal plexus schema, 425f sensory ganglion of, 145f subcostal branche of, 145f, 45t, Thoracic outlet syndrome, 389t Thoracic spine arting cales for component. Tethered median nerve test, 501t Thenar eminence in carpal compression test, 498t impact of fall on, 482f Thenar eminence in carpal compression test, 498t impact of fall on, 482f Thoracic outlet syndrome, 389t Thoracic spine arting cales for, 284, 425f sensory ganglion of, 145f subcostal branche of, 145f, 145t, Thoracic spine arting cales for, 284, 98t thoracic spine arting cales for, 284, 284, 294f Thoracic ve			
conditions identified by, 50-51 joint play and, 49 resistance tests, 48 myofascial, 31 diagnostic criteria for, 33t during palpation, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, desorder, or component. Tenderness. See Pain; specific anatomy, disorder, or component. Tendoral caneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 344f, 346f, 347f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 291f of lateral hip, identifying pathology of, 266-267, 266t, 267t of leg, 347f of enck, 24f, 25f, 72f, 73f of escarolitae region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24f, 25f, 34t of thigh, 251f of thigh, 251f of thoracolumbar spine, 141f, 142f of throacolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 467f, 469f, 470f, 471f, Terms minor tendon, 383f, 388f Terest minor tendom, 383f, 388f Test(s)/testing, See specific test or under specific anatomy, disorder, or component. Tethered median nerve test, 501t Thenar eminence in carpal compression test, 498t in brachial plexus schema, 425f meningeal branch of, 145f subcostal branches of, 145f, 145f, Thoracic outlet syndrome, 389t Thoracic syndrome, 389t Thoracic outlet syndrome, 369t Thoracic syndrome, 389t Thoracic outlet syndrome, 36t Isf, 427f, 476f Tests, 476f Tost, 475f, 476f Tests, 479f, 476f Thoracic vertes of, 24			
resistance tests, 48 resistance test, 48 resistance test, 48 resistance tests, 48 resistance tests, 48 resistance, 145f, 45f, 45f, 416f, 145f, 415f, 4			
resistance tests, 48 myofascial, 31		· · · · · · · · · · · · · · · · · · ·	
myofascial, 31 diagnostic criteria for, 33t during palpation, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, addrenses. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 286f, 287f, of neck, 24f, 25f, 72f, 73f of sleg, 347f of of leg, 347f of neck, 24f, 25f, 72f, 73f of sacroiliac region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 467f, 469f, 470f, 471f, myofascial, and isorder, or component. disorder, or component. disorder, or component. disorder, or component. disorder, or component. 146f, 147t, 148f Thoracic outlet syndrome, 389t Thoracic outlet syndrome, 389t Thoracic spine arthrology of, 134 1st, 136t 2nd-7th, 136t joint classifications, 136t fascia of, 140f, 141f, 142f joint classifications, 136t fascia of, 140f, 141f, 142f of the port outlet syndrome, 389t Thoracic spine arthrology of, 134 1st, 136t 2nd-7th, 136t joint classifications, 136t fascia of, 140f, 141f, 142f joint classifications, 136t fascia of, 140f, 141f, 144f postural rates, 220f, 225t classifications, 136t fascia of, 140f, 141f,	,		
diagnostic criteria for, 33t during palpation, 34 Tethered median nerve test, 501t patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, e.g., Joint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 344f, 346f, 347f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 289f, 291f of lateral hip, identifying pathology of, 266-267, 266t, 267t of leg, 347f of neck, 24f, 25f, 72f, 73f of sacroiliac region, 206f of shoulder, 382f, 344f, 465f, 446f, 469f, 470f, 471f, of wrist and hand, 448f, 465f, 467f, 469f, 470f, 471f, dispatch remains nerve test, 501t Thenar eminence in carpal compression test, 498t impact of fall on, 482f Thenar eminence arthrology of, 134 1st, 136t 2nd-7th, 136t 2nd-7th, 136t 2nd-7th, 136t subcoatal branches of, 145f, 145f, 147f, 148f Thoracic outlet syndrome, 389t Thoracic outlet syndre in thence of the search of 184 legs and 196			
during palpation, 34 patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, e.g., Joint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 344f, 346f, 347f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 286f, 287f, 267t of leg, 347f of neck, 24f, 25f, 72f, 73f of sacroiliac region, 206f of shoulder, 382f, 344f, 24f, 24f, 24f, 25f, 34t of thigh, 251f of thoracolumbar spine, 141f, 142f of of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 467f, 469f, 470f, 471f, patient report of, 28, 30, 30t Thenar eminence in carpal compression test, 498t in pale compression test, 498t in pale compression test, 498t in pale compression test, 498t in carpal compression test, 498t in carpal compression test, 498t in carpal compression test, 498t in pale compression of, 248t kyphosis of, 163t postural assessment for, 106f, 48t, 135t, 136t 2nd-7th, 136t 2nd-7th, 136t 2nd-7th, 136t 4scai antriology of, 134 1st, 136t 2nd-7th, 136t 4scai antriology of, 2ad-7th, 136t postural assessment for, 106f, 48t, 252f, 248t 292f, 293f postural assessment for, 106f, 147t, cost	•		
patient report of, 28, 30, 30t rating scales for, 28f, 28t, 60t Tenderness. See Pain; specific anatomy, e.g., Joint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 344f, 346f, 347f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 286f, 289f, 291f of lateral hip, identifying pathologie, 347f of sacroiliac region, 206f of shoulder, 382f, 348f, 348f, 348f of shoulder, 382f, 3838f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 469f, 470f, 471f, Tendonitis, of shoulder, 389t, 422t Thenar eminence in carpal compression test, 498t impact of fall on, 482f Thoracic outlet syndrome, 389t Thoracic spine arthrology of, 134 Thoracic spine arthrology of, 134 Thoracic spine arthrology of, 134 Thenar eminence in carpal compression test, 498t impact of fall on, 482f Thenar muscles, innervation of, 474f, 475f, 476f Thenar muscles, innerval avesesment for, 106f, 52nd, 5			
rating scales for, 28f, 28f, 60t Tenderness. See Pain; specific anatomy, e.g., Joint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, attentions of, 248f, 289f, 289f, 289f, 291f of lateral hip, identifying patholofle, 382f, 267t of oneck, 24f, 25f, 72f, 73f of sacroillac region, 206f of shoulder, 382f, 348f of thigh, 251f of thoracolumbar spine, 141f, 142f of thoracolumbar spine, 141f, 142f of thoracolumbar spine, 141f, 142f of wirst and hand, 448f, 465f, 467f, 469f, 470f, 471f,		Tethered median nerve test, 501t	
Tenderness. See Pain; specific anatomy, e.g., Joint line tenderness. Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, ruptures of, 355t posterior, 248, 248t, 249f in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 289f, 291f of lateral hip, identifying patholofleg, 347f of eneck, 24f, 25f, 72f, 73f of sacroiliac region, 206f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of thoracolumbar spine, 141f, 142f of wirst and hand, 448f, 465f, 467f, 469f, 470f, 471f,			
Thenar muscles, innervation of, derness. Tendocalcaneus, subtendinous bursa of, 346f bursa of, 346f for meniscal tears, 320, 320f for meniscal tears, 320, 320f fascia of, 140f, 141f, 144f, 141f, 144f, 141f, 144f, 141f, 144f, 141f, 144f, 141f, 144f, 141f, 14			
derness. 474f, 475f, 476f 2nd-7th, 136t Tendocalcaneus, subtendinous bursa of, 346f for meniscal tears, 320, 320f fascia of, 140f, 141f, 144 kyphosis of, 163t Tendonitis, of shoulder, 389t, 422t Thigh kyphosis of, 163t Tendons of foot and ankle, 337f, 340f, 341f, 342f, 344f, 346f, 347f ruptures of, 355t posterior, 248, 248t, 249f ruptures of, 355t posterior, 248, 248t, 249f costovertebral, 137, 137f, 137t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 289f, 291f of lateral hip, identifying pathologle of lateral hip, identifying patholof lateral hip, identifying patholof of leg, 347f posterior, 248, 248f, 252f, 252t, 253f, 267t of neck, 24f, 25f, 72f, 73f of neck, 24f, 25f, 72f, 73f of sacroiliac region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t of thoracolumbar spine, 141f, 142f of wirst and hand, 448f, 465f, 469f, 470f, 471f, pain referral, 149t, 150f articular processes of, inferior vs.		=	arthrology of, 134
Tendocalcaneus, subtendinous bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f, anterior, 250, 250t, 251f ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 2991f of lateral hip, identifying patholof leg, 347f of neck, 24f, 25f, 72f, 73f of sacroiliac region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of thoracolumbar spine, 141f, 142f of of wist and hand, 448f, 465f, 469f, 470f, 471f, Tendons Thessaly test, of knee, 284 for meniscal tears, 320, 320f fascia of, 140f, 141f, 144 kyphosis of, 163t postural assessment for, 106f, fascia of, 140f, 141f, 144 kyphosis of, 163t postural assessment for, 106f, fascia of, 140f, 141f, 144 kyphosis of, 163t postural assessment for, 106f, fascia of, 140f, 141f, 144 kyphosis of, 163t postural assessment for, 106f, fascia of, 140f, 141f, 144 kyphosis of, 163t postural assessment for, 106f, muscles of, 248 106t, 163t postural assessment for, 106f, muscles of, 248 108t, 249f costovertebral, 137, 137f, 137t thoracolumbar, 138, 138f, 138t muscles of, 139 nerves of, 145. See also Thoracic nerve. osteology of, 133f in relation to temporomandib- ular joint, 17f pain in. See Thoracolumbar pain. scoliosis of, 163t, 164f Thoracic vertebrae. See also specific vertebrae, e.g., T4 vertebra. articular facets of inferior, 133f, 138f superior, 133f, 134f articular processes of, inferior vs.	omy, e.g., Joint line ten-		
bursa of, 346f Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f,			
Tendonitis, of shoulder, 389t, 422t Tendons of foot and ankle, 337f, 340f, 341f,	· ·		•
Tendons of foot and ankle, 337f, 340f, 341f, at 342f, 344f, 346f, 347f ruptures of, 355t posterior, 248, 248t, 249f ruptures of, 355t posterior, 248, 248t, 249f posterior, 248, 249f costovertebral, 137, 137f, 137t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 289f, 291f 293f, 294f posterior cutaneous, 146f, 147t, ogy of, 266-267, 266t, 267t 292f, 293f posterior cutaneous, 148f, 252f, 252t, 253f, of neck, 24f, 25f, 72f, 73f of neck, 24f, 25f, 72f, 73f of sacroiliac region, 206f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of thoracolumbar spine, 141f, 142f of wirst and hand, 448f, 465f, 467f, 469f, 470f, 471f, pain referral, 149t, 150f at the analysis and sacroiliac regions of solublar and and, 448f, 465f, 467f, 469f, 470f, 471f, pain referral, 149t, 150f at the action to temporomes of thigh, 251f and hand, 448f, 465f, 467f, 469f, 470f, 471f, pain referral, 149t, 150f at the action to temporomes of thigh, 250f, and the pain referral and posture and posture and and posture and and posture and posture and posture and posture and and posture an			
of foot and ankle, 337f, 340f, 341f,	Tendonitis, of shoulder, 389t, 422t		
342f, 344f, 346f, 347f ruptures of, 355t ruptures of, 355t in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 289f, 291f of lateral hip, identifying pathology of, 266-267, 266t, 267t of neck, 24f, 25f, 72f, 73f of sacroiliac region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of wrist and hand, 448f, 465f, 467f, 469f, 470f, 471f, anterior, 250, 250t, 251f posterior, 248, 248t, 249f nerves of, 248t, 249f thoracolumbar, 138, 138f, 138t thoracolumbar, 138, 138f, 138f thoracolumbar, 138, 138f thoracolumb	Tendons		postural assessment for, 106f,
ruptures of, 355t posterior, 248, 248t, 249f in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f, 288f, 289f, 291f 293f, 294f muscles of, 139 nerves of, 145. See also Thoracic of lateral hip, identifying pathology of, 266-267, 266t, 267t 292f, 293f posterior cutaneous, 148f, 252f, 252t, 253f, 267t 292f, 293f posterior cutaneous, 148f, 252f, of neck, 24f, 25f, 72f, 73f posterior cutaneous, 148f, 252f, 254f pain in. See Thoracolumbar pain. See Thoracolumbar pain. Seo Scoliosis of, 163t, 164f Thoracic vertebrae. See also specific of temporomandibular joint, 24f, 24t, 25f, 34t pulposus, 157f with herniated lumbar nucleus pulposus, 157f vertebrae. See also specific of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 469f, 470f, 471f, pain referral, 149t, 150f costcovertebral, 137, 137f, 137t thoracolumbar, 138, 138f, 138f thoracolumbar, 138, 138f thoracolumbar, 138, 138f thoracolumbar, 138, 138f	of foot and ankle, 337f, 340f, 341f,	muscles of, 248	
in sole, 348f, 349f, 350f, 351f of knee, 249f, 285f, 286f, 287f,	342f, 344f, 346f, 347f	anterior, 250, 250t, 251f	ligaments of, 134f, 135f, 137
of knee, 249f, 285f, 286f, 287f,	ruptures of, 355t	posterior, 248, 248t, 249f	costovertebral, 137, 137f, 137t
288f, 289f, 291f 293f, 294f nerves of, 145. See also Thoracic of lateral hip, identifying pathol- ogy of, 266-267, 266t, 267t 292f, 293f of leg, 347f of neck, 24f, 25f, 72f, 73f of sacroiliac region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 467f, 469f, 470f, 471f, pays, 293f posterior cutaneous, 148f, 252f, 292f, 293f posterior pain in. See Thoracolumbar pain. scoliosis of, 163t, 164f Thoracic vertebrae. See also specific vertebrae. See also specific vertebrae. vertebrae. vertebrae. vertebrae. stricular facets of inferior, 133f, 138f superior, 133f, 134f articular processes of, inferior vs.	in sole, 348f, 349f, 350f, 351f	nerves of, 208t, 249f	thoracolumbar, 138, 138f, 138t
of lateral hip, identifying pathology of, 266-267, 266t, and 292f, 252f, 252t, 253f, 252t, 253f, 252f, 252f, 253f, 252f, 253f, 267t 292f, 293f in relation to temporomandibor leg, 347f posterior cutaneous, 148f, 252f, 252f, 252f, 253f, 252f, 252f, 252f, 252f, 253f, 252f,	of knee, 249f, 285f, 286f, 287f,	cutaneous localization of, 292f,	muscles of, 139
ogy of, 266-267, 266t, 292f, 252t, 253f, 292f, 293f in relation to temporomandib- of leg, 347f posterior cutaneous, 148f, 252f, 252t, 294f ular joint, 17f of neck, 24f, 25f, 72f, 73f 252t, 294f pain in. See Thoracolumbar pain. of sacroiliac region, 206f perineal branches of, 294f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t pulposus, 157f vertebra. of thigh, 251f in hip examination, 274t articular facets of of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 469f, 470f, 471f, pain referral, 149t, 150f osteology of, 133f in relation to temporomandib- in relation to temporomandis- in relation to temporomandis- in r	288f, 289f, 291f	293f, 294f	nerves of, 145. See also Thoracic
267t 292f, 293f in relation to temporomandibor leg, 347f posterior cutaneous, 148f, 252f, of neck, 24f, 25f, 72f, 73f 252t, 294f pain in. See Thoracolumbar pain. of sacroiliac region, 206f perineal branches of, 294f scoliosis of, 163t, 164f Thigh pain scoliosis of, 163t, 164f Thoracic vertebrae. See also specific of temporomandibular joint, 24f, 24t, 25f, 34t pulposus, 157f vertebra. of thigh, 251f in hip examination, 274t articular facets of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 469f, 470f, 471f, pain referral, 149t, 150f articular processes of, inferior vs.	of lateral hip, identifying pathol-	lateral cutaneous, 146f, 147t,	nerve.
of leg, 347f posterior cutaneous, 148f, 252f, of neck, 24f, 25f, 72f, 73f 252t, 294f pain in. See Thoracolumbar pain. of sacroiliac region, 206f perineal branches of, 294f scoliosis of, 163t, 164f Thoracic vertebrae. See also specific of temporomandibular joint, 24f, 24t, 25f, 34t pulposus, 157f vertebra. of thigh, 251f in hip examination, 274t articular facets of of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 469f, 470f, 471f, pain referral, 149t, 150f ular joint, 17f pain in. See Thoracolumbar pain. scoliosis of, 163t, 164f Thoracic vertebrae. See also specific vertebrae. See also specific vertebrae of thoracic vertebrae of thoracic vertebrae of the pulposus, 157f vertebra. articular facets of inferior, 133f, 138f superior, 133f, 138f superior, 133f, 134f articular processes of, inferior vs.	ogy of, 266-267, 266t,	148f, 252f, 252t, 253f,	osteology of, 133f
of neck, 24f, 25f, 72f, 73f of sacroiliac region, 206f of shoulder, 382f, 383f, 388f of temporomandibular joint, 24f, 24t, 25f, 34t of thigh, 251f of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 467f, 469f, 470f, 471f, perineal branches of, 294f Thigh pain Thoracic vertebrae. See also specific with herniated lumbar nucleus pulposus, 157f vertebra. articular facets of inferior, 133f, 138f superior, 133f, 134f articular processes of, inferior vs.	267t	292f, 293f	in relation to temporomandib-
of sacroiliac region, 206f perineal branches of, 294f of shoulder, 382f, 383f, 388f Thigh pain Thoracic vertebrae. See also specific with herniated lumbar nucleus vertebra, e.g., T4 24t, 25f, 34t pulposus, 157f vertebra. of thigh, 251f in hip examination, 274t articular facets of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 469f, 470f, 471f, pain referral, 149t, 150f scoliosis of, 163t, 164f Thoracic vertebrae. See also specific vertebra, e.g., T4 vertebra. articular facets of inferior, 133f, 138f superior, 133f, 134f articular processes of, inferior vs.	of leg, 347f	posterior cutaneous, 148f, 252f,	ular joint, 17f
of sacroiliac region, 206f perineal branches of, 294f of shoulder, 382f, 383f, 388f Thigh pain Thoracic vertebrae. See also specific with herniated lumbar nucleus vertebra, e.g., T4 24t, 25f, 34t pulposus, 157f vertebra. of thigh, 251f in hip examination, 274t articular facets of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 469f, 470f, 471f, pain referral, 149t, 150f scoliosis of, 163t, 164f Thoracic vertebrae. See also specific with herniated lumbar nucleus vertebra, e.g., T4 in hip examination, 274t articular facets of inferior, 133f, 138f superior, 133f, 138f superior, 133f, 134f articular processes of, inferior vs.	of neck, 24f, 25f, 72f, 73f	252t, 294f	pain in. See Thoracolumbar pain.
of temporomandibular joint, 24f, 24t, 25f, 34t pulposus, 157f vertebra. of thigh, 251f in hip examination, 274t articular facets of of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 469f, 470f, 471f, pain referral, 149t, 150f pulposus, 157f vertebra. with herniated lumbar nucleus vertebra, e.g., T4 pulposus, 157f vertebra. articular facets of inferior, 133f, 138f superior, 133f, 138f superior, 133f, 134f articular processes of, inferior vs.	of sacroiliac region, 206f	perineal branches of, 294f	
of temporomandibular joint, 24f, 24t, 25f, 34t pulposus, 157f vertebra. of thigh, 251f in hip examination, 274t articular facets of of thoracolumbar spine, 141f, 142f of wrist and hand, 448f, 465f, 469f, 470f, 471f, pain referral, 149t, 150f pulposus, 157f vertebra. with herniated lumbar nucleus vertebra, e.g., T4 pulposus, 157f vertebra. articular facets of inferior, 133f, 138f superior, 133f, 138f superior, 133f, 134f articular processes of, inferior vs.	of shoulder, 382f, 383f, 388f	Thigh pain	Thoracic vertebrae. See also specific
24t, 25f, 34t pulposus, 157f vertebra. of thigh, 251f in hip examination, 274t articular facets of of thoracolumbar spine, 141f, 142f knee interventions and, 326t inferior, 133f, 138f of wrist and hand, 448f, 465f, as lumbar zygapophyseal joint superior, 133f, 134f 467f, 469f, 470f, 471f, pain referral, 149t, 150f articular processes of, inferior vs.		- -	
of thigh, 251f in hip examination, 274t articular facets of of thoracolumbar spine, 141f, 142f knee interventions and, 326t inferior, 133f, 138f of wrist and hand, 448f, 465f, as lumbar zygapophyseal joint superior, 133f, 134f articular processes of, inferior vs.	- ,		2
of thoracolumbar spine, 141f, 142f knee interventions and, 326t inferior, 133f, 138f of wrist and hand, 448f, 465f, as lumbar zygapophyseal joint superior, 133f, 134f articular processes of, inferior vs.			
of wrist and hand, 448f, 465f, as lumbar zygapophyseal joint superior, 133f, 134f 467f, 469f, 470f, 471f, pain referral, 149t, 150f articular processes of, inferior vs.			
467f, 469f, 470f, 471f, pain referral, 149t, 150f articular processes of, inferior vs.			
			-

Thoracic vertebrae (Continued) Thoracolumbar spine (Continued) Thoracolumbar spine (Continued) passive intervertebral motion asspinous processes of, 133f, 138f measurements of, 159, 159f, sessment, 169, 169f, 171, in palpation examination, 172t 159t, 160f in shoulder asymmetry assesspain during, 149t, 152t, 161, patient history, 153-154, 153f, ment, 395t 161f, 161t 154f, 184t of T7, 134f reliability of examination slump test, 178, 178f, 178t, 179f instability tests, 180, 180f, 180t of T9, 134f stenosis tests, 182, 182f, 182t low back pain classifications, of T12, 140f, 141f fascia of. See Thoracolumbar fascia. 187, 187f, 187t tenderness with palpation of, interventions for, 132 pain provocation, 161, 161f, 105t low back pain classification transverse process of, 133f, 134f, 161t 137f, 138f based on, 187t, 188, palpation of segmental levels, 172, 172f, 172t Thoracoacromial artery, 388f acromial branch of, 388f spinal manipulation as, 00013#, palpation of tenderness, 172, clavicular branch of, 388f 189-190. See also Lum-172f, 172t deltoid branch of, 385f, 388f bosacral/pelvic manippassive intervertebral motion ulation; Thoracic maassessment, 165, 165f, pectoral branch of, 388f Thoracodorsal artery, 388f nipulation. 166f, 167, 167f Thoracodorsal nerve, 71t, 78t, 79f, stabilization exercises as, 132, patient history, 152, 152f, 152t 188t, 191, 191t, 236 388f postural assessment, 163, 163f, in brachial plexus schema, 425f ligaments of, 137-138, 138f, 138t 163t costovertebral, 135f, 137, 137f, Thoracolumbar fascia, 140f, 141f, 144 ROM measurements, 159, 159f, 137t anterior layer of, 142f, 144 159t, 160f sternocostal, 134f middle layer of, 144 slump test, 178, 178f, 178t pain in, palpation identification muscles of, 139 of, 172t anterior abdominal wall, 143 posterior layer of, 142f, 144, 144f deep layer of, 142 stabilizing force of, 144, 144f intermediate layer of, 141 superficial, 144, 144f superficial layers of, 139 Thoracolumbar joints, 136t nerves of Thoracolumbar pain, 132 lumbar, 146-147, 148 thoracic, 145. See also Thoracic discogenic, 149t, 179f interventions for, 132 during motion/mobility assessossification of, in ankylosing ments, 161, 161f, 161t, spondylitis, 155f osteology of, 133 167t lumbar vertebrae, 133f patient report of, 149, 149t, 150f, 151f, 152t thoracic vertebrae, 133f physical examination for, 132, outcome measures of, 192, 192t 161, 161f, 161t patient history and, 132, 149-154, 171t provocative tests for, 161, 161f, 152t, 184t ankylosing spondylitis identifi-161t, 167t zygapophyseal syndromes of, 149, cation with, 154, 154t, Thumb 149t, 151 Dreyfuss description of, 151f initial hypotheses based on, Fukui description of, 150f, 151f 149, 149t Thoracolumbar spine, 131-208 radiculopathy identification 501t arthrology of, 134, 136 with, 154, 154t clinical summary and recommenreport of pain, 149, 149t, 150f, dations, 132-194 151f degenerative disc disease in, 183f spinal stenosis identification diagnostic utility of examination with, 153, 153t ankylosing spondylitis tests, physical examination of, 132t, 149, 186f, 186t 156-191 instability tests, 184-185, 184f, quality assessment of diagnostic studies, 193-194, 194t 184t, 185f range of motion of, 132 neurological examination, 156-157, 156f, 156t, 158f, in low back pain classifications, 158t 187t

Thyroid cartilage, 17f, 67f, 72f, 73f	Tibialis anterior muscle, 289f, 291f,	Transverse ligaments
oblique line of, 73f	345t, 346f, 348f, 353f	of acetabulum, 247f
Thyroid gland, 72f, 73f	Tibialis anterior tendon, 342f, 344f,	of atlas, 68f, 70f, 70t
Tibia	348f, 352f	posterior articular facet for, 69f
in ankle joint, 340f, 341f, 342f,	in physical examination, 368t	posterior articular facet of axis
348f	Tibialis posterior muscle, 347f, 347t,	for, 68f
anterior border of, 285f	354f	of knee, 288f, 288t
condyles of	Tibialis posterior tendon, 342f, 344f,	of metatarsal, deep, 343t, 344f,
lateral, 285f, 346f	347f, 350f, 351f, 352f	352f
medial, 285f, 287f, 288f, 289f	Tibiofemoral joint, 286t	Transverse process(es)
groove for semimembranous ten-	tenderness of, medial vs. lateral,	of cervical vertebrae, 68f, 71f, 75f,
don insertion on, 285f	312t	142f
intercondylar area of, anterior vs.	Tibiofibular joint	of coccyx, 202f
posterior, 285f	distal, 339t	of lumbar vertebra(e), 133f, 136f,
intercondylar eminence of, 285f	proximal, 286t	138f, 201f, 246f
intercondylar tubercle of, lateral	Tibiofibular ligaments	L5, as sacroiliac bony land-
vs. medial, 285f	anterior, 341f, 341t	mark, 214t
in knee joint, 286f, 287f	posterior, 340f, 340t, 341f	of thoracic vertebrae, 133f, 134f,
lateral surface of, 285f	Tinel's sign	137f, 138f
oblique line of, 285f, 289f	in elbow and forearm, 440, 454f,	Transverse section
osteology of, 285f	454t	of costovertebral joints, superior
in physical examination	in shoulder, 425t	view of, 135f
of foot and ankle, 356t, 358t,	in wrist and hand, 462, 494-495,	of costovertebral ligaments, supe-
372f	494t, 495t	rior view of, 137f
of knee, 310f, 310t, 311f, 311t,	Tinel's tests, A and B, for carpal tun-	Transversus abdominis muscle,
315f, 317f, 318f, 318t	nel syndrome, 494t,	143f, 143t, 145f, 146f
tuberosity of, 251f, 285f, 286f,	495t	tendon of origin of, 141f, 142f
288f, 289f, 291f, 346f	Tingling. See Paresthesias.	thoracolumbar fascia attachment
Tibial arteries	Tip pinch strength, 488f, 489t	to, 144, 144f
anterior, 347f, 348f	TMJ. See Temporomandibular joint	Trapezium, 463f, 464f, 465f, 468f,
posterior, 347f, 350f	(TMJ).	469f
medial calcaneal branches of,	Toe strength, plantarflexion, 336,	in carpal tunnel syndrome, 480f
347f, 349f	361, 361f, 361t	in scaphoid fractures, 482f
posterior medial malleolar	Toes	tubercle of, 463f, 464f, 467f
branch of, 347f	lateral deviation of, 369f	Trapezius muscles, 72f, 73f, 77f,
recurrent, 347f	ulcer on, 369f	145f, 384f, 384t, 385f,
Tibial collateral ligament, 287f, 288f,	Tongue, 35f	388f
288t, 289f, 347f	Torque, reproduction of, in balance	lower, 139t, 384f, 384t
deep part bound to medial me-	assessment, 365t	middle, 139t, 140f, 384f, 384t
niscus, 288f	Torsion, innominate, of sacroiliac	strength testing of, 392t
oblique fibers, 291f	region, 200, 227t, 229t,	upper, 76t, 77f, 140f, 384f, 384t,
parallel fibers, 291f	230t, 231t	385f
rupture of, 297f	Trachea, 17f, 67f, 72f, 73f	length assessment of, 107t
superficial vs. deep parts, 288f	Traction, mechanical	Trapezoid, 463f, 464f, 465f, 468f
Tibial nerve, 148f, 209f, 249f, 290t,	for cervical radiculopathy. See	in carpal tunnel syndrome, 480f
294f, 345t, 347f, 347t,	Cervical traction, for	in scaphoid fractures, 482f
353, 354f	radiculopathy.	Trapezoid ligament, 382f, 382t,
anterior view of, 353t, 354f	for low back pain, classifications	386f
articular branch of, 294f, 354f	based on, 188t	Trapezoid line, of clavicle, 379f
deep branch to interosseous mus-	Traction tests	Trauma. See also specific injury, e.g.,
cles, 354f		Fractures.
dividing, 350f	of cervical spine, 110, 110f, 110t of temporomandibular joint, 39t,	cervical spine, 80t
lateral plantar nerve from, 354f	44t, 49f, 49t	testing for, 85t
=	Translation test	elbow and forearm, 451t, 453t
medial calcaneal branches of, 294f, 347f, 349f, 354f	of lumbar spine, 184t	foot and ankle
	=	ligament sprains as, 355t, 372,
medial plantar nerve from, 354f	of mandible, 39t, 44f, 44t, 45t, 49t	372f
posterior view of, 353f, 353t superficial branch to 4th interos-	Transverse diameter, of pelvic inlet, 204f	patient report of, 355t
seous muscle, 354f		
scous muscle, 3341	Transverse fracture, of femur, 277f	screening for, 356, 358

knee drome, 480f patient report of, 295f, 295t, Ulnar collateral branches, of bra-Trunk alignment of, in scoliosis, 164f 296t, 297t, 300t chial artery, superior vs. neural. See Spinal nerve trunks. screening for, 298-299, 322t inferior (posterior), sacroiliac, 210f Tubercles. See also specific anatomy, e.g., Gerdy's tubercle. Ulnar collateral ligament, 443f, 443t, shoulder, 389t, 395t, 399t, 401t acromioclavicular mechanisms articular. See Articular tubercles. 466t, 467f, 468f of cervical vertebrae, 68f. See also of. 426f Ulnar fovea sign, 462, 501f, 501t wrist and hand specific vertebra. Ulnar nerve, 78t, 79f, 387t, 388f, anterior, 68f, 71f 445f, 446f, 448f, 448t, grip strength and, 489t posterior, 68f, 141f, 142f screening for, 481-483, 481t, 467f, 471t, 474f, 476, 482f, 483f Tuberosities. See specific anatomy, e.g., Ischial spine. Treadmill test, two-stage, for lumanterior vs. posterior view of, 476f bar spinal stenosis, Tuning fork test, for foot and ankle articular branch of, 476f 132, 182t injury, 336, 358t in brachial plexus schema, 425f, Treatment threshold, 2, 10, 10f 2×2 contingency table, 3, 4t, 11t 475f likelihood ratios and, 7, 8t in carpal tunnel syndrome, 480f Trendelenburg test Two-point discrimination test, movdiagnostic utility of, 267, 267f, communicating branch of, 475f, ing, for carpal tunnel 476f for hip and pelvis pathology, 244 syndrome, 492t, 493f compression at canal of Guyon, for lumbar segmental instability, Tympanic cavity, 26f 478t, 480f in cubital tunnel syndrome, 454t 180t U reliability of, 267, 267f, 267t deep branch of, 446f, 448f, 467f, UEFS. See Upper Extremity Func-Triangle of auscultation, in shoul-473t, 476f tional Scale (UEFS). der, 384t palmar, 474f Ulcers/ulcerations Triceps brachii muscle, 388f division between radial nerve on due to vasculitis, 369f lateral head of, 384f, 385f, 445t dorsal hand, 493f on toes, 369f long head of, 384f, 445t dorsal branch of, 446f, 448f, 476f, Ulna manual testing of, 87f 493f anterior border of, 444f for cervical radiculopathy, 88t dorsal digital branches of, 476f, anterior surface of, 444f medial head of, 445t coronoid process of, 441f, 444f, muscle stretch reflex testing of, 89f to flexor digitorum profundus 472f for cervical radiculopathy, 89t muscle, 475f deviation tests of, 484t, 485f, 500t Triceps brachii tendon, 443f, 445f groove on humerus for, 380f, 441f distal, fractures of, in children, Trigeminal (semilunar) ganglion, 26f inconstant spinal contributions 483f Trigger finger, 478t to, 476f in elbow joint, 441f, 442f, 442t, Triple hop for distance, 366t palmar branch of, 446f, 476f 443f palmar digital branches of, 493f Tripod pinch strength, 488f, 489t extension vs. flexion, 441f superficial branch of, 446f, 476f Triquetrum, 463f, 464f, 465f, 468f in scaphoid fractures, 482f interosseous border of, 444f Ulnocarpal ligament ligaments of, 443f, 443t, 444f Trochanteric fossa, 245f dorsal, 468f muscles of, 445f, 446f, 447f, 470f, Trochanteric region, lumbar zygpalmar, 466t, 467f 471f, 472f, 473f, 474f apophyseal joint pain ulnolunate vs. ulnotriquetral nerves of, 448f, 448t and, 150f portion of, 466t, 467f olecranon of, 441f, 445f, 470f Trochanters, of femur Ulnolunate portion, of palmar ulnosubcutaneous bursa of, 443f carpal ligament, 466t, greater, 201f, 245f, 246f, 247f, radial notch of, 441f 249f, 251f, 252f styloid process of, 444f, 463f, 501t bursitis of, 254t Ulnotriquetral ligament, 466t, 467f trochlear notch of, 441f, 444f pathology of, 254t, 267t, 275t foveal disruption of, 462, 501f, tuberosity of, 441f, 444f tenderness over, 267t 501t in wrist joint, 463f, 465f, 467f, 468f lesser, 201f, 245f, 246f, 247f Ultrasound Ulnar artery, 446f, 448f, 467f, 474f tenderness with palpation, 273t of rotator cuff tears, 422t, 423t anterior recurrent, 446f, 448f Trochlea of tenosynovitis, in wrist and in carpal tunnel syndrome, 480f of humerus, 379f, 380f, 441f hand, 495t, 497t, 498t deep palmar branch of, 446f, of talus, 337f, 338f ULTT. See Upper limb tension tests 448f, 467f, 474f Trochlear notch, of ulna, 441f, 444f (ULTTs). palmar carpal branch of, 448f, 474f True-negative result/rate, 3-4, 4t, 6, Uncus (uncinate process), 69f posterior recurrent, 445f, 448f 11t Upper crossed postural syndrome, 80t

True-positive result/rate, 3-4, 4t, 5,

Ulnar bursa, in carpal tunnel syn-

Trauma (Continued)

Upper extremity. See also specific	Valgus stress test (Continued)	Vertebral foramen
anatomy, e.g., Forearm/	diagnostic utility of, 316, 316f,	of cervical vertebrae, transverse,
arm.	316t, 322t	68f
dermatomes of	reliability of, 316, 316t	of lumbar vertebrae, 133f
anterior vs. posterior view of, 85f	MCL ruptures/tears and, 297f,	of thoracic vertebrae, 133f
in cervical radiculopathy test-	316t, 322t	Vertebral notch
ing, 86f, 86t	Varus stress test	of lumbar vertebrae, inferior vs.
manual muscle testing of, 87f,	of elbow, 440	superior, 136f
87t	of forefoot, 364, 364f, 364t	of thoracic vertebrae, inferior vs.
for cervical radiculopathy, 66,	of knee, 284, 316f	superior, 133f
88f, 88t	diagnostic utility of, 316, 316f,	Vibration testing
nerves to, cervical disc herniation	316t	of lumbar spine, 156t, 158t
and, 116f	reliability of, 316	of thoracolumbar spine, 132
pain in, with cervical compres-	Vasculitis, foot ulcerations due to,	Vigorimeter, for grip strength test-
sion test, 108f, 108t	369f	ing, 487t
paresthesias of	Vastus intermedius muscle, 251f,	Visual analog scale, for rating pain,
with brachial plexus palsy,	253f, 289f, 289t, 293f	28f, 28t
425t	Vastus lateralis muscle, 251f, 253f,	Visual estimation
with neck pain, 66, 80t, 82t,	289f, 289t, 291f, 293f,	of cervical spine ROM, 96t
83f, 83t, 84t	346f	of knee ROM, 301t
patient report of, 66, 80t,	Vastus medialis muscle, 251f, 253f,	of lumbar lordosis, 186t
82t, 83f, 83t, 84t	289f, 289t, 291f, 293f	of shoulder ROM, 390t
during ROM, 97t reflex tests of, 66	Veins. See also Named vein, e.g.,	Visual inspection, of knee
for cervical radiculopathy, 66,	Jugular vein. of hip and pelvis, 249f, 253f	combined with other tests, in diag-
89f, 89t	of neck, 72f, 73f, 75f	nosing pathology, 324t for inflammation, 300t
Upper Extremity Functional Scale	of shoulder, 385f, 388f	Volar plate, of palmar ligament,
(UEFS)	Verbal scale, for rating pain, 28t	469f, 469t
in elbow and forearm outcomes,	Vertebra prominens, 71f	Volumetric assessment
457t	Vertebrae. See also specific seg-	of ankle joint swelling, 368t
in shoulder outcomes, 429t	ment, e.g., Thoracic	of wrist and hand swelling, 491t
in wrist and hand outcomes, 503t	vertebrae.	_
Upper limb tension tests (ULTTs)	bony framework of	W
for carpal tunnel syndrome	cervical, 17f	Wainner's diagnostic test item cluster
A, 499, 499f, 499t	lumbar, 133f	for cervical radiculopa-
B, 499, 499t	sacral, 201f, 202f, 246f	thy interventions, 118t
for cervical radiculopathy	thoracic, 17f	Walking. See also Gait.
A, 66, 112t, 113f, 114t	facets of. See Articular facets; Cos-	sacroiliac pain relieved by, 211t
combined with other tests,	tal facets.	thoracolumbar pain with, 152t,
117, 117t	in kyphosis pathology, 119t, 121t,	153t
following cervical traction,	163t	Water volumetrics. See Volumetric
122t, 124t	processes of. See Articular proc-	assessment.
B, 112t, 113f, 114t	esses; Spinous processes;	Weakness. See Muscle strength.
diagnostic utility of, 114, 114f,	Transverse process(es).	Weight-bearing activities
114t	in scoliosis pathology, 164f	foot and ankle disorders with
reliability of, 112, 112f, 112t	Vertebral artery, 71f	alignment measurements for,
V	atlantic part of, 77f	362t, 363t
	groove on atlas for, 68f	dynamic motion in, 367t
Valgus alignment, forefoot, in pre-	Vertebral body(ies)	patient report of, 355t
dicting success of patel-	cervical, 68f, 71f	ROM measurements for, 360f
lofemoral pain inter-	fractures of, 90f	trauma screening of, 356t,
ventions, 325f, 325t	lumbar, 133f, 136f, 138f	358t
Valgus extension overload syn-	in scoliosis pathology, 164f	windlass test in, 371, 371f, 371t
drome, 449t	thoracic, 133f	knee disorders with
Valgus stress test of elbow, 440, 455t	posterior surface of, 138f	patient report of, 297t trauma screening of, 298f, 299t
moving, 440, 455f, 455t	Vertebral canal	322t
of forefoot, 364, 364f	lumbar, 136f	in Windlass test, vs. non-weight
of knee, 284, 316f	in scoliosis pathology, 164f	bearing, 371, 371f, 371t
0. 14100, 20 1, 0 101	thoracic, 134f	Jeaning, 371, 3711, 3711

Weight-bearing activities (Continued) Wrist and hand (Continued) Wrist joint (Continued) Western Ontario and McMaster nerves of, 475-477 articular disc of, 465f, 467f Universities Osteoarmeniscus of, 465f cutaneous, 493f thritis Index median, 475, 475f, 475t ROM measurements of, 484, 484f, radial, 477, 477f, 477t (WOMAC), 327t 484t, 485f ulnar, 476, 476f, 476t in hip and pelvis outcomes, 279t strength testing of, 487-489, 487f, Whipple test, for glenoid labral in neural tension tests, for cervi-487t cal radiculopathy, 112t, superficial capsular tissue of, 468f tears, 411t-412t Windlass test, weight bearing vs. Wrist ratio index, in carpal tunnel 114t, 499t osteology of, 463, 464f syndrome, 490t, 502 non-weight bearing, carpal bones, 463f 371, 371f, 371t Χ Wing. See Ala (wing). outcome measures of, 503, 503t Xiphoid process, 134f, 201f Wrist and hand, 461-507 pain in. See Hand and wrist pain. X-rays. See Radiography. arthrology of, 465 patient history and, 462, 478-479 clinical summary and recommeninitial hypotheses based on, 478, dations, 462-505 478t Y ligament of Bigelow, 247f physical examination of, 462t, diagnostic utility of examination Yergason test, for shoulder pain, carpal instability identification, 481-502 408, 408f, 408t 500, 500f, 500t quality assessment of diagnostic combined with other tests, 378, accuracy studies, 504carpal tunnel syndrome iden-428t tification, 489, 489f, 505, 504t, 505t Yocum test, for subacromial impingereliability of examination ment, 415-416t, 416f anthropometry measurements, anthropometry measurements, 490, 490f, 490t 490, 490f, 490t Z compression test, 498, 498f, carpal compression test, 498, Zona orbicularis, 247f 498f, 498t Zygapophyseal joints Phalen's test, 497, 497f, 497t patient history, 478, 478f, 478t capsule of Phalen's test, 496, 496f, 496t sensation testing, 492, 492f, cervical, 70f, 71f, 138f ROM measurements, 462 492t thoracolumbar, 138f special tests, 501, 501f, 501t finger and thumb, 486, 486f, cervical spine, 69f, 71f Tinel's sign, 495, 495f, 495t limited movement in, 66 upper limb tension tests, wrist, 484, 484f, 484t tenderness with palpation of, 104t 499, 499f, 499t sensory testing, 492, 492f, 492t thoracolumbar, 136t special tests for carpal tunnel, fracture screening, 481-483, 481f, Zygapophyseal pain referral pattern/ 501, 501f, 501t 481t syndrome patient history, 479, 479f, 479t strength testing in cervical spine, 66, 80, 82t fingers and thumb, 489, fractures of Cooper description of, 81f in children, 483, 483f 489f, 489t diagnostic nerve block for, 103t screening for, 462, 481-483, 481t, wrist, 487-489, 487f, 487t Dwyer description of, 80f 482f swelling assessment, 491, 491f, in thoracolumbar spine, 149, ligaments of, 466-469 491t 149t, 151 metacarpophalangeal and in-Tinel's sign, 494, 494f, 494t Dreyfuss description of, 151f terphalangeal, 469, upper limb tension tests, 499, Fukui description of, 150f, 151f 469f, 469t 499f, 499t Zygomatic arch, 17f, 19f, 22f, 67f palmar, 466, 466t, 467f Wrist joint, 465, 465f, 465t Zygomatic bone, 19f posterior, 468, 468f, 468t anthropometry measurements of, Zygomatic process, of temporal 490, 490t muscles of, 470-473 bone, 19f extensor, 470, 470f, 470t carpal tunnel syndrome identi-Zygomaticus major muscle, 22f flexor, 471, 471f, 471t, 472f fication with, 490, 490f, Zygomaticus minor muscle, 22f intrinsic, 473, 473f, 473t, 474f 490t